Area and Circumference

Save this PDF as:
 WORD  PNG  TXT  JPG

Size: px
Start display at page:

Download "Area and Circumference"

Transcription

1 4.4 Area and Circumference 4.4 OBJECTIVES 1. Use p to find the circumference of a circle 2. Use p to find the area of a circle 3. Find the area of a parallelogram 4. Find the area of a triangle 5. Convert square units In Section 4.2, we again looked at the perimeter of a straight-edged figure. The distance around the outside of a circle is closely related to this concept of perimeter. We call the perimeter of a circle the circumference. Definitions: Circumference of a Circle The circumference of a circle is the distance around that circle. Radius O d Diameter Circumference Figure 1 Let s begin by defining some terms. In the circle of Figure 1, d represents the diameter. This is the distance across the circle through its center (labeled with the letter O, for origin). The radius r is the distance from the center to a point on the circle. The diameter is always twice the radius. It was discovered long ago that the ratio of the circumference of a circle to its diameter always stays the same. The ratio has a special name. It is named by the Greek letter p (pi). 22 Pi is approximately, or 3.14 rounded to two decimal places. We can write the following 7 formula. NOTE The formula comes from the ratio C d p 4.5 ft Figure 2 Rules and Properties: C pd (1) Example 1 Finding the Circumference of a Circle Formula for the Circumference of a Circle A circle has a diameter of 4.5 ft, as shown in Figure 2. Find its circumference, using 3.14 for p. If your calculator has a p key, use that key instead of a decimal approximation for p. 341

2 342 CHAPTER 4 DECIMALS NOTE Because 3.14 is an approximation for pi, we can only say that the circumference is approximately 14.1 ft. The symbol means approximately. By Formula (1), C pd ft 14.1 ft (rounded to one decimal place) CHECK YOURSELF 1 NOTE If you want to approximate p, you needn t worry about running out of decimal places. The value for pi has been calculated to over 100,000,000 decimal places on a computer (the printout was some 20,000 pages long). A circle has a diameter of 3 1 inches (in.). Find its circumference. 2 Note: In finding the circumference of a circle, you can use whichever approximation for pi you choose. If you are using a calculator and want more accuracy, use the p key. There is another useful formula for the circumference of a circle. NOTE Because d 2r (the diameter is twice the radius) and C pd, we have C p(2r), or C 2pr. Rules and Properties: Formula for the Circumference of a Circle C 2pr (2) Example 2 Finding the Circumference of a Circle A circle has a radius of 8 in., as shown in Figure 3. Find its circumference using 3.14 for p. 8 in. Figure 3 From Formula (2), C 2pr in in. (rounded to one decimal place) CHECK YOURSELF 2 Find the circumference of a circle with a radius of 2.5 in.

3 AREA AND CIRCUMFERENCE SECTION Sometimes we will want to combine the ideas of perimeter and circumference to solve a problem. Example 3 Finding Perimeter We wish to build a wrought-iron frame gate according to the diagram in Figure 4. How many feet (ft) of material will be needed? NOTE The distance around the semicircle is 1 2 pd. 5 ft 4 ft Figure 4 The problem can be broken into two parts. The upper part of the frame is a semicircle (half a circle). The remaining part of the frame is just three sides of a rectangle. NOTE Using a calculator with a p key, 1 2 p 5 Circumference (upper part) ft 7.9 ft 2 Perimeter (lower part) ft Adding, we have ft We will need approximately 20.9 ft of material. CHECK YOURSELF 3 Find the perimeter of the following figure. 6 yd 8 yd The number pi (p), which we used to find circumference, is also used in finding the area of a circle. If r is the radius of a circle, we have the following formula.

4 344 CHAPTER 4 DECIMALS Rules and Properties: Formula for the Area of a Circle NOTE This is read, Area equals pi r squared. You can multiply the radius by itself and then by pi. A pr 2 (3) Example 4 Find the Area of a Circle A circle has a radius of 7 inches (in.) (see Figure 5). What is its area? 7 in. Figure 5 Use Formula (3), using 3.14 for p and r 7 in. A 3.14 (7 in.) in. 2 Again the area is an approximation because we use 3.14, an approximation for p. CHECK YOURSELF 4 Find the area of a circle whose diameter is 4.8 centimeters (cm). Remember that the formula refers to the radius. Use 3.14 for p, and round your result to the nearest tenth of a square centimeter. Two other figures that are frequently encountered are parallalograms and triangles. B C h A b D Figure 6 In Figure 6 ABCD is called a parallelogram. Its opposite sides are parallel and equal. Let s draw a line from D that forms a right angle with side BC. This cuts off one corner of the parallelogram. Now imagine that we move that corner over to the left side of the figure, as shown. This gives us a rectangle instead of a parallelogram. Because we haven t changed the area of the figure by moving the corner, the parallelogram has the same area as the rectangle, the product of the base and the height.

5 AREA AND CIRCUMFERENCE SECTION Rules and Properties: Formula for the Area of a Parallelogram A b h (4) Example 5 Finding the Area of a Parallelogram A parallelogram has the dimensions shown in Figure 7. What is its area? 1.8 in. 3.2 in. Figure 7 Use Formula (4), with b 3.2 in. and h 1.8 in. A b h 3.2 in. 1.8 in in. 2 CHECK YOURSELF 5 If the base of a parallelogram is 3 1 in. and its height is 1 1 in., what is its area? 2 2 Another common geometric figure is the triangle. It has three sides. An example is triangle ABC in Figure 8. B D A h b Figure 8 C b is the base of the triangle. h is the height, or the altitude, of the triangle. Once we have a formula for the area of a parallelogram, it is not hard to find the area of a triangle. If we draw the dotted lines from B to D and from C to D parallel to the sides of the triangle, we form a parallelogram. The area of the triangle is then one-half the area of the parallelogram [which is b h by Formula (4)].

6 346 CHAPTER 4 DECIMALS Rules and Properties: Formula for the Area of a Triangle A 1 2 b h (5) Example 6 Finding the Area of a Triangle A triangle has an altitude of 2.3 in., and its base is 3.4 in. (see Figure 9). What is its area? 2.3 in. 3.4 in. Figure 9 Use Formula (5), with b 3.4 in. and h 2.3 in. A 1 2 b h in. 2.3 in in.2 2 CHECK YOURSELF 6 A triangle has a base of 10 feet (ft) and an altitude of 6 ft. Find its area. Sometimes we will want to convert from one square unit to another. For instance, look at 1 yd 2 in Figure yd = 3 ft 1 yd = 9 ft 1 yd = 3 ft NOTE Originally the acre was the area that could be plowed by a team of oxen in a day! Figure 10 The table below gives some useful relationships. Square Units and Equivalents 1 square foot (ft 2 ) 144 square inches (in. 2 ) 1 square yard (yd 2 ) 9 ft 2 1 acre 4840 yd 2 43,560 ft 2

7 AREA AND CIRCUMFERENCE SECTION Example 7 Converting Between Feet and Yards in Finding Area A room has the dimensions 12 ft by 15 ft. How many square yards of linoleum will be needed to cover the floor? 12 NOTE We first find the area in square feet, then convert to square yards. A 12 ft 15 ft 180 ft yd ft 2 9 ft 2 20 yd 2 CHECK YOURSELF 7 A hallway is 27 ft long and 4 ft wide. How many square yards of carpeting will be needed to carpet the hallway? Example 8 illustrates the use of a common unit of area, the acre. Example 8 Converting Between Yards and Acres in Finding Area A rectangular field is 220 yd long and 110 yd wide. Find its area in acres. A 220 yd 110 yd 24,200 yd ,200 yd acres CHECK YOURSELF 8 acre yd 2 A proposed site for an elementary school is 220 yd long and 198 yd wide. Find its area in acres.

8 348 CHAPTER 4 DECIMALS CHECK YOURSELF ANSWERS 1. C 11 in. 2. C 15.7 in. 3. P 31.4 yd cm 2 5. A A 1 10 ft 6 ft yd acres 2 in in in. 3 2 in. = 30 ft in.2

9 Name 4.4 Exercises Section Date Find the circumference of each figure. Use 3.14 for p, and round your answer to one decimal place ft 5 ft ANSWERS in ft In exercises 5 and 6, use 22 7 for p, and find the circumference of each figure in ft Find the perimeter of each figure. (The curves are semicircles.) Round answers to one decimal place ft 7 ft ft 7 ft 1 in. 3 in. 10 in. 349

10 ANSWERS Find the area of each figure. Use 3.14 for p, and round your answer to one decimal place in. 12 ft yd 8 ft 20. In exercises 15 and 16, use for p, and find the area of each figure yd in. Find the area of each figure ft 7 ft 8 in yd 3 yd 5 in. 4 in. 7 in. 350

11 ANSWERS ft 8 ft 6 ft 11 ft in. 13 yd in. 13 yd ft 4 ft 6 yd 5 ft 7 yd 2 yd Solve the following applications. 27. Jogging. A path runs around a circular lake with a diameter of 1000 yards (yd). Robert jogs around the lake three times for his morning run. How far has he run? 28. Binding. A circular rug is 6 feet (ft) in diameter. Binding for the edge costs $1.50 per yard. What will it cost to bind around the rug? 29. Lawn care. A circular piece of lawn has a radius of 28 ft. You have a bag of fertilizer that will cover 2500 ft 2 of lawn. Do you have enough? 351

12 ANSWERS Cost. A circular coffee table has a diameter of 5 ft. What will it cost to have the top refinished if the company charges $3 per square foot for the refinishing? Cost. A circular terrace has a radius of 6 ft. If it costs $1.50 per square foot to pave the terrace with brick, what will the total cost be? 32. Area. A house addition is in the shape of a semicircle (a half circle) with a radius of 9 ft. What is its area? 33. Amount of material. A Tetra-Kite uses 12 triangular pieces of plastic for its surface. Each triangle has a base of 12 inches (in.) and a height of 12 in. How much material is needed for the kite? 34. Acreage. You buy a square lot that is 110 yd on each side. What is its size in acres? 35. Area. You are making rectangular posters 12 by 15 in. How many square feet of material will you need for four posters? 36. Cost. Andy is carpeting a recreation room 18 feet (ft) long and 12 ft wide. If the carpeting costs $15/yd 2, what will be the total cost of the carpet? 37. Acreage. A shopping center is rectangular, with dimensions of 550 by 440 yd. What is its size in acres? 38. Cost. An A-frame cabin has a triangular front with a base of 30 ft and a height of 20 ft. If the front is to be glass that costs $3 per square foot, what will the glass cost? 352

13 ANSWERS Find the area of the shaded part in each figure. Round your answers to one decimal place Semicircle 3 ft ft 5 ft ft ft 10 in ft 43. Papa Doc s delivers pizza. The 8-inch (in.)-diameter pizza is $8.99, and the price of a 16-in.-diameter pizza is $ Write a plan to determine which is the better buy. 10 in The distance from Philadelphia to Sea Isle City is 100 miles (mi). A car was driven this distance using tires with a radius of 14 in. How many revolutions of each tire occurred on the trip? 45. Find the area and the circumference (or perimeter) of each of the following: (a) a penny (b) a nickel (c) a dime (d) a quarter (e) a half-dollar (f) a silver dollar (g) a Susan B. Anthony dollar (h) a dollar bill (i) one face of the pyramid on the back of a $1 bill. 46. An indoor track layout is shown below. 20 m 7 m How much would it cost to lay down hardwood floor if the hardwood floor costs $10.50 per square meter? 353

14 ANSWERS What is the effect on the area of a triangle if the base is doubled and the altitude is cut in half? Create some examples to demonstrate your ideas How would you determine the cross-sectional area of a Douglas fir tree (at, say, 3 ft above the ground), without cutting it down? Use your method to solve the following problem: 50. If the circumference of a Douglas fir is 6 ft 3 in., measured at a height of 3 ft above the ground, compute the cross-sectional area of the tree at that height. 49. What happens to the circumference of a circle if you double the radius? If you double the diameter? If you triple the radius? Create some examples to demonstrate your answers. 50. What happens to the area of a circle if you double the radius? If you double the diameter? If you triple the radius? Create some examples to demonstrate your answers. Answers ft in in ft ft in yd ft yd 2 8 yd ft in ft yd 29. Yes; area ft $ in ft acres ft ft Doubled; doubled; tripled 354

9 Areas and Perimeters

9 Areas and Perimeters 9 Areas and Perimeters This is is our next key Geometry unit. In it we will recap some of the concepts we have met before. We will also begin to develop a more algebraic approach to finding areas and perimeters.

More information

12-1 Representations of Three-Dimensional Figures

12-1 Representations of Three-Dimensional Figures Connect the dots on the isometric dot paper to represent the edges of the solid. Shade the tops of 12-1 Representations of Three-Dimensional Figures Use isometric dot paper to sketch each prism. 1. triangular

More information

Basic Math for the Small Public Water Systems Operator

Basic Math for the Small Public Water Systems Operator Basic Math for the Small Public Water Systems Operator Small Public Water Systems Technology Assistance Center Penn State Harrisburg Introduction Area In this module we will learn how to calculate the

More information

Unit 5 Area. What Is Area?

Unit 5 Area. What Is Area? Trainer/Instructor Notes: Area What Is Area? Unit 5 Area What Is Area? Overview: Objective: Participants determine the area of a rectangle by counting the number of square units needed to cover the region.

More information

Mathematics as Reasoning Students will use reasoning skills to determine the best method for maximizing area.

Mathematics as Reasoning Students will use reasoning skills to determine the best method for maximizing area. Title: A Pen for Penny Brief Overview: This unit is a reinforcement of the concepts of area and perimeter of rectangles. Methods for maximizing area while perimeter remains the same are also included.

More information

Pre-Algebra Exam Review Review for Part 2: You may use a calculator to solve these problems.

Pre-Algebra Exam Review Review for Part 2: You may use a calculator to solve these problems. Pre-Algebra Exam Review Review for Part 2: You may use a calculator to solve these problems. Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

More information

Factoring Polynomials

Factoring Polynomials UNIT 11 Factoring Polynomials You can use polynomials to describe framing for art. 396 Unit 11 factoring polynomials A polynomial is an expression that has variables that represent numbers. A number can

More information

SECTION 1-6 Quadratic Equations and Applications

SECTION 1-6 Quadratic Equations and Applications 58 Equations and Inequalities Supply the reasons in the proofs for the theorems stated in Problems 65 and 66. 65. Theorem: The complex numbers are commutative under addition. Proof: Let a bi and c di be

More information

XV. Mathematics, Grade 10

XV. Mathematics, Grade 10 XV. Mathematics, Grade 10 Grade 10 Mathematics Test The spring 2011 grade 10 MCAS Mathematics test was based on learning standards in the Massachusetts Mathematics Curriculum Framework (2000). The Framework

More information

Chapter 4: The Concept of Area

Chapter 4: The Concept of Area Chapter 4: The Concept of Area Defining Area The area of a shape or object can be defined in everyday words as the amount of stuff needed to cover the shape. Common uses of the concept of area are finding

More information

Math BINGO MOST POPULAR. Do you have the lucky card? B I N G O

Math BINGO MOST POPULAR. Do you have the lucky card? B I N G O MOST POPULAR Math BINGO Do you have the lucky card? Your club members will love this MATHCOUNTS reboot of a classic game. With the perfect mix of luck and skill, this is a game that can be enjoyed by students

More information

Possible Stage Two Mathematics Test Topics

Possible Stage Two Mathematics Test Topics Possible Stage Two Mathematics Test Topics The Stage Two Mathematics Test questions are designed to be answerable by a good problem-solver with a strong mathematics background. It is based mainly on material

More information

GENERAL MATH PROBLEM CATEGORIES AND ILLUSTRATED SOLUTIONS MEASUREMENT STANDARDS WHICH MUST BE MEMORIZED FOR THE BROKER TEST

GENERAL MATH PROBLEM CATEGORIES AND ILLUSTRATED SOLUTIONS MEASUREMENT STANDARDS WHICH MUST BE MEMORIZED FOR THE BROKER TEST Chapter 17 Math Problem Solutions CHAPTER 17 GENERAL MATH PROBLEM CATEGORIES AND ILLUSTRATED SOLUTIONS MEASUREMENT STANDARDS WHICH MUST BE MEMORIZED FOR THE BROKER TEST Linear Measure 12 inches = 1 ft

More information

Factoring, Solving. Equations, and Problem Solving REVISED PAGES

Factoring, Solving. Equations, and Problem Solving REVISED PAGES 05-W4801-AM1.qxd 8/19/08 8:45 PM Page 241 Factoring, Solving Equations, and Problem Solving 5 5.1 Factoring by Using the Distributive Property 5.2 Factoring the Difference of Two Squares 5.3 Factoring

More information

Such As Statements, Kindergarten Grade 8

Such As Statements, Kindergarten Grade 8 Such As Statements, Kindergarten Grade 8 This document contains the such as statements that were included in the review committees final recommendations for revisions to the mathematics Texas Essential

More information

Applied Mathematics. Level 7. Worldwide Interactive Network, Inc. 1000 Waterford Place, Kingston, TN 37763 888.717.9461

Applied Mathematics. Level 7. Worldwide Interactive Network, Inc. 1000 Waterford Place, Kingston, TN 37763 888.717.9461 Applied Mathematics Level 7 Worldwide Interactive Network, Inc. 1000 Waterford Place, Kingston, TN 37763 888.717.9461 2008 Worldwide Interactive Network, Inc. All rights reserved. Copyright 1998 by Worldwide

More information

FORMULA FOR FINDING THE SQUARE FEET OF A RECTANGLE L x W = A

FORMULA FOR FINDING THE SQUARE FEET OF A RECTANGLE L x W = A UNIT I REAL ESTATE MATH AREA MEASUREMENTS FORMULA FOR FINDING THE SQUARE FEET OF A RECTANGLE L x W = A Where: A = Area L = Length W = Width If the length = 30 and the width = 20 20 x 30 = 600 Sq. Feet

More information

Keystone National High School Placement Exam Math Level 1. Find the seventh term in the following sequence: 2, 6, 18, 54

Keystone National High School Placement Exam Math Level 1. Find the seventh term in the following sequence: 2, 6, 18, 54 1. Find the seventh term in the following sequence: 2, 6, 18, 54 2. Write a numerical expression for the verbal phrase. sixteen minus twelve divided by six Answer: b) 1458 Answer: d) 16 12 6 3. Evaluate

More information

FSCJ PERT. Florida State College at Jacksonville. assessment. and Certification Centers

FSCJ PERT. Florida State College at Jacksonville. assessment. and Certification Centers FSCJ Florida State College at Jacksonville Assessment and Certification Centers PERT Postsecondary Education Readiness Test Study Guide for Mathematics Note: Pages through are a basic review. Pages forward

More information

(15.) To find the distance from point A to point B across. a river, a base line AC is extablished. AC is 495 meters

(15.) To find the distance from point A to point B across. a river, a base line AC is extablished. AC is 495 meters (15.) To find the distance from point A to point B across a river, a base line AC is extablished. AC is 495 meters long. Angles

More information

MAKING THE MATHEMATICS AND LITERACY CONNECTION

MAKING THE MATHEMATICS AND LITERACY CONNECTION MAKING THE MATHEMATICS AND LITERACY CONNECTION Enhances Instructional Feasibility Facilitates Student Collaboration Prepares for the Reality of Standardized Testing Provides Authentic Learning Experiences

More information

SPECIAL PRODUCTS AND FACTORS

SPECIAL PRODUCTS AND FACTORS CHAPTER 442 11 CHAPTER TABLE OF CONTENTS 11-1 Factors and Factoring 11-2 Common Monomial Factors 11-3 The Square of a Monomial 11-4 Multiplying the Sum and the Difference of Two Terms 11-5 Factoring the

More information

Warm-Up 1. 1. What is the least common multiple of 6, 8 and 10?

Warm-Up 1. 1. What is the least common multiple of 6, 8 and 10? Warm-Up 1 1. What is the least common multiple of 6, 8 and 10? 2. A 16-page booklet is made from a stack of four sheets of paper that is folded in half and then joined along the common fold. The 16 pages

More information

Unit 1 - Radian and Degree Measure Classwork

Unit 1 - Radian and Degree Measure Classwork Unit 1 - Radian and Degree Measure Classwork Definitions to know: Trigonometry triangle measurement Initial side, terminal side - starting and ending Position of the ray Standard position origin if the

More information

College of Charleston Math Meet 2008 Written Test Level 1

College of Charleston Math Meet 2008 Written Test Level 1 College of Charleston Math Meet 2008 Written Test Level 1 1. Three equal fractions, such as 3/6=7/14=29/58, use all nine digits 1, 2, 3, 4, 5, 6, 7, 8, 9 exactly one time. Using all digits exactly one

More information

Weekend Cabin Retreat Project Site Plans

Weekend Cabin Retreat Project Site Plans Weekend Cabin Retreat Project Site Plans Sacramento City College EDT 300/ENGR 306 EDT 300/ENGR 306 - Site Plans 1 Cabin Project Site Plan/Bubble Diagram - Assignment 1 =10-0 Floor Plan - Assignment 1/4

More information

AMC 10 Solutions Pamphlet TUESDAY, FEBRUARY 13, 2001 Sponsored by Mathematical Association of America University of Nebraska

AMC 10 Solutions Pamphlet TUESDAY, FEBRUARY 13, 2001 Sponsored by Mathematical Association of America University of Nebraska OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO AMERICAN MATHEMATICS COMPETITIONS nd Annual Mathematics Contest 10 AMC 10 Solutions Pamphlet TUESDAY, FEBRUARY 1, 001

More information

Warning! Construction Zone: Building Solids from Nets

Warning! Construction Zone: Building Solids from Nets Brief Overview: Warning! Construction Zone: Building Solids from Nets In this unit the students will be examining and defining attributes of solids and their nets. The students will be expected to have

More information

The Australian Curriculum Mathematics

The Australian Curriculum Mathematics The Australian Curriculum Mathematics Mathematics ACARA The Australian Curriculum Number Algebra Number place value Fractions decimals Real numbers Foundation Year Year 1 Year 2 Year 3 Year 4 Year 5 Year

More information

Chapter 111. Texas Essential Knowledge and Skills for Mathematics. Subchapter B. Middle School

Chapter 111. Texas Essential Knowledge and Skills for Mathematics. Subchapter B. Middle School Middle School 111.B. Chapter 111. Texas Essential Knowledge and Skills for Mathematics Subchapter B. Middle School Statutory Authority: The provisions of this Subchapter B issued under the Texas Education

More information

American Diploma Project

American Diploma Project Student Name: American Diploma Project ALGEBRA l End-of-Course Eam PRACTICE TEST General Directions Today you will be taking an ADP Algebra I End-of-Course Practice Test. To complete this test, you will

More information

A.3. Polynomials and Factoring. Polynomials. What you should learn. Definition of a Polynomial in x. Why you should learn it

A.3. Polynomials and Factoring. Polynomials. What you should learn. Definition of a Polynomial in x. Why you should learn it Appendi A.3 Polynomials and Factoring A23 A.3 Polynomials and Factoring What you should learn Write polynomials in standard form. Add,subtract,and multiply polynomials. Use special products to multiply

More information

A can of Coke leads to a piece of pi

A can of Coke leads to a piece of pi theme / MATHEMATICS AND SCIENCE A can of Coke leads to a piece of pi A professional development exercise for educators is an adaptable math lesson for many grades BY MARILYN BURNS During a professional

More information

Answer Key for the Review Packet for Exam #3

Answer Key for the Review Packet for Exam #3 Answer Key for the Review Packet for Eam # Professor Danielle Benedetto Math Ma-Min Problems. Show that of all rectangles with a given area, the one with the smallest perimeter is a square. Diagram: y

More information

Assume you have 40 acres of forestland that was

Assume you have 40 acres of forestland that was A l a b a m a A & M a n d A u b u r n U n i v e r s i t i e s ANR-1371 Basal Area: A Measure Made for Management Assume you have 40 acres of forestland that was recently assessed by a natural resource

More information

A Second Course in Mathematics Concepts for Elementary Teachers: Theory, Problems, and Solutions

A Second Course in Mathematics Concepts for Elementary Teachers: Theory, Problems, and Solutions A Second Course in Mathematics Concepts for Elementary Teachers: Theory, Problems, and Solutions Marcel B. Finan Arkansas Tech University c All Rights Reserved First Draft February 8, 2006 1 Contents 25

More information

TABLE OF CONTENTS. INTRODUCTION... 5 Advance Concrete... 5 Where to find information?... 6 INSTALLATION... 7 STARTING ADVANCE CONCRETE...

TABLE OF CONTENTS. INTRODUCTION... 5 Advance Concrete... 5 Where to find information?... 6 INSTALLATION... 7 STARTING ADVANCE CONCRETE... Starting Guide TABLE OF CONTENTS INTRODUCTION... 5 Advance Concrete... 5 Where to find information?... 6 INSTALLATION... 7 STARTING ADVANCE CONCRETE... 7 ADVANCE CONCRETE USER INTERFACE... 7 Other important

More information

If A is divided by B the result is 2/3. If B is divided by C the result is 4/7. What is the result if A is divided by C?

If A is divided by B the result is 2/3. If B is divided by C the result is 4/7. What is the result if A is divided by C? Problem 3 If A is divided by B the result is 2/3. If B is divided by C the result is 4/7. What is the result if A is divided by C? Suggested Questions to ask students about Problem 3 The key to this question

More information

13. Write the decimal approximation of 9,000,001 9,000,000, rounded to three significant

13. Write the decimal approximation of 9,000,001 9,000,000, rounded to three significant æ If 3 + 4 = x, then x = 2 gold bar is a rectangular solid measuring 2 3 4 It is melted down, and three equal cubes are constructed from this gold What is the length of a side of each cube? 3 What is the

More information

Free Pre-Algebra Lesson 55! page 1

Free Pre-Algebra Lesson 55! page 1 Free Pre-Algebra Lesson 55! page 1 Lesson 55 Perimeter Problems with Related Variables Take your skill at word problems to a new level in this section. All the problems are the same type, so that you can

More information

Keystone National Middle School Math Level 8 Placement Exam

Keystone National Middle School Math Level 8 Placement Exam Keystone National Middle School Math Level 8 Placement Exam 1) A cookie recipe calls for the following ingredients: 2) In the quadrilateral below, find the measurement in degrees for x? 1 ¼ cups flour

More information

Graphing and Solving Nonlinear Inequalities

Graphing and Solving Nonlinear Inequalities APPENDIX LESSON 1 Graphing and Solving Nonlinear Inequalities New Concepts A quadratic inequality in two variables can be written in four different forms y < a + b + c y a + b + c y > a + b + c y a + b

More information

11.1. Objectives. Component Form of a Vector. Component Form of a Vector. Component Form of a Vector. Vectors and the Geometry of Space

11.1. Objectives. Component Form of a Vector. Component Form of a Vector. Component Form of a Vector. Vectors and the Geometry of Space 11 Vectors and the Geometry of Space 11.1 Vectors in the Plane Copyright Cengage Learning. All rights reserved. Copyright Cengage Learning. All rights reserved. 2 Objectives! Write the component form of

More information

OGET TEACHER TEST PREP SEMINAR NORTHERN OKLAHOMA COLLEGE MATH COMPETENCIES

OGET TEACHER TEST PREP SEMINAR NORTHERN OKLAHOMA COLLEGE MATH COMPETENCIES DATA INTERPRETATION AND ANALYSIS COMPETENCY 0009 Interpret information from line graphs, bar graphs, and pie charts. Interpret data from tables. Recognize appropriate representations of various data in

More information

FACTORING OUT COMMON FACTORS

FACTORING OUT COMMON FACTORS 278 (6 2) Chapter 6 Factoring 6.1 FACTORING OUT COMMON FACTORS In this section Prime Factorization of Integers Greatest Common Factor Finding the Greatest Common Factor for Monomials Factoring Out the

More information

OD1641 PRINCIPLES OF DRAFTING AND SHOP DRAWINGS

OD1641 PRINCIPLES OF DRAFTING AND SHOP DRAWINGS SUBCOURSE OD1641 EDITION 8 PRINCIPLES OF DRAFTING AND SHOP DRAWINGS US ARMY REPAIR SHOP TECHNICIAN WARRANT OFFICER ADVANCED CORRESPONDENCE COURSE MOS/SKILL LEVEL: 441A PRINCIPLES OF DRAFTING AND SHOP

More information

2.8 FUNCTIONS AND MATHEMATICAL MODELS

2.8 FUNCTIONS AND MATHEMATICAL MODELS 2.8 Functions and Mathematical Models 131 2.8 FUNCTIONS AND MATHEMATICAL MODELS At one time Conway would be making constant appeals to give him a year, and he would immediately respond with the date of

More information

called and explain why it cannot be factored with algebra tiles? and explain why it cannot be factored with algebra tiles?

called and explain why it cannot be factored with algebra tiles? and explain why it cannot be factored with algebra tiles? Factoring Reporting Category Topic Expressions and Operations Factoring polynomials Primary SOL A.2c The student will perform operations on polynomials, including factoring completely first- and second-degree

More information

North Carolina Community College System Diagnostic and Placement Test Sample Questions

North Carolina Community College System Diagnostic and Placement Test Sample Questions North Carolina Communit College Sstem Diagnostic and Placement Test Sample Questions 0 The College Board. College Board, ACCUPLACER, WritePlacer and the acorn logo are registered trademarks of the College

More information

1. Site plans assist the Fire Department to determine where a potential spill can be contained. The detailed site plan shall include the following:

1. Site plans assist the Fire Department to determine where a potential spill can be contained. The detailed site plan shall include the following: Secondary Containment, Spill Control and Drainage Guidelines for Hazardous Materials per 2010 CFC PURPOSE The intent of this guideline is to provide the requirements for the design and construction of

More information

CRIME SCENE EVALUATION LAB

CRIME SCENE EVALUATION LAB FORENSIC SCIENCE INTRODUCTION ACTIVITY #12 NAME DATE HR CRIME SCENE EVALUATION LAB Objective You will draw rough and final sketches of a crime scene. Introduction Once the photographer has completed his

More information

for the Common Core State Standards 2012

for the Common Core State Standards 2012 A Correlation of for the Common Core State s 2012 to the Common Core Georgia Performance s Grade 2 FORMAT FOR CORRELATION TO THE COMMON CORE GEORGIA PERFORMANCE STANDARDS (CCGPS) Subject Area: K-12 Mathematics

More information

2.3 Maximum and Minimum Applications

2.3 Maximum and Minimum Applications Section.3 155.3 Maximum and Minimum Applications Maximizing (or minimizing) is an important technique used in various fields of study. In business, it is important to know how to find the maximum profit

More information

Section 2.4 Law of Sines and Cosines

Section 2.4 Law of Sines and Cosines Section.4 Law of Sines and osines Oblique Triangle A triangle that is not a right triangle, either acute or obtuse. The measures of the three sides and the three angles of a triangle can be found if at

More information

Student Name: Teacher: Date: District: Miami-Dade County Public Schools Assessment: 9_12 Mathematics Algebra II Interim 2. Mid-Year 2014 - Algebra II

Student Name: Teacher: Date: District: Miami-Dade County Public Schools Assessment: 9_12 Mathematics Algebra II Interim 2. Mid-Year 2014 - Algebra II Student Name: Teacher: District: Date: Miami-Dade County Public Schools Assessment: 9_12 Mathematics Algebra II Interim 2 Description: Mid-Year 2014 - Algebra II Form: 201 1. During a physics experiment,

More information

Third Grade Math Games

Third Grade Math Games Third Grade Math Games Unit 1 Lesson Less than You! 1.3 Addition Top-It 1.4 Name That Number 1.6 Beat the Calculator (Addition) 1.8 Buyer & Vendor Game 1.9 Tic-Tac-Toe Addition 1.11 Unit 2 What s My Rule?

More information

Functional Math II. Information CourseTitle. Types of Instruction

Functional Math II. Information CourseTitle. Types of Instruction Functional Math II Course Outcome Summary Riverdale School District Information CourseTitle Functional Math II Credits 0 Contact Hours 135 Instructional Area Middle School Instructional Level 8th Grade

More information

Free Pre-Algebra Lesson 8 page 1

Free Pre-Algebra Lesson 8 page 1 Free Pre-Algebra Lesson 8 page 1 Lesson 8 Factor Pairs Measuring more accurately requires breaking our inches into fractions of an inch, little parts smaller than a whole inch. You can think ahead and

More information

Just want the standards alone? You can find the standards alone at www.corestandards.org. 7 th Grade Mathematics Unpacked Content February, 2012

Just want the standards alone? You can find the standards alone at www.corestandards.org. 7 th Grade Mathematics Unpacked Content February, 2012 7 th Grade Mathematics Unpacked Content For the new Common Core standards that will be effective in all North Carolina schools in the 2012-13 School Year. This document is designed to help North Carolina

More information

Objectives After completing this section, you should be able to:

Objectives After completing this section, you should be able to: Chapter 5 Section 1 Lesson Angle Measure Objectives After completing this section, you should be able to: Use the most common conventions to position and measure angles on the plane. Demonstrate an understanding

More information

(x- 3)3. (x- 3)3 =U. 3. Factor completely the given polynomial. ENHANCED

(x- 3)3. (x- 3)3 =U. 3. Factor completely the given polynomial. ENHANCED Student: Instructor: Vicky Kauffman Assignment: Final problems Date: Course: Kauffman's Math 12 1 1. A Norman window consists of a rectangle surmounted by a semicircle. Find the area of the Norman window

More information

Site Development Information Worksheet for single family residential development

Site Development Information Worksheet for single family residential development Site Development Information Worksheet for single family residential development Project description: Address: Owner Name: Phone No. Date Signature & phone number of Individual who Completed this Worksheet

More information

CHAPTER 4 LEGAL DESCRIPTION OF LAND DESCRIBING LAND METHODS OF DESCRIBING REAL ESTATE

CHAPTER 4 LEGAL DESCRIPTION OF LAND DESCRIBING LAND METHODS OF DESCRIBING REAL ESTATE r CHAPTER 4 LEGAL DESCRIPTION OF LAND DESCRIBING LAND A legal description is a detailed way of describing a parcel of land for documents such as deeds and mortgages that will be accepted in a court of

More information

STRAND: Number and Operations Algebra Geometry Measurement Data Analysis and Probability STANDARD:

STRAND: Number and Operations Algebra Geometry Measurement Data Analysis and Probability STANDARD: how August/September Demonstrate an understanding of the place-value structure of the base-ten number system by; (a) counting with understanding and recognizing how many in sets of objects up to 50, (b)

More information

Appalachian Rural Systemic Initiative PO Box 1049 200 East Vine St., Ste. 420 Lexington, KY 40588-1049 http://www.arsi.org/

Appalachian Rural Systemic Initiative PO Box 1049 200 East Vine St., Ste. 420 Lexington, KY 40588-1049 http://www.arsi.org/ OPEN-ENDED QUESTIONS FOR MATHEMATICS Appalachian Rural Systemic Initiative PO Box 1049 200 East Vine St., Ste. 420 Lexington, KY 40588-1049 http://www.arsi.org/ DEVELOPED BY DR. RON PELFREY, MATHEMATICS

More information

NUMBER CORNER YEARLONG CONTENT OVERVIEW

NUMBER CORNER YEARLONG CONTENT OVERVIEW August & September Workouts Calendar Grid Quilt Block Symmetries Identifying shapes and symmetries Calendar Collector Two Penny Toss Probability and data analysis Computational Fluency Mental Math Fluently

More information

Consultant: Lynn T. Havens. Director of Project CRISS Kalispell, Montana

Consultant: Lynn T. Havens. Director of Project CRISS Kalispell, Montana Teacher Annotated Edition Study Notebook Consultant: Lynn T. Havens SM Director of Project CRISS Kalispell, Montana i_sn_c1fmtwe_893629.indd i 3/16/09 9:17:03 PM Copyright by The McGraw-Hill Companies,

More information

Unit 1: Whole Numbers

Unit 1: Whole Numbers Unit 1: Whole Numbers 1.1.1 Place Value and Names for Whole Numbers Learning Objective(s) 1 Find the place value of a digit in a whole number. 2 Write a whole number in words and in standard form. 3 Write

More information

Maximum Floor Area and Maximum Development Area

Maximum Floor Area and Maximum Development Area TOWN OF LOS ALTOS HILLS 26379 Fremont Road Los Altos Hills, CA 94022 Phone: (650) 941-7222 www.losaltoshills.ca.gov Maximum Floor Area and Maximum Development Area Revised-7/31/13 INSTRUCTIONS FOR WORKSHEET

More information

PERT Computerized Placement Test

PERT Computerized Placement Test PERT Computerized Placement Test REVIEW BOOKLET FOR MATHEMATICS Valencia College Orlando, Florida Prepared by Valencia College Math Department Revised April 0 of 0 // : AM Contents of this PERT Review

More information

1. What data might a car leave behind at the scene of an accident?

1. What data might a car leave behind at the scene of an accident? Bellwork 2-10-15 It takes 8,460 bolts to assemble an automobile, and one nut to scatter it all over the road. Author Unknown 1. What data might a car leave behind at the scene of an accident? 1 5 9 ACCIDENT

More information

NAKURU DISTRICT SEC. SCHOOLS TRIAL EXAM 2011. Kenya Certificate of Secondary Education MATHEMATICS PAPER2 2½ HOURS

NAKURU DISTRICT SEC. SCHOOLS TRIAL EXAM 2011. Kenya Certificate of Secondary Education MATHEMATICS PAPER2 2½ HOURS NAME:. INDEX NO: CANDIDATE S SINGNATURE DATE:. 121 /2 MATHEMATICS ALT A. PAPER2 JULY / AUGUST 2011 2 ½ HOURS NAKURU DISTRICT SEC. SCHOOLS TRIAL EXAM 2011 INSTRUCTIONS TO CANDIDATES Kenya Certificate of

More information

Virginia Placement Test Practice Questions and Answers

Virginia Placement Test Practice Questions and Answers Virginia Placement Test Practice Questions and Answers Table of Contents Practice Problems for UNIT 1 Operations with Positive Fractions... 1 Practice Problems for UNIT Operations with Positive Decimals

More information

Section A-3 Polynomials: Factoring APPLICATIONS. A-22 Appendix A A BASIC ALGEBRA REVIEW

Section A-3 Polynomials: Factoring APPLICATIONS. A-22 Appendix A A BASIC ALGEBRA REVIEW A- Appendi A A BASIC ALGEBRA REVIEW C In Problems 53 56, perform the indicated operations and simplify. 53. ( ) 3 ( ) 3( ) 4 54. ( ) 3 ( ) 3( ) 7 55. 3{[ ( )] ( )( 3)} 56. {( 3)( ) [3 ( )]} 57. Show by

More information

Example 1: Suppose the demand function is p = 50 2q, and the supply function is p = 10 + 3q. a) Find the equilibrium point b) Sketch a graph

Example 1: Suppose the demand function is p = 50 2q, and the supply function is p = 10 + 3q. a) Find the equilibrium point b) Sketch a graph The Effect of Taxes on Equilibrium Example 1: Suppose the demand function is p = 50 2q, and the supply function is p = 10 + 3q. a) Find the equilibrium point b) Sketch a graph Solution to part a: Set the

More information

Final Word Problem Practice #1

Final Word Problem Practice #1 Final Word Problem Practice #1 Beginning Algebra / Math 100 Fall 2013 506 (Prof. Miller) Student Name/ID: Instructor Note: Assignment: Set up a tutoring appointment with one of the campus tutors or with

More information

The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION INTEGRATED ALGEBRA. Tuesday, January 22, 2013 9:15 a.m. SAMPLE RESPONSE SET

The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION INTEGRATED ALGEBRA. Tuesday, January 22, 2013 9:15 a.m. SAMPLE RESPONSE SET The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION INTEGRATED ALGEBRA Tuesday, January 22, 2013 9:15 a.m. SAMPLE RESPONSE SET Table of Contents Practice Papers Question 31.......................

More information

Factoring Polynomials

Factoring Polynomials Factoring Polynomials 8A Factoring Methods 8-1 Factors and Greatest Common Factors Lab Model Factoring 8-2 Factoring by GCF Lab Model Factorization of Trinomials 8-3 Factoring x 2 + bx + c 8-4 Factoring

More information

SJO PW - Język angielski ogólnotechniczny, Poziom B2 Opracowanie: I. Zamecznik, M. Witczak, H. Maniecka, A. Hilgier,

SJO PW - Język angielski ogólnotechniczny, Poziom B2 Opracowanie: I. Zamecznik, M. Witczak, H. Maniecka, A. Hilgier, GEOMETRY AND MEASUREMENT - Teacher s notes and key to tasks Introduction (5 minutes one week before the actual LESSON): 1. Elicit vocabulary connected with geometric figures ask the students (SS) to look

More information

It s time to have some fun!

It s time to have some fun! WAKE UP YOUR BRAINS It s time to have some fun! We have put together some great ways to have fun working with math, reviewing math skills, and exploring math in the world all around you! OUR goal is for

More information

Topic: Special Products and Factors Subtopic: Rules on finding factors of polynomials

Topic: Special Products and Factors Subtopic: Rules on finding factors of polynomials Quarter I: Special Products and Factors and Quadratic Equations Topic: Special Products and Factors Subtopic: Rules on finding factors of polynomials Time Frame: 20 days Time Frame: 3 days Content Standard:

More information

Welcome to Math 7 Accelerated Courses (Preparation for Algebra in 8 th grade)

Welcome to Math 7 Accelerated Courses (Preparation for Algebra in 8 th grade) Welcome to Math 7 Accelerated Courses (Preparation for Algebra in 8 th grade) Teacher: School Phone: Email: Kim Schnakenberg 402-443- 3101 kschnakenberg@esu2.org Course Descriptions: Both Concept and Application

More information

Land Survey (Land of Plenty) Classroom Activity

Land Survey (Land of Plenty) Classroom Activity Land Survey (Land of Plenty) Classroom Activity The Classroom Activity introduces students to the context of a performance task, so they are not disadvantaged in demonstrating the skills the task intends

More information

Introduction and Mathematical Concepts

Introduction and Mathematical Concepts CHAPTER 1 Introduction and Mathematical Concepts PREVIEW In this chapter you will be introduced to the physical units most frequently encountered in physics. After completion of the chapter you will be

More information

Mobile Robotics I: Lab 2 Dead Reckoning: Autonomous Locomotion Using Odometry

Mobile Robotics I: Lab 2 Dead Reckoning: Autonomous Locomotion Using Odometry Mobile Robotics I: Lab 2 Dead Reckoning: Autonomous Locomotion Using Odometry CEENBoT Mobile Robotics Platform Laboratory Series CEENBoT v2.21 '324 Platform The Peter Kiewit Institute of Information Science

More information

ENGLISH CONTENT. Instructions for Using Your Computer Watch

ENGLISH CONTENT. Instructions for Using Your Computer Watch ENGLISH CONTENT Instructions for Using Your Computer Watch Two Rotation System of Scale Ring Rotate System Crown Rotate System Ring Rotate System Crown Rotate System Figure 1 Instructions for Using your

More information

The following table lists metric prefixes that come up frequently in physics. Learning these prefixes will help you in the various exercises.

The following table lists metric prefixes that come up frequently in physics. Learning these prefixes will help you in the various exercises. Chapter 0 Solutions Circles Learning Goal: To calculate the circumference or area of a circle Every day, we see circles in compact disks, coins, and wheels, just to name a few examples Circles are also

More information

FORM 3 MATHEMATICS SCHEME C TIME: 30 minutes Non Calculator Paper INSTRUCTIONS TO CANDIDATES

FORM 3 MATHEMATICS SCHEME C TIME: 30 minutes Non Calculator Paper INSTRUCTIONS TO CANDIDATES DIRECTORATE FOR QUALITY AND STANDARDS IN EDUCATION Department for Curriculum Management and elearning Educational Assessment Unit Annual Examinations for Secondary Schools 2011 C FORM 3 MATHEMATICS SCHEME

More information

YOU CAN COUNT ON NUMBER LINES

YOU CAN COUNT ON NUMBER LINES Key Idea 2 Number and Numeration: Students use number sense and numeration to develop an understanding of multiple uses of numbers in the real world, the use of numbers to communicate mathematically, and

More information

Vectors 2. The METRIC Project, Imperial College. Imperial College of Science Technology and Medicine, 1996.

Vectors 2. The METRIC Project, Imperial College. Imperial College of Science Technology and Medicine, 1996. Vectors 2 The METRIC Project, Imperial College. Imperial College of Science Technology and Medicine, 1996. Launch Mathematica. Type

More information

5.1 FACTORING OUT COMMON FACTORS

5.1 FACTORING OUT COMMON FACTORS C H A P T E R 5 Factoring he sport of skydiving was born in the 1930s soon after the military began using parachutes as a means of deploying troops. T Today, skydiving is a popular sport around the world.

More information

Preparing for Pre-Employment Math Testing

Preparing for Pre-Employment Math Testing Preparing for Pre-Employment Math Testing Objectives 1. Students will become familiar with different types of math problems 2. Students will demonstrate knowledge of math word problems Standard(s) Addressed

More information

GRADE 12 MATHEMATICAL LITERACY LEARNER NOTES

GRADE 12 MATHEMATICAL LITERACY LEARNER NOTES 2013 GRADE 12 MATHEMATICAL LITERACY LEARNER NOTES The SSIP is supported by TABLE OF CONTENTS LEARNER NOTES SESSION TOPIC PAGE 1 Topic 1: Personal and business finance 3 13 Topic 2: Tax, inflation, interest,

More information

ELFRING FONTS INC. MICR FONTS FOR WINDOWS

ELFRING FONTS INC. MICR FONTS FOR WINDOWS ELFRING FONTS INC. MICR FONTS FOR WINDOWS This package contains ten MICR fonts (also known as E-13B) used to print the magnetic encoding lines on checks, and eight Secure Fonts for use in printing check

More information

Practice Tests Answer Keys

Practice Tests Answer Keys Practice Tests Answer Keys COURSE OUTLINE: Module # Name Practice Test included Module 1: Basic Math Refresher Module 2: Fractions, Decimals and Percents Module 3: Measurement Conversions Module 4: Linear,

More information

INDEX. SR NO NAME OF THE PRACTICALS Page No. Measuring the bearing of traverse lines, calculation of included angles and check.

INDEX. SR NO NAME OF THE PRACTICALS Page No. Measuring the bearing of traverse lines, calculation of included angles and check. INDEX SR NO NAME OF THE PRACTICALS Page No 1 Measuring the bearing of traverse lines, calculation of included angles and check. 1 2 To study the essential parts of dumpy level & reduction of levels 3 To

More information

GeoGebra. 10 lessons. Gerrit Stols

GeoGebra. 10 lessons. Gerrit Stols GeoGebra in 10 lessons Gerrit Stols Acknowledgements GeoGebra is dynamic mathematics open source (free) software for learning and teaching mathematics in schools. It was developed by Markus Hohenwarter

More information

MATD 0390 - Intermediate Algebra Review for Pretest

MATD 0390 - Intermediate Algebra Review for Pretest MATD 090 - Intermediate Algebra Review for Pretest. Evaluate: a) - b) - c) (-) d) 0. Evaluate: [ - ( - )]. Evaluate: - -(-7) + (-8). Evaluate: - - + [6 - ( - 9)]. Simplify: [x - (x - )] 6. Solve: -(x +

More information

2. (a) Express the following numbers as products of their prime factors.

2. (a) Express the following numbers as products of their prime factors. 1. Jack and Jill share 18 in the ratio 2:3 Work out how much each person gets. Jack.. Jill... (Total 2 marks) 2. (a) Express the following numbers as products of their prime factors. (i) 56 (ii) 84.. (4)

More information