Objective To introduce a formula to calculate the area. Family Letters. Assessment Management


 Colin Stevenson
 1 years ago
 Views:
Transcription
1 Area of a Circle Objective To introduce a formula to calculate the area of a circle. epresentations etoolkit Algorithms Practice EM Facts Workshop Game Family Letters Assessment Management Common Core State Standards Curriculum Focal Points Interactive Teacher s Lesson Guide Teaching the Lesson Ongoing Learning & Practice Differentiation Options Key Concepts and Skills Find the median of a data set. [Data and Chance Goal 2] Investigate and apply a formula for finding the area of a circle. [Measurement and Reference Frames Goal 2] Use ratios to describe the relationship between radius and area. [Measurement and Reference Frames Goal 2] Use patterns in a table to define the relationship between radius and area. [Patterns, Functions, and Algebra Goal 1] Key Activities Students draw circles by tracing round objects on centimeter grids. They measure the areas and radii and find that the ratio of a circle s area to the square of its radius is close to the value of π. They use the formula to calculate the areas of the circles. Ongoing Assessment: Informing Instruction See page 833. Materials Math Journal 2, pp B Study Link 10 8 Math Masters, p. 436 transparencies of Math Masters, pp. 314 and 436 slate collection of round objects from Lesson 10 8 calculator metric ruler Converting Units of Measure Math Journal 2, pp. 366A and 366B Students convert units of measure. Playing First to 100 Student Reference Book, p. 308 Math Masters, pp per partnership: 2 sixsided dice, calculator Students practice solving open number sentences. Ongoing Assessment: Recognizing Student Achievement Use Math Masters, page 458. [Patterns, Functions, and Algebra Goal 2] Math Boxes Math Journal 2, p. 367 Students practice and maintain skills through Math Box problems. Study Link Math Masters, p. 315 Students practice and maintain skills through Study Link activities. ENRICHMENT 2 Modeling πr Math Masters, pp. 316 and 317 scissors colored pencil or marker construction paper glue or tape Students apply their understanding of area formulas to verify the formula for the area of a circle. EXTRA PRACTICE Calculating the Circumferences and Areas of Circles Math Masters, p. 318 Geometry Template calculator Students use formulas to solve problems involving circumferences and areas of circles. Advance Preparation For Part 1, copy the table on journal page 365 onto the board. Make transparencies of Math Masters, pages 314 and 436. Teacher s Reference Manual, Grades 4 6 pp , 185, 186, 221 Lesson 831
2 Getting Started Mental Math and Reflexes Have students record an appropriate unit of measure for given situations. Suggestions: Amount of carpet needed to carpet a bedroom ft 2, yd 2, or m 2 Distance from where you live to a summer camp on a lake Miles, or kilometers Length of a dollar bill Inches, or centimeters Amount of juice the average person drinks in a week Cups, gallons, or liters Volume of cubes that could be stacked in a desk drawer, filling every space cm 3 or in 3 Math Message Solve Problems 1 4 on journal page 364. Study Link 10 8 FollowUp Have partners compare answers and resolve differences. 1 Teaching the Lesson Math Message FollowUp (Math Journal 2, p. 364; Math Masters, p. 314) ELL WHOLECLASS DISCUSSION NOTE All measurement is inexact, but finding the area of a circle by counting square centimeters is especially so. Area, unlike length, volume, or mass, is difficult to measure directly. Area is usually found by measuring lengths and applying a formula. Nevertheless, if students are particularly precise, measuring area by counting square units can be an accurate and practical technique. Verify that students were able to determine the diameter, radius, and circumference of the circle. Then ask students to share their answers to Problem 4. List their measurements in order on the board or a transparency, find the median of the measurements, and have students record the median in Problem 5 on the journal page. Point out the wide variation in the area measurements. Discuss why it is difficult to measure the area of a circle by counting squares. The pieces are irregular. Then use the transparency of Math Masters, page 314 to demonstrate the following method for counting squares Math Message Measuring the Area of a Circle Use the circle at the right to solve Problems The diameter of the circle is about 8 centimeters. 2. The radius of the circle is about 4 centimeters. 3. a. Write the open number sentence you would use to find the circumference of the circle. C π 8, or C b. The circumference of the circle is about 25 centimeters. 4. Find the area of this circle by counting squares. About 50 cm 2 Answers vary. 5. What is the median of all the area measurements in your class? cm 2 1cm 2 1. Make a check mark in each whole centimeter square. 2. Mark each centimeter square that is nearly a whole square with an X. 3. Find combinations of partial squares that are about equivalent to a whole square. Number each set, using the same number in each partial square. 4. Count the approximate total number of squares. In the circle in Problem 1, the area of the circle is about 52 square centimeters. 6. Pi is the ratio of the circumference to the diameter of a circle. It is also the ratio of the area of a circle to the square of its radius. Write the formulas to find the circumference and the diameter of a circle that use these ratios. The formula for the circumference of a circle is C π d, or C πd. The formula for the area of a circle is A π r 2, or A πr 2. Ask the class to suggest situations in which one might need to find the area of a circle. To support English language learners, list students suggestions on the board. Explain that students will count squares and use a formula to find the area of circles. Math Journal 2, p Unit 10 Using Data; Algebra Concepts and Skills
3 Exploring the Relationship between Radius and Area (Math Journal 2, pp. 364 and 365; Math Masters, p. 436) PROBLEM SOLVING WHOLECLASS Algebraic Thinking This exploration requires students to measure the radius of circles where the center is not given and to find the approximate areas of these circles. Demonstrate what students are to do using a round object and the transparency of Math Masters, page 436: 1. Make a circle on the transparency by tracing the object. 2. Find the approximate area of the circle by counting squares. Record the name of the object and its approximate area in the first and second columns of the table on the board. 3. Use a rightangled corner of a piece of paper to find a diameter of the circle. Position the right angle on the circle as shown below. Mark the points where the sides of the angle intersect the circle. These are the endpoints of a diameter of the circle. Measure the distance between endpoints Areas of Circles Work with a partner. Use the same objects, but make separate measurements so you can check each other s work. Answers vary. 1. Trace several round objects onto the grid on Math Masters, page Count square centimeters to find the area of each circle. 3. Use a ruler to find the radius of each object. (Reminder: The radius is half the diameter.) Record your data in the first three columns of the table below. Object Ratio of Area to Radius Squared Area Radius A (sq cm) (cm) as a Fraction r 2 as a Decimal 4. Find the ratio of the area to the square of the radius for each circle. Write the ratio as a fraction in the fourth column of the table. Then use a calculator to compute the ratio as a decimal. Round your answer to two decimal places, and write it in the last column. 5. Find the median of the ratios in the last column. Math Journal 2, p. 365 diameter 4. Ask students how to find the radius when the diameter is known. Divide by 2. Record the radius in the third column of the table. Ongoing Assessment: Informing Instruction Watch for students who struggle with measuring accurately. Have them trace and measure larger objects. Measurement errors are less significant with longer lengths. Have partners trace several round objects on a centimeter grid using Math Masters, page 436. Then have students measure the radius and the area of each of the tracings using the techniques just demonstrated. Partners use the same objects but measure independently and check each other s work. They record their results in the first three columns of the table on the journal page. When all groups have traced and measured at least three objects, bring the class together to demonstrate how to complete the last two columns in the table on the journal page. Continue to use the circle you traced on the transparency earlier. Lesson 833
4 A Formula for the Area of a Circle Your class just measured the area and the radius of many circles and found that the ratio of the area to the square of the radius is about 3. This was no coincidence. Mathematicians proved long ago that the ratio of the area of a circle to the square of its radius is always equal to π. This can be written as: A_ r = 2 π Usually this fact is written in a slightly different form, as a formula for the area of a circle. The formula for the area of a circle is A = π r 2 where A is the area of a circle and r is its radius. 1. What is the radius of the circle in the Math Message on journal page 364? 4 cm 2. Use the formula above to calculate the area of that circle cm 2 3. Is the area you found by counting square centimeters more or less than the area you found by using the formula? How much more or less? Answers vary. Answers vary. Sample answers: cm cm cm 2 4. Use the formula to find the areas of the circles you traced on Math Masters, page Which do you think is a more accurate way to find the area of a circle, by counting squares or by measuring the radius and using the formula? Explain. The formula is more accurate because it tells exactly how the area and radius are related. Counting squares is difficult and less accurate because partial squares are irregular. Math Journal 2, p _EMCS_S_G5_MJ2_U10_ indd 366 2/22/11 5:22 PM In the fourth column of the table on the board, write the ratio of the circle s area to the radius squared as a fraction. Ask volunteers for another way to express the meaning of radius squared. radius radius Use a calculator to convert the fraction to a decimal, rounded to two decimal places. Write the resulting decimal in the fifth column of the table. Have students complete the last two columns of the table on the journal page, find the median of the ratios in the last column, and record it as the answer to Problem 5. When students have finished, ask them to share the values they found and record them on the board. Most median values should be close to 3, though some might be far off because of various errors using the diameter instead of the radius, for example, or measuring the radius in inches rather than centimeters. Ask what number the ratios are close to. π Explain that this is no coincidence: The ratio of the area of a circle to the square of its radius is always equal to π. Help students recognize how remarkable this is the same number, π, is the ratio of the circumference to the diameter and the ratio of the area to the radius squared. These ratios are the bases for the formulas that can be used to find the circumference and the area of a circle. Have students write the formulas in Problem 6 on journal page 364. Using a Formula to Find the Area of a Circle (Math Journal 2, pp ; Math Masters, p. 436) WHOLECLASS Converting Units of Measure Customary System Length Weight Liquid Capacity Algebraic Thinking Have students read journal page 366 and use the formula to calculate the areas of the Math Message circle and the circles they traced on Math Masters, page 436. They compare the areas they found by counting square centimeters with the areas from the formula. 1 foot (ft) = 12 inches (in.) 1 pound (lb) = 16 ounces (oz) 1 pint (pt) = 2 cups (c) 1 yard (yd) = 3 feet (ft) 1 ton (T) = 2,000 pounds (lb) 1 quart (qt) = 2 pints (pt) 1 mile (mi) = 5,280 feet (ft) 1 gallon (gal) = 4 quarts (qt) Metric System Length Mass Liquid Capacity 1 centimeter (cm) = 1 gram (g) = 1 liter (L) = 10 millimeters (mm) 1,000 milligrams (mg) 1,000 milliliters (ml) 1 meter (m) = 1 kilogram (kg) = 1 kiloliter (kl) = 100 centimeters (cm) 1,000 grams (g) 1,000 liters (L) 1 kilometer (km) = 1,000 meters (m) 1. Tell if you should multiply or divide. a. To convert from a larger unit to a b. To convert from a smaller unit to a smaller unit (such as from ft to in.), larger unit (such as from m to km), you multiply. you divide. 2. Find the equivalent customary measurement. a. 24 in. = 2 ft b. 3 yd = 108 in. c. 12 qt = 3 gal d. 3.5 gal = 14 qt e. 1.5 mi = 7,920ft = 2,640yd f. 2.5 qt = pt = c Ongoing Learning & Practice Converting Units of Measure (Math Journal 2, pp. 366A and 366B) Students convert differentsize units of measure, compare units of measure, and solve problems involving measurement conversions. 3. Find the equivalent metric measurement. 1, , , a. 10 m = cm b. 50 mm = cm c. 250 g = kg d. 2.5 kl = L e. 7.5 m = cm = mm f. 100 mg = g = kg Math Journal 2, p. 366A 366A366B_EMCS_S_MJ2_G5_U10_ indd 366A 3/22/11 12:43 PM 834 Unit 10 Using Data; Algebra Concepts and Skills
5 Playing First to 100 (Student Reference Book, p. 308; Math Masters, pp ) PARTNER Algebraic Thinking Students play First to 100 to practice solving open number sentences. This game was introduced in Lesson 47. For detailed instructions, see Student Reference Book, page 308. Ongoing Assessment: Recognizing Student Achievement Math Masters Page 458 Use the First to 100 Record Sheet (Math Masters, page 458) to assess students facilities with replacing variables and solving problems. Students are making adequate progress if their number sentences and solutions are correct. [Patterns, Functions, and Algebra Goal 2] Converting Units of Measure continued 4. Which is less? a. 1.5 gallons or 20 cups b L or 1,300 ml 20 cups 1.25 L 5. Which is more? a. 1 3_ 4 lb or 28 oz b. 1,299 g or 1.3 kg They are equal. 6. Arrange each set of measurements in order from least to greatest. a. 9 oz, 1_ 2 lb, 0.75 lb b m, 800 mm, 85 cm 1_ 2 lb, 9 oz, 0.75 lb 7. Arrange each set of measurements in order from greatest to least. a yd, 1.5 ft, 39 in. b. 2,500 g, 100,000 mg, 2.55 kg 39 in., 0.75 yd, 1.5 ft 8. The standard length of a marathon is 26 miles 385 yards. How many yards is that in all? 46,145 yards 9. You can estimate the adult height of a 2yearold child by doubling the child s height. Suppose a 2yearold child is 35 1_ 2 inches tall. Estimate what the child s adult height will be in feet and inches. 5 feet 11 inches 10. Mt. McKinley in Alaska is km tall. This is 705 m greater than the height of Mt. St. Elias in Alaska. How tall is Mt. St. Elias in kilometers? km 1.3 kg 0.75 mm, 800 mm, 85 cm 2.55 kg, 2,500 g, 100,000 mg Math Boxes (Math Journal 2, p. 367) INDEPENDENT 11. A recipe for chicken soup calls for 12 cups of chicken broth. _ 12 a. How many gallons is that equivalent to? 16, 3_ 4 b. How many gallons are needed if the recipe is doubled? 1 1_ 2 Math Journal 2, p. 366B, or 0.75 gallon, or 1.5 gallons Mixed Practice Math Boxes in this lesson are paired with Math Boxes in Lessons 105 and The skill in Problem 5 previews Unit 11 content. Writing/Reasoning Have students write a response to the following: Exchange the exponent and base for each of the numbers in Problem 2, for example, Write the standard notation for each new number. 289; 279,936; 1,000,000; 1,000; 59,049 Which number is larger than its corresponding original number? Explain why. Sample answer: The original number 7 6 in standard notation is 117,649; 6 7 or 279,936 is larger than the original number because 6 used as a factor 7 times is greater than 7 used as a factor 6 times. Study Link (Math Masters, p. 315) Home Connection Students identify the best measurement to find in specific situations. They solve a set of problems using the formulas for area and circumference of circles. INDEPENDENT 366A366B_EMCS_S_MJ2_G5_U10_ indd 366B Math Boxes 1. Monica is y inches tall. Write an algebraic expression for the height of each person below. a. Tyrone is 8 inches taller than Monica. Tyrone s height: b. Isabel is 1 1_ 2 times as tall as Monica. Isabel s height: c. Chaska is 3 inches shorter than Monica. Chaska s height: d. Josh is 10 1_ 2 inches taller than Monica. Josh s height: e. If Monica is 48 inches tall, who is the tallest person listed above? Isabel How tall is that person? 72 in. 2. Use a calculator to rename each of the following in standard notation. a = 131,072 b. 7 6 = 117,649 c = 60,466,176 d = 59,049 e. 5 9 = 1,953,125 6 y _ 2 y, or 1 1_ 2 y y  y _ Solve. Solution a d = 14 b. 28 e = 2 c. b + 18 = 24 d. 14 = f 7 e. 12 = 16 + g d = 26 e = 30 b = 42 f = 7 g = /6/11 11:02 AM 4. Complete the What s My Rule? table and state the rule. Rule: Subtract 12 from in, in out or in  12 Math Journal 2, p Find the volume of the cube. Volume = length * width * height Volume = 6 units cube 216 units _EMCS_S_G5_MJ2_U10_ indd 367 2/22/11 5:22 PM Lesson 835
6 Study Link Master Name STUDY LINK 10 9 Area and Circumference Circle the best measurement for each situation described below. 1. What size hat to buy (Hint: The hat has to fit around a head.) Differentiation Options 2. How much frosting covers the top of a round birthday cake 3. The amount of yard that will be covered by a circular inflatable swimming pool 4. The length of a can label when you pull it off the can Fill in the oval next to the measurement that best completes each statement. 5. The radius of a circle is about 4 cm. The area of the circle is about 12 cm 2 39 cm 2 50 cm 2 25 cm 2 6. The area of a circle is about 28 square inches. The diameter of the circle is about 3 in. 6 in. 9 in. 18 in. 7. The circumference of a circle is about 31.4 meters. The radius of the circle is about 3 m 5 m 10 m 15 m 8. Explain how you found your answer for Problem 7. Sample answer: The circumference is about 31.4 meters, and this equals π º d or about 3.14 º d. Because 3.14 º , the diameter is about 10 meters. The radius is half the diameter or about 5 meters. Math Masters, p. 315 Area of a circle: A π º r 2 Circumference of a circle: C π º d 315 ENRICHMENT PARTNER Modeling πr Min (Math Masters, pp. 316 and 317) Algebraic Thinking To apply students understanding of area formulas, have them cut a circle into pieces and arrange them in the shape of a parallelogram. They draw and label the parts of the parallelogram to compare them to the parts of the circle. Partners follow the directions on Math Masters, page 316 to verify the formula for the area of a circle. When students have finished, discuss any difficulties they encountered. EXTRA PRACTICE INDEPENDENT Calculating the Circumferences and Areas of Circles (Math Masters, p. 318) 5 15 Min Algebraic Thinking Students use formulas to solve problems involving the circumferences and areas of circles. They draw the circles before finding the areas and circumferences. Remind students to use the fix function on their calculators to round the calculations to the nearest hundredth. Teaching Master Name 10 9 More Area and Circumference Problems Circle Formulas Circumference: C = π º d Area: A = π º r 2 where C is the circumference of a circle, A is its area, d is its diameter, and r is its radius. Measure the diameter of the circle at the right to the nearest centimeter. 4 cm 2 cm cm cm 2 Sample answer: The circumference is the perimeter of the circle. 1. The diameter of the circle is. 2. The radius of the circle is. 3. The circumference of the circle is. 4. The area of the circle is. 5. Explain the meaning of the word circumference. 6. a. Use your Geometry Template to draw a circle that has a diameter of 2 centimeters. b. Find the circumference of your circle. c. Find the area of your circle. 7. a. Use your Geometry Template to draw a circle that has a radius of inches. b. Find the circumference of your circle in. c. Find the area of your circle in cm 3.14 cm 2 Math Masters, p Unit 10 Using Data; Algebra Concepts and Skills
Volume of Rectangular Prisms Objective To provide experiences with using a formula for the volume of rectangular prisms.
Volume of Rectangular Prisms Objective To provide experiences with using a formula for the volume of rectangular prisms. www.everydaymathonline.com epresentations etoolkit Algorithms Practice EM Facts
More informationAssessment Management
Areas of Rectangles Objective To reinforce students understanding of area concepts and units of area. www.everydaymathonline.com epresentations etoolkit Algorithms Practice EM Facts Workshop Game Family
More informationConverting Units of Measure Measurement
Converting Units of Measure Measurement Outcome (lesson objective) Given a unit of measurement, students will be able to convert it to other units of measurement and will be able to use it to solve contextual
More informationVolume of Pyramids and Cones
Volume of Pyramids and Cones Objective To provide experiences with investigating the relationships between the volumes of geometric solids. www.everydaymathonline.com epresentations etoolkit Algorithms
More informationVolume of Right Prisms Objective To provide experiences with using a formula for the volume of right prisms.
Volume of Right Prisms Objective To provide experiences with using a formula for the volume of right prisms. www.everydaymathonline.com epresentations etoolkit Algorithms Practice EM Facts Workshop Game
More informationCapacity. Assessment Management
Capacity Objective To review units of capacity. www.everydaymathonline.com epresentations etoolkit Algorithms Practice EM Facts Workshop Game Family Letters Assessment Management Common Core State Standards
More informationAssessment Management
Area Objectives To provide experiences with the concept of area, distinguishing between area and perimeter, and finding areas of rectangular figures by partitioning and counting squares. www.everydaymathonline.com
More informationLesson 21: Getting the Job Done Speed, Work, and Measurement Units
Lesson 2 6 Lesson 2: Getting the Job Done Speed, Work, and Measurement Student Outcomes Students use rates between measurements to convert measurement in one unit to measurement in another unit. They manipulate
More informationDimensional Analysis is a simple method for changing from one unit of measure to another. How many yards are in 49 ft?
HFCC Math Lab NAT 05 Dimensional Analysis Dimensional Analysis is a simple method for changing from one unit of measure to another. Can you answer these questions? How many feet are in 3.5 yards? Revised
More informationMEASUREMENTS. U.S. CUSTOMARY SYSTEM OF MEASUREMENT LENGTH The standard U.S. Customary System units of length are inch, foot, yard, and mile.
MEASUREMENTS A measurement includes a number and a unit. 3 feet 7 minutes 12 gallons Standard units of measurement have been established to simplify trade and commerce. TIME Equivalences between units
More informationFamily Letters. Assessment Management. Playing Fraction Of
Formula for the Area of a Parallelogram Objectives To review the properties of parallelograms; and to guide the development and use of a formula for the area of a parallelogram. www.everydaymathonline.com
More informationMeasuring with a Ruler
Measuring with a Ruler Objective To guide children as they measure line segments to the nearest inch, _ inch, _ inch, centimeter, _ centimeter, and millimeter. www.everydaymathonline.com epresentations
More informationFractions and Decimals
Fractions and Decimals Objectives To provide experience with renaming fractions as decimals and decimals as fractions; and to develop an understanding of the relationship between fractions and division.
More informationRelationships Between Quantities
Relationships Between Quantities MODULE 1? ESSENTIAL QUESTION How do you calculate when the numbers are measurements? CALIFORNIA COMMON CORE LESSON 1.1 Precision and Significant Digits N.Q.3 LESSON 1.2
More informationSimplifying Expressions: Combining Like Terms Objective To simplify algebraic expressions by combining like terms.
Simplifying Expressions: Combining Like Terms Objective To simplify algebraic expressions by combining like terms. www.everydaymathonline.com epresentations etoolkit Algorithms Practice EM Facts Workshop
More informationUSEFUL RELATIONSHIPS
Use the chart below for the homework problems in this section. USEFUL RELATIONSHIPS U.S. Customary 12 in. = 1 ft 3 ft = 1 yd 280 ft = 1 mi 16 oz = 1 lb 2000 lbs = 1 T 8 fl oz = 1 c 2 c = 1 pt 2 pts = 1
More informationSection 1.7 Dimensional Analysis
Dimensional Analysis Dimensional Analysis Many times it is necessary to convert a measurement made in one unit to an equivalent measurement in another unit. Sometimes this conversion is between two units
More informationMEASUREMENT. Historical records indicate that the first units of length were based on people s hands, feet and arms. The measurements were:
MEASUREMENT Introduction: People created systems of measurement to address practical problems such as finding the distance between two places, finding the length, width or height of a building, finding
More informationSurface Area. Assessment Management
Surface Area Objective To introduce finding the surface area of prisms, cylinders, and pyramids. www.everydaymathonline.com epresentations etoolkit Algorithms Practice EM Facts Workshop Game Family Letters
More information1,892.7 ml. 47 Convert Between Systems. Complete. Round to the nearest hundredth if necessary in. cm SOLUTION:
Complete. Round to the nearest hundredth if necessary. 1. 5 in. cm Since 1 inch 2.54 centimeters, multiply by. So, 5 inches is approximately 12.7 centimeters. 12.7 2. 2 qt ml Since 946.35 milliliters 1
More informationComparing Fractions Objective To provide practice ordering sets of fractions.
Comparing Fractions Objective To provide practice ordering sets of fractions. www.everydaymathonline.com epresentations etoolkit Algorithms Practice EM Facts Workshop Game Family Letters Assessment Management
More informationMeasurement. Customary Units of Measure
Chapter 7 Measurement There are two main systems for measuring distance, weight, and liquid capacity. The United States and parts of the former British Empire use customary, or standard, units of measure.
More informationMeasuring with Yards and Meters
Measuring with Yards and Meters Objectives To provide review for the concept of nonstandard units of measure; and to introduce yard and meter. www.everydaymathonline.com epresentations etoolkit Algorithms
More informationNumber Models for Area
Number Models for Area Objectives To guide children as they develop the concept of area by measuring with identical squares; and to demonstrate how to calculate the area of rectangles using number models.
More informationMultiplication Facts Practice
Multiplication Facts Practice Objectives To introduce the 5facts test; and to provide practice with multiplication facts. www.everydaymathonline.com epresentations etoolkit Algorithms Practice EM Facts
More information18) 6 3 4 21) 1 1 2 22) 7 1 2 23) 19 1 2 25) 1 1 4. 27) 6 3 qt to cups 30) 5 1 2. 32) 3 5 gal to pints. 33) 24 1 qt to cups
Math 081 Chapter 07 Practice Name SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question. 18) 6 3 4 gal to quarts Convert as indicated. 1) 72 in. to feet 19)
More informationSubtracting Mixed Numbers
Subtracting Mixed Numbers Objective To develop subtraction concepts related to mixed numbers. www.everydaymathonline.com epresentations etoolkit Algorithms Practice EM Facts Workshop Game Family Letters
More informationExploring Length, Area, and Attributes
Explorations Exploring Length, Area, and Attributes Objectives To guide children as they measure lengths and distances to the nearest inch and centimeter, explore area by tiling surfaces, and sort attribute
More informationThe Distributive Property
The Distributive Property Objectives To recognize the general patterns used to write the distributive property; and to mentally compute products using distributive strategies. www.everydaymathonline.com
More informationMultiplication Arrays
Multiplication Arrays Objective To provide opportunities to use arrays, multiplication/ division diagrams, and number models to represent multiplication number stories. www.everydaymathonline.com epresentations
More informationLearning Centre CONVERTING UNITS
Learning Centre CONVERTING UNITS To use this worksheet you should be comfortable with scientific notation, basic multiplication and division, moving decimal places and basic fractions. If you aren t, you
More informationYOU MUST BE ABLE TO DO THE FOLLOWING PROBLEMS WITHOUT A CALCULATOR!
DETAILED SOLUTIONS AND CONCEPTS  SYSTEMS OF MEASUREMENT Prepared by Ingrid Stewart, Ph.D., College of Southern Nevada Please Send Questions and Comments to ingrid.stewart@csn.edu. Thank you! YOU MUST
More information4th Grade Math Vocabulary Resources
4th Grade Math Vocabulary Resources 4th Grade Math Vocabulary Resources contains two resources to promote student independence, develop math vocabulary, and support reading and writing in mathematics.
More informationThe Mean and the Median
The Mean and the Median Objectives To introduce the mean of a set of data; and to review the median of a set of data. www.everydaymathonline.com epresentations etoolkit Algorithms Practice EM Facts Workshop
More informationMultiplication and Division Fact Families
Multiplication and Division Fact Families Objectives To review fact families and the Multiplication/Division Facts Table; and to guide children as they practice multiplication and division facts. www.everydaymathonline.com
More informationFCAT FLORIDA COMPREHENSIVE ASSESSMENT TEST. Mathematics Reference Sheets. Copyright Statement for this Assessment and Evaluation Services Publication
FCAT FLORIDA COMPREHENSIVE ASSESSMENT TEST Mathematics Reference Sheets Copyright Statement for this Assessment and Evaluation Services Publication Authorization for reproduction of this document is hereby
More informationExponential Notation for Powers of 10
Expntial Notation for Objective To introduce numberandword notation for large numbers and expntial notation for powers of 10. www.everydaymathonline.com epresentations etoolkit Algorithms Practice EM
More informationComparing and Ordering Fractions
Comparing and Ordering Fractions Objectives To review equivalent fractions; and to provide experience with comparing and ordering fractions. www.everydaymathonline.com epresentations etoolkit Algorithms
More informationLab 1: Units and Conversions
Lab 1: Units and Conversions The Metric System In order to measure the properties of matter, it is necessary to have a measuring system and within that system, it is necessary to define some standard dimensions,
More informationGrade 3 Math Expressions Vocabulary Words
Grade 3 Math Expressions Vocabulary Words Unit 1, Book 1 Place Value and MultiDigit Addition and Subtraction OSPI words not used in this unit: add, addition, number, more than, subtract, subtraction,
More informationLesson 11: Measurement and Units of Measure
LESSON 11: Units of Measure Weekly Focus: U.S. and metric Weekly Skill: conversion and application Lesson Summary: First, students will solve a problem about exercise. In Activity 1, they will practice
More informationReading and Writing Small Numbers
Reading Writing Small Numbers Objective To read write small numbers in stard exped notations wwweverydaymathonlinecom epresentations etoolkit Algorithms Practice EM Facts Workshop Game Family Letters Assessment
More informationObjective To introduce the concept of square roots and the use of the squareroot key on a calculator. Assessment Management
Unsquaring Numbers Objective To introduce the concept of square roots and the use of the squareroot key on a calculator. www.everydaymathonline.com epresentations etoolkit Algorithms Practice EM Facts
More informationObjective To guide the development and use of a rule for generating equivalent fractions. Family Letters. Assessment Management
Equivalent Fractions Objective To guide the development and use of a rule for generating equivalent fractions. www.everydaymathonline.com epresentations etoolkit Algorithms Practice EM Facts Workshop Game
More informationDanville District No. 118 Mathematics Fifth Grade Curriculum and Scope and Sequence First Quarter
Danville District No. 118 Mathematics Fifth Grade Curriculum and Scope and Sequence First Quarter Common Core Operations and Algebraic Thinking (5.OA) Common Core Number and Operations in Base Ten (5.NBT)
More informationCalculator Practice: Computation with Fractions
Calculator Practice: Computation with Fractions Objectives To provide practice adding fractions with unlike denominators and using a calculator to solve fraction problems. www.everydaymathonline.com epresentations
More informationConstructing Geometric Solids
Constructing Geometric Solids www.everydaymathonline.com Objectives To provide practice identifying geometric solids given their properties; and to guide the construction of polyhedrons. epresentations
More informationUnits of Measure Customary to Whom? .Customary Measurement It s All Based on Powers of 10! Metric Measurement...
Units of Measure Automakers often include both metric and English units of measure in their instruments. This speedometer shows the car's speed in both kilometers per hour and miles per hour. Since this
More informationUnit 5, Activity 1, Customary and Metric Vocabulary SelfAwareness
Unit 5, Activity 1, Customary and Metric Vocabulary SelfAwareness Look at the vocabulary word. Indicate your knowledge of the word using a +,, or. A plus sign (+) indicates a high degree of comfort and
More informationGrade 4 Mathematics Curriculum Guide
Table of Contents Grade 4 Module 7 Time Frame: About 14 Days Exploring Measurement with Multiplication Topic A: Measurement Conversion Tables By the end of Topic A, students will be able to: Create conversion
More informationObjective To guide exploration of the connection between reflections and line symmetry. Assessment Management
Line Symmetry Objective To guide exploration of the connection between reflections and line symmetry. www.everydaymathonline.com epresentations etoolkit Algorithms Practice EM Facts Workshop Game Family
More informationCommon Core State Standards 1 st Edition Math Pacing Guide Fourth Grade 4 th Nine Week Period
Common Core State Standards 1 st Edition Math Pacing Guide Fourth Grade 4 th Nine Week Period 1 st Edition Developed by: Christy Mitchell, Amy Moreman, Natalie Reno ``````````````````````````````````````````````````````````````````````````````````````
More informationName: School Team: X = 5 X = 25 X = 40 X = 0.09 X = 15
7th/8th grade Math Meet Name: School Team: Event : Problem Solving (no calculators) Part : Computation ( pts. each) ) / + /x + /0 = X = 5 ) 0% of 5 = x % of X = 5 ) 00  x = ()()(4) + 6 X = 40 4) 0.6 x
More informationAddition and Subtraction of Decimals Objective To add, subtract, and round decimals.
Addition and Subtraction of Decimals Objective To add, subtract, and round decimals. www.everydaymathonline.com epresentations etoolkit Algorithms Practice EM Facts Workshop Game Family Letters Assessment
More informationSection 1.6 Systems of Measurement
Systems of Measurement Measuring Systems of numeration alone do not provide enough information to describe all the physical characteristics of objects. With numerals, we can write down how many fish we
More informationThe PartialQuotients Division Algorithm, Part 1
The PartialQuotients Division Algorithm, Part 1 Objectives To introduce and provide practice with a lowstress division algorithm for 1digit divisors. www.everydaymathonline.com epresentations etoolkit
More informationTimeframe: Recommend spending a day on each system of units. It will depend on each gradelevel and how many units of measurement are being taught.
Grade Level/Course: Grades 35 Lesson/Unit Plan Name: Do I Reall Have to Teach Measurement? Rationale/Lesson Abstract: With measurement being a large component in Common Core, this lesson provides strategies
More informationMeasurement/Volume and Surface Area LongTerm Memory Review Grade 7, Standard 3.0 Review 1
Review 1 1. Explain how to convert from a larger unit of measurement to a smaller unit of measurement. Include what operation(s) would be used to make the conversion. 2. What basic metric unit would be
More informationBasic Garden Math. This document is organized into the following sections:
Basic Garden Math Gardening is an activity which occasionally requires the use of math, such as when you are computing how much fertilizer to use or how much compost to buy. Luckily, the math involved
More informationMATH FOR NURSING MEASUREMENTS. Written by: Joe Witkowski and Eileen Phillips
MATH FOR NURSING MEASUREMENTS Written by: Joe Witkowski and Eileen Phillips Section 1: Introduction Quantities have many units, which can be used to measure them. The following table gives common units
More informationReview of Basic Fraction Concepts
Review of asic Fraction Concepts Objective To review fractions as parts of a whole (ONE), fractions on number lines, and uses of fractions. www.everydaymathonline.com epresentations etoolkit lgorithms
More informationGrade 8 Mathematics Measurement: Lesson 1
Grade 8 Mathematics Measurement: Lesson 1 Read aloud to the students the material that is printed in boldface type inside the boxes. Information in regular type inside the boxes and all information outside
More informationUnit 6 Measurement and Data: Area and Volume
Unit 6 Measurement and Data: Area and Volume Introduction In this unit, students will learn about area and volume. As they find the areas of rectangles and shapes made from rectangles, students will need
More informationRIT scores between 191 and 200
Measures of Academic Progress for Mathematics RIT scores between 191 and 200 Number Sense and Operations Whole Numbers Solve simple addition word problems Find and extend patterns Demonstrate the associative,
More informationGRADE 6 MATHEMATICS CORE 1 VIRGINIA STANDARDS OF LEARNING. Spring 2006 Released Test. Property of the Virginia Department of Education
VIRGINIA STANDARDS OF LEARNING Spring 2006 Released Test GRADE 6 MATHEMATICS CORE 1 Property of the Virginia Department of Education 2006 by the Commonwealth of Virginia, Department of Education, P.O.
More information1 GRAM = HOW MANY MILLIGRAMS?
1 GRAM = HOW MANY MILLIGRAMS? (1) Take the 1gram expression and place the decimal point in the proper place. 1 gram is the same as 1.0 gram (decimal point in place) (2) Move that decimal point three places
More informationVocabulary Cards and Word Walls Revised: June 29, 2011
Vocabulary Cards and Word Walls Revised: June 29, 2011 Important Notes for Teachers: The vocabulary cards in this file match the Common Core, the math curriculum adopted by the Utah State Board of Education,
More informationMultiplication of Mixed Numbers
Multiplication of Mixed Numbers Objective To introduce multiplication with mixed numbers. www.everydaymathonline.com epresentations etoolkit Algorithms Practice EM Facts Workshop Game Family Letters Assessment
More informationGrade 5 FSA Mathematics Practice Test Questions
Grade 5 FSA Mathematics Practice Test Questions The purpose of these practice test materials is to orient teachers and students to the types of questions on paperbased FSA tests. By using these materials,
More informationLESSON 9 UNITS & CONVERSIONS
LESSON 9 UNITS & CONVERSIONS INTRODUCTION U.S. units of measure are used every day in many ways. In the United States, when you fill up your car with gallons of gas, drive a certain number of miles to
More informationActivity Standard and Metric Measuring
Activity 1.3.1 Standard and Metric Measuring Introduction Measurements are seen and used every day. You have probably worked with measurements at home and at school. Measurements can be seen in the form
More informationReading and Writing Large Numbers
Reading and Writing Large Numbers Objective To read and write large numbers in standard, expanded, and numberandword notations. www.everydaymathonline.com epresentations etoolkit Algorithms Practice
More informationA CoinToss Experiment
A CoinToss Experiment Objective To guide children as they develop intuition equally likely events. www.everydaymathonline.com epresentations etoolkit Algorithms Practice EM Facts Workshop Game Family
More informationREVIEW SHEETS INTRODUCTORY PHYSICAL SCIENCE MATH 52
REVIEW SHEETS INTRODUCTORY PHYSICAL SCIENCE MATH 52 A Summary of Concepts Needed to be Successful in Mathematics The following sheets list the key concepts which are taught in the specified math course.
More informationMEASUREMENTS. U.S Distance. inch is in. foot is ft. yard is yd. mile is mi ft. = 12 in yd. = 36 in./3 ft mi. = 5,280 ft.
MEASUREMENTS U.S Distance inch is in. foot is ft. yard is yd. mile is mi. 1. 1 ft. = 12 in. 2. 1 yd. = 36 in./3 ft. 3. 1 mi. = 5,280 ft. Metric Distance millimeter is mm. centimeter is cm. meter is m.
More informationSubtraction of Multidigit Numbers
Subtraction of Multidigit Numbers Objectives To review the tradefirst and countingup methods, and to introduce the partialdifferences method of solving multidigit subtraction problems; and to provide
More informationHidden Treasure: A Coordinate Game. Assessment Management. Matching Number Stories to Graphs
Hidden Treasure: A Coordinate Game Objective To reinforce students understanding of coordinate grid structures and vocabulary. www.everydaymathonline.com epresentations etoolkit Algorithms Practice EM
More informationBaseball Multiplication Objective To practice multiplication facts.
Baseball Multiplication Objective To practice multiplication facts. www.everydaymathonline.com epresentations etoolkit Algorithms Practice EM Facts Workshop Game Family Letters Assessment Management Common
More informationPerimeter, Area, and Volume
Perimeter, Area, and Volume Perimeter of Common Geometric Figures The perimeter of a geometric figure is defined as the distance around the outside of the figure. Perimeter is calculated by adding all
More informationMath 98 Supplement 2 LEARNING OBJECTIVE
Dimensional Analysis 1. Convert one unit of measure to another. Math 98 Supplement 2 LEARNING OBJECTIVE Often measurements are taken using different units. In order for one measurement to be compared to
More informationBuying at the StockUp Sale
Buying at the StockUp Sale Objective To guide children as they multiply using mental math and the partialproducts algorithm. www.everydaymathonline.com epresentations etoolkit Algorithms Practice EM
More informationFactor Trees. Objective To provide experiences with finding the greatest common factor and the least common multiple of two numbers.
Factor Trees Objective To provide experiences with finding the greatest common factor and the least common multiple of two numbers. www.everydaymathonline.com epresentations etoolkit Algorithms Practice
More informationDIMENSIONAL ANALYSIS #2
DIMENSIONAL ANALYSIS #2 Area is measured in square units, such as square feet or square centimeters. These units can be abbreviated as ft 2 (square feet) and cm 2 (square centimeters). For example, we
More informationMM 61 MM What is the largest number you can make using 8, 4, 6 and 2? (8,642) 1. Divide 810 by 9. (90) 2. What is ?
MM 61 1. What is the largest number you can make using 8, 4, 6 and 2? (8,642) 2. What is 500 20? (480) 3. 6,000 2,000 400 = (3,600). 4. Start with 6 and follow me; add 7, add 2, add 4, add 3. (22) 5.
More information1A 1B 2A 2B 3A 3B 4A 4B 5A 5B 6A 6B. Whole Numbers
Whole Numbers Scope and Sequence for Primary Mathematics, U.S. Edition Copyright 2008 [SingaporeMath.com Inc.] The check mark indicates where the topic is first introduced or specifically addressed. Understand
More informationActivity Standard and Metric Measuring
Activity 1.3.1 Standard and Metric Measuring Introduction Measurements are seen and used every day. You have probably worked with measurements at home and at school. Measurements can be seen in the form
More informationFormula for the Area of a Triangle Objective To guide the development and use of a formula for the area of a triangle.
Formula for the rea of a Triangle Objective To guide the development and use of a formula for the area of a triangle. www.everydaymathonline.com epresentations etoolkit lgorithms Practice EM Facts Workshop
More informationScope and Sequence KA KB 1A 1B 2A 2B 3A 3B 4A 4B 5A 5B 6A 6B
Scope and Sequence Earlybird Kindergarten, Standards Edition Primary Mathematics, Standards Edition Copyright 2008 [SingaporeMath.com Inc.] The check mark indicates where the topic is first introduced
More informationInequalities. Assessment Management. Dividing Decimals by Decimals: Part 1
Inequalities Objectives To find and represent all the values that make an inequality in one variable true; and to represent realworld situations with inequalities. www.everydaymathonline.com epresentations
More informationThe Lattice Method of Multiplication
The Lattice Method of Multiplication Objective To review and provide practice with the lattice method for multiplication of whole numbers and decimals. www.everydaymathonline.com epresentations etoolkit
More informationPlace Value in Whole Numbers
Place Value in Whole Numbers Objectives To provide practice identifying values of digits in numbers up to one billion; and to provide practice reading and writing numbers up to one billion. www.everydaymathonline.com
More informationCARPENTRY MATH ASSESSMENT REVIEW
CARPENTRY MATH ASSESSMENT REVIEW This material is intended as a review. The following Learning Centres have more resources available to help you prepare for your assessment Nanaimo ABE Learning Centre:
More informationVirginia Mathematics Checkpoint Assessment MATHEMATICS 5.8. Strand: Measurement
Virginia Mathematics Checkpoint Assessment MATHEMATICS 5.8 Strand: Measurement Standards of Learning Blueprint Summary Reporting Category Grade 5 SOL Number of Items Number & Number Sense 5.1, 5.2(ab),
More informationProperties of Polygons Objective To explore the geometric properties of polygons.
Properties of Polygons Objective To explore the geometric properties of polygons. www.everydaymathonline.com epresentations etoolkit Algorithms Practice EM Facts Workshop Game Family Letters Assessment
More informationAppendix C: Conversions and Calculations
Appendix C: Conversions and Calculations Effective application of pesticides depends on many factors. One of the more important is to correctly calculate the amount of material needed. Unless you have
More information
Unit Conversions. Ben Logan Feb 10, 2005
Unit Conversions Ben Logan Feb 0, 2005 Abstract Conversion between different units of measurement is one of the first concepts covered at the start of a course in chemistry or physics.
More informationReview: Comparing Fractions Objectives To review the use of equivalent fractions
Review: Comparing Fractions Objectives To review the use of equivalent fractions in comparisons. www.everydaymathonline.com epresentations etoolkit Algorithms Practice EM Facts Workshop Game Family Letters
More informationGrade 6 FCAT 2.0 Mathematics Sample Questions
Grade FCAT. Mathematics Sample Questions The intent of these sample test materials is to orient teachers and students to the types of questions on FCAT. tests. By using these materials, students will become
More informationSunriseSunset Line Graphs
SunriseSunset Line Graphs Objectives To guide children as they analyze data from the sunrisesunset routine; and to demonstrate how to make and read a line graph. www.everydaymathonline.com epresentations
More information