Conversions between the common units of length used in the Imperial system are listed below 12 in = 1 ft 3 ft = 1 yard 1760 yards = 1 mile

Size: px
Start display at page:

Download "Conversions between the common units of length used in the Imperial system are listed below 12 in = 1 ft 3 ft = 1 yard 1760 yards = 1 mile"

Transcription

1 THE METRIC SYSTEM The metric system or SI (International System) is the most common system of measurements in the world, and the easiest to use. The base units for the metric system are the units of: length, measured in meters (m); time, measured in seconds (s); mass, measured in grams (g); and temperature, measured in Celsius ( C). In the metric system, prefixes are used to describe multiples or fractions of the base units. The most common metric system prefixes are: nano (n)... / 100,000,000 micro (µ)... / 1,000,000 milli (m)... / 1,000 centi, (c)... / 100 deci (d)... / 10 deca (da)...x 10 hecto (h)...x 100 kilo (k)...x 1,000 mega (M)...x 1,000,000 giga (G)...x 1,000,000,000 Using the base unit for length: 1 nanometer (nm) = 1 m / 100,000,000 = m 1 micrometer (µm) = 1 m / 1,000,000 = m 1 millimeter (mm) = 1 m / 1,000 = m 1 centimeter (cm) = 1 m / 100 = 0.01 m 1 decimeter (dm) = 1 m / 10 = 0.1 m 1 decameter (dam) = 1 m x 10 = 10 m 1 hectometer (hm) = 1 m x 100 = 100 m 1 kilometer (km) = 1 m x 1,000 = 1,000 m 1 megameter (Mm) = 1 m x 1,000,000 = 1,000,000 m 1 gigameter (Gm) = 1 m x 1,000,000,000 = 1,000,000,000 m Similarly for mass, you will often see the following units: 1 milligram (mg) = 1 g / 1,000 = g 1 kilogram (kg) = 1 g x 1,000 = 1,000 g

2 2 THE IMPERIAL SYSTEM The Imperial system is more complicated than the metric system, as it does not work in multiples of 10 as the metric system does. The Imperial system is used in England and the United States, and you will probably recognize many of the units used. In the Imperial system the base units are: length, commonly measured in inches (in), feet (ft), yards and miles; time, commonly measured in seconds (s), hours (hr), days (d), weeks and years (yr); weight, commonly measured pounds (lb); and temperature, measured in Fahrenheit ( F). Note that the Imperial system commonly uses weight, rather than mass. Weight refers to the gravitational pull on an object, whereas mass refers to the amount of matter in the object. An object would have the same mass on the moon as it does on the earth, but it would weight less on the moon as the gravitational pull of the moon is less than the gravitational pull of the earth. Astronauts have the same mass on the moon as they do on the earth, but they can jump higher on the moon because they weigh less there! This difference does not affect us much as all the problems we will be solving assume we are on the earth, but you should be aware of it. Conversions between the common units of length used in the Imperial system are listed below 12 in = 1 ft 3 ft = 1 yard 1760 yards = 1 mile The units of time are generally accepted for use with the metric system, as well as the Imperial system. Conversions between the common units of time are listed below: 60 s = 1 min 24 hrs = 1 day 7 days = 1 week 52 weeks = 1 yr Conversion between Metric and Imperial The tables on the next two pages give the conversions between Metric and Imperial. These tables come attached to the exam, and you should know how to use them. Math questions on the exam generally give both metric and imperial units, allowing you to work in whichever system you are most comfortable in. It helps if you can convert between the two systems to check your answers!

3 3 LENGTH N = number of sections L = length of section X = total length Units of Measurement: Metric (SI): mm = millimeters cm = centimeters m = meters km = kilometers Imperial: in. = inches ft = feet yards miles Conversion: Metric (SI): Metric to Imperial (and back): 1 cm = 10 mm 1 in = 2.54 cm cm x 10 = mm cm x = inches mm x 0.1 = cm inches x.54 = cm 1 m = 100 cm 1 ft = cm m x 100 = cm cm x = feet cm x 0.01 = m feet x = cm 1 m = mm 1 m = ft m x = mm m x = feet mm x = m feet x = m 1 km = m 1 mile = km km x = m km x = miles m x = km miles x = km

4 4 Length: Questions 1. If I have 7 sections of pipe, each 3.0 m long, what is the total length of line I can replace? Given: L = N = X = L x N Find: X = 2. If I have to replace 21 m of pipeline, and each pipe is 3.0 m long, how many sections of pipe will I need? Given: X = L = Find: N = N = X L 3. A line has failed and 23 m must be replaced. How many 3.0 m long section of pipe will be needed to repair the line? Given: X = L = Find: N = N = X L 4. A line has failed and 1.6 km must be replaced. How many 6 m long section of pipe will be needed to repair the line? Given: X = L = Find: N = N = X L 5. A line has failed and 0.7 km must be replaced. How many 3.5 m long section of pipe will be needed to repair the line? Given: X = X L = N = L Find: N =

5 5 Length: Discussion and Answers The first 5 questions on length are designed to introduce the concepts of basic problems solving, using and rearranging simple equations, identifying given parameters and calculating unknown parameters, knowing whether to round up or down, and converting between different units within the metric system. Question 1: Using Equations The basic equation is: X = L x N where: N = number of sections L = length of section X = total length In plain English the equation reads: The total length of the pipe equals the length of one section multiplied by the number of sections. IMPORTANT: The student should always remember to note units! 1. If I have 7 sections of pipe, each 3.0 m long, what is the total length of line I can replace? Given: L = 3.0 m N = 7 (no units) Find: X Solution: X = L x N = 3.0 m x 7 = 21.0 m Question 2: Rearranging Equations 2. If I have to replace 21 m of pipeline, and each pipe is 3.0 m long, how many sections of pipe will I need? Given: X = 21 m L = 3.0 m Find: N As with the first question, the basic equation is: X = L x N In Question 2, we are given the total length (X) and the length of each section (L), and we have to find out how many sections we need (or solve for N).

6 6 When we rearrange an equation, we have to do the same thing to both sides to keep the equation equal. The first step in rearranging is to identify which parameter we have to solve for, and isolate that parameter on the left side. In this case we are solving for N, so we divide both sides of the equation by L. After rearranging, the equations becomes: X = L LxN L Since any number divided by itself equals one, L/L cancels out. Switching sides, the equation becomes: N = X L In plain English the equation reads: The number of sections required is equal to the total length of the pipe divided by the length of one section. Solution: N = X L 21m = 3.0m = 7 Question 3: Rounding 3. A line has failed and 23 m must be replaced. How many 3.0 m long section of pipe will be needed to repair the line? Given: X = 23 m L = 3.0 m Find: N The equation used in Questions 3 to 5 is the same as that used in Question 2, but here the answer does not come out to an even number. The operator should know that they need to round the answer up, otherwise they would not have enough pipe to replace the full length of the failed section. Solution: N = X L

7 7 23m = 3m =7.67m You will need eight sections of pipe to fix the line. Questions 4 and 5: Converting to Consistent Units 4. A line has failed and 1.6 km must be replaced. How many 6 m long section of pipe will be needed to repair the line? The operator should know they should always be working in the same or compatible units. Here, X is given in kilometers and L in meters. The operator must convert either X or L. Given: X = 1.6 km = 1,600 m L = 6 m Find: N Solution: X N = L 1,600m = 6m = You will need 267 sections of pipe to repair the line. 5. A line has failed and 0.7 km must be replaced. How many 3.5 m long section of pipe will be needed to repair the line? Given: X = 0.7 km = 700 m L = 3.5 m Find: N Solution: X N = L 700m = 3.5m = 200 You will need at least 200 sections of pipe to repair the line.

8 8 AREA W = width L = length Units of Measurement: Metric (SI): m 2 = square meters ha = hectares Imperial: ft 2 = square feet = ft. sq. square yards acres Conversion: Metric (SI): Metric to Imperial (and back): 1 m 2 = cm 2 1 m 2 = square feet m 2 x = cm 2 m 2 x = square feet cm 2 x = m 2 feet square x = m 2 1 ha = m 2 1 ha = acres ha x = m 2 ha x = acres m 2 x = m 2 acres x = ha

9 9 Area of a Rectangle: Questions W = 3 m L = 4 m 1. A floor measures 4 m by 3 m. What is the area of the floor? Given: L = W = A = L x W Find: A = 2. A floor has a length of 4 m and an area of 12 m 2, what is the width of the floor? Given: A = A L = W = L Find: W = 3. A floor has a width of 3 m and an area of 12 m 2, what is the length of the floor? Given: A = A W = L = W Find: L =

10 10 Area of a Rectangle: Questions W = 2.3 m L = 3.7 m 4. A floor measures 3.7 m by 2.3 m. What is the area of the floor? Given: L = W = Find: A = 5. A floor has a length of 3.7 m and an area of 8.5 m 2, what is the width of the floor? Given: A = L = Find: W = 6. A floor has a width of 2.3 m and an area of 8.5 m 2, what is the length of the floor? Given: A = W = Find: L =

11 11 Area of a Rectangle: Discussion The basic equation for calculating the area of a square or rectangle is: A = L x W In plain English the equation reads: The area of a rectangle is equal to the length times the width, or the area of a rectangle is equal to the length multiplied by the width. Note that a square is simple the special case of a rectangle where the length is equal to the width. The more general term rectangle is therefore used in the discussion. The questions relating to area of a rectangle reinforce the concepts of basic problems solving, identifying given parameters and calculating unknown parameters and using and rearranging simple equations. The student should clearly understand the meaning of the unit m 2 (meters square), in the sense that: 1 m 2 = 1 m x 1 m = 1 m x m Similarly, the units square inch or square feet, where: 1 sq. in. = 1 in 2 = 1 in x 1 in = 1 in x in 1 sq. ft. = 1 ft 2 = 1 ft x 1 ft = 1 ft x ft In addition, the student should be familiar with different formats for expressing multiplication. Note that the equation: A = L x W can also be written in the following ways: A = (L)(W) A = LW A = L W A = L * W

12 12 Area of a Rectangle: Answers 1. A floor measures 4 m by 3 m. What is the area of the floor? Given: L = 4 m W = 3 m Find: A Solution: A = L x W = 4 m x 3 m = 12 m x m = 12 m 2 2. A floor has a length of 4 m and an area of 12 m 2, what is the width of the floor? Given: A = 12 m 2 Find: Solution: L W W = = 4 m A L 12mxm = 4m =3 m 3. A floor has a width of 3 m and an area of 12 m 2, what is the length of the floor? Given: A = 12 m 2 Find Solution: W = 3 m L A L = W 12mxm = 3m = 4 m Questions 4 to 6 are similar but the student should be comfortable working with decimal places and should know when to round up and when to round down. 4. A = 8.5 m 2 5. W = 2.3m 6. W = 3.7m

13 13 Area of a Circle: Questions R = radius A = π R 2 D R = 2 D= diameter D = 2 x R 1. A circle has a radius of 3 m. What is the area of the circle? Given: R = Find: A = 2. A circle has a diameter of 6 m. What is the area of the circle? Given: D= Find: R = A = 3. A circle has a radius of 3.8 m. What is the area of the circle? Given: R = Find: A =

14 14 Area of a Circle: Discussion The water treatment plant operator often works with circular containers, and must be able to calculate the area and volume of these containers. This section introduces the formula used to calculate the area of a circle, and the concepts of Pi (π) and radius squared (R 2 ). The radius of a circle is the length from the centre of the circle to the edge of the circle. The units of radius (R) are the units of length. The term R 2 means: R 2 = R x R The units of R 2 will be a unit of length squared such as m 2, in 2 or ft 2 : Pi (π) is a number that relates the radius of a circle to its area. Pi is always equal to: π = This is typically rounded to: π = 3.14 The basic formula for calculating the area of a circle is: A = π R 2 In plain English the equation reads: The area of a circle is equal to Pi(3.14) times the radius squared. The diameter of a circle (D) is the length from one side of a circle to the other. Diameter (D) is equal to twice the radius, or: D = 2 R Similarly, by rearranging the equation, we know the radius is equal to half the diameter, or D R = 2 If a question gives the diameter of the circle, the student should calculate the radius first and then the area.

15 15 Area of a Circle: Answers 1. A circle has a radius of 3 m. What is the area of the circle? Given: R = 3 m Find: A Answer: A = π R 2 = 3.14 (3 m)(3 m) = (m)(m) = 28.3 m 2 2. A circle has a diameter of 6 m. What is the area of the circle? Given: D = 6 m Find: A D Answer: R = 2 6m = 2 = 3 m A = π R 2 = (3.14)(3 m)(3 m) = 28.3 m 2 3. A circle has a radius of 3.8 m. What is the area of the circle? Given: R = 3.8 m Find: A Answer: A = π R 2 = 3.14 (3.8 m)(3.8 m) = 45.3 m 2 VOLUME

16 16 H = height L= length W = width Units of Measurement: Metric (SI): cm 3 = cubic centimeters m 3 = cubic meters = cu m L = liters ml = milliliters Imperial: ft 3 = cubic feet = ft. cu. gallons (Imperial) = Imp. gal. = ig US gallons Conversion: Metric (SI): Metric to Imperial (and back): 1 m 3 = cm 3 1 m 3 = cubic feet m 3 x = cm 3 m 3 x = cubic feet cm 3 x = m 3 cubic feet x = m 3 1 m 3 = L 1 gallon (Imperial) = L m 3 x = L l x = gallons (Imperial) l x = m 3 gallons (Imperial) x = L 1 l = ml 1 gallon (Imperial) = US gallons L x = ml US gallons x = Imperial gallons m x = L Imperial gallons x = US gallons 1 ml = 1 cm 3 ml x 1 = cm 3 cm 3 x 1 = ml

17 17 Volume of a Box: Questions H = 7 cm L= 24 cm W = 12 cm 1. A box has a top area of 1.92 m 2 and a height of 1.2 m. What is the volume of the box? 2. A box of has a length of 24 cm, a width of 12 cm and a height of 7 cm. What is the area of the top of the box and the volume of the box? 3. A box of has a length of 1.6 m, a width of 92 cm and a height of 1.2m. What is the volume of the box in cm 3, m 3 and L? 4. A Foreman places 3 m 3 of sand in a container 2.4 m long and 1.8 m wide. What is the height of sand in the container? 5. A Foreman places 60 L of water in a container 2.4 m long and 1.8 m wide. What is the height of water in the container? 6. A water tank 2.4 m long and 1.8 m wide has 1.2 m of water in it in the morning. By the end of the day, the container has 1.7 m of water in it. How much water was added to the container that day? 7. A water tank 2.4 m long and 1.8 m wide has 1.2 m of water in it in the morning. If we add another 850 L of water to the tank, what will be the height of water in the tank? Volume of a Box: Discussion

18 18 By now, the student should be familiar with the basic problem solving technique: identifying what is given, what they need to find, what equation to use, whether they need to rearrange the equation, and substituting the given values into the equation to find the required value. The basic equation for calculating volume, is area of the top or base times the height. In the case of a box, the area of the top or base is equal to the length times the width: V= A x H where H = height A = L x W Substituting the equation for area into the equation for volume, we get: or: V = (L x W) x H V= L x W x H In plain English the equation reads: The volume of a box is equal to the length times the width times the height. The student should understand the meaning of the unit m 3 (cubic meters), in the sense that: 1 m 3 = 1 m x 1 m x 1 m= 1 m x m x m Similarly, the units cubic inch or cubic feet, where: 1 cu. in. = 1 in 3 = 1 in x 1 in x 1 in = 1 in x in x in 1 cu. ft. = 1 ft 3 = 1 ft x 1 ft = 1 ft x ft x ft In the metric system, volume, particularly liquid volume, is often measured in L or ml. Keep in mind that: 1 l = 1 dm3 = 1 dm x 1 dm x 1 dm 1 ml = 1 cm 3 = 1 cm x 1 cm x 1 cm 1 m 3 = 1,000 L 1 L = 1,000 ml Volume of a Box: Answers

19 19 1. A box has a top area of 1.92 m 2 and a height of 1.2 m. What is the volume of the box? Given: A = 1.92 m 2 Find: Solution: H = 1.2 m V V = A x H = (1.92 m 2 )(1.2 m) = (m x m)(m) = 2.3 m 3 2. A box of has a length of 24 cm, a width of 12 cm and a height of 7 cm. What is the area of the top of the box and the volume of the box? Given: L = 24 cm W = 12 cm H = 7 cm Find: A and V Solution: A = L x W = (24 cm)(12 cm) =288 cm 2 V = A x H = (288cm 2 )(7 cm) = 2016 cm 3 3. A box of has a length of 1.6 m, a width of 92 cm and a height of 1.2m. What is the volume of the box in cm 3, m 3 and L? Given: L = 1.6 m W = 92 cm H = 1.2 m Find: Solution: V in cm 3, m 3 and L V = L x W x H First convert all given parameters to consistent units. In this case you can convert to either cm or m. If we convert to m: cm x 0.01 = m W = 92 cm x 0.01 = 0.92 m V = L x W x H = (1.6 m)(0.92 m)(1.2 m) = 1.77 m 3

20 20 m 3 x = cm 3 V = 1.77 m 3 x = 1,770,000 cm 3 m 3 x = L V = 1.77 m 3 x = 1,770 L 4. A Foreman places 3 m 2 of sand in a container 2.4 m long and 1.8 m wide. What is the height of sand in the container? Given: V = 3 m 2 Find: Solution: L = 2.4 m W = 1.8 m H W = L x W x H To isolate H, we divide both sides of the equation by L x W V LxW xh = LxW LxW LxW V = 1, therefore = 1H, or LxW LxW V H = LxW = 3 3 m (2.4m)(1.8 = 0.69 m m) 5. A Foreman places 60 l of water in a container 2.4 m long and 1.8 m wide. What is the height of water in the container? Given: V = 60 L L = 2.4 m W = 1.8 m Find: H Solution: First convert all parameters to consistent units, in this case m, L x = m 3 V = 60 L x = 0.06 m 3 H = V LxW m = (2.4m)(1.8m) = m

21 21 m x 100 = cm H = m x 100 = 1.4 cm 6. A water tank 2.4 m long and 1.8 m wide has 1.2 m of water in it in the morning. By the end of the day, the container has 1.7 m of water in it. How much water was added to the container that day? Given: L = 2.4 m W = 1.8 m H 1 = 1.2 m H 2 = 1.7 m Find: Solution: V Note all measurements are given in m, so we do not have to convert. In this case we are interested only in the volume of water added to the tank, so the height we need is the difference between the height of water in the tank in the morning and the height of water in the tank in the evening. H = H 2 H 1 = 1.7 m 1.2 m = 0.5 m V = L x W x H = (2.4 m)(1.8 m)(0.5 m) = 4.82 m 3 m 3 x = L V = 4.82 m 3 x 1,000 = 4820 L 7. A water tank 2.4 m long and 1.8 m wide has 1.2 m of water in it in the morning. If we add another 850 l of water to the tank, what will be the height of water in the tank? Given: L = 2.4 m W = 1.8 m H 1 = 1.2 m V = 850 L Find: H 2 Solution: First convert all parameters to consistent units: L x = m 3 V = 850 l x = 0.85 m 3 H = V LxW

22 m = (2.4m)(1.8m) = 0.20 m In this case H is the difference between the height of water in the tank in the morning, and the height of water in the tank after adding another 850 l. To find the total height of water in the tank after adding 850 l, we have to add the original height to height difference, or: H 2 = H 1 + H = 1.2 m m = 1.4 m

23 23 Volume of a Cylinder: Questions R = radius D = diameter H = height 1. An upright cylindrical drum has a radius of 3 m and a height of 2 m. What is the area of the lid and the volume of the cylinder in m 3? 2. a) An upright cylinder has a diameter of 0.5 m and a height of 2.6 m. What is the volume of the cylinder in m 3 and L? b) The cylinder from question 2a is filled with water to a depth of 1.8 m. How much water is in the cylinder? 3. An upright cylindrical tank with a diameter of 3 m, was filled to a depth of 2.3 m in the morning and 1.5 m at the end of the day. Assuming there was no water added to the tank that day, how much water was taken out? 4. A water treatment plant operator has a chlorine mixing tank with a diameter of 0.8 m, and a depth of 1.1 m. If there is 0.2 m of chlorine solution left in the tank, and the operator decides not to empty the tank before adding an addition 150 L of water, what will be the depth of liquid in the tank after adding the extra water? 5. How many litres of water can be held in 15 m of 200 mm pipe?

24 24 Volume of a Cylinder: Answers Questions 1 to 4: Cylindrical Tanks 1. An upright cylindrical drum has a radius of 3 m and a height of 2 m. What is the area of the lid and the volume of the cylinder in m 3? Given: R =3 m H = 2 m Find: A and V Solution: A = π R 2 = (3.14)(3 m) 2 = (3.14)(3 m)(3 m) = 28.3 m 2 V = A x H = (28.26 m 2 )(2 m) = 56.5 m 3 2. a) An upright cylinder has a diameter of 0.5 m and a height of 2.6 m. What is the volume of the cylinder in m 3 and l? Given: D = 0.5 m H = 2.6 m Find: Solution V in m 3 and L D R = 2 0.5m = 2 = 0.25 m V = A x H = π R 2 H = (3.14)(0.25 m)(0.25 m)(2.6 m) = 0.51 m 3 m 3 x = L V = 0.51 m 3 x = 510 L

25 25 2. b) The cylinder from question 2a is filled with water to a depth of 1.8 m. How much water is in the cylinder? Given: D = 0.5 m R = 0.25 m (calculated above) H = 1.8 m Find: Solution V in m 3 and L V = π R 2 H = (3.14)(0.25 m)(0.25 m)(1.8 m) = 0.35 m 3 m 3 x = L V = 0.35 m 3 x = 350 L 3. An upright cylindrical tank with a diameter of 3 m, was filled to a depth of 2.3 m in the morning and 1.5 m at the end of the day. Assuming there was no water added to the tank that day, how much water was taken out? Given: D = 3 m H 1 = 2.3 m H 2 = 1.5 m Find: Solution V D R = 2 3m = 2 = 1.5 m H = H 1 H 2 = 2.3 m 1.5 m = 0.8 m V = π R 2 H = (3.14)(1.5 m)(1.5 m)(0.8 m) = 5.65 m 3 m 3 x = L V = 5.65 m 3 x 1,000 = 5,650 L

26 26 4. A water treatment plant operator has a chlorine mixing tank with a diameter of 0.8 m, and a depth of 1.1 m. If there is 0.2 m of chlorine solution left in the tank, and the operator decides not to empty the tank before adding an addition 150 L of water, what will be the depth of liquid in the tank after adding the extra water? Given: D = 0.8 m H 1 = 0.2 m V = 150 L Find: H 2 Solution D R = 2 0.8m = 2 =0.4 m The basic equation is: V = π R 2 H Rearranging for H, where H is the extra height of the water added H V = π R 2 Converting V to get consistent units, L x = m 3 V = 150 l x = 0.15 m m H = (3.14)(0.4m)(0.4m) = 0.3 m The total depth of water in the tank will be equal to the initial depth of water plus the height of the water added. H 2 = H 1 + H = 0.2 m m = 0.5 m

27 27 Questions 5: Pipes Questions relating to pipes are similar to those relating to cylindrical tanks. The basic equation is the same, except that in this case H, refers to the length of the pipe. 5. How many litres of water can be held in 15 m of 200 mm pipe? Given: D =200 mm H =15 m Find: V in L Solution First we have to convert to consistent units, in this case, m: mm x = m D = 200 mm x = 0.2 m D R = 2 0.2m = 2 =0.1 m V = A x H = π R 2 H = (3.14)(0.1 m)(0.1 m)(15 m) = 0.47 m 3 m 3 x = L V = 0.47 m 3 x = 470 L

28 28 FLOW RATE Definition: The volume of liquid passing through a specific point over a given period of time. For example, the volume of water coming out the end of a tap in one minute or the volume of water passing through a pump in a day or an hour, or the volume of water pumped through a water treatment plant in a year, a month or a week. V Q = T T = Time Q = Flowrate V = Volume Units of Measurement: Metric (SI): L/s = litres per second L/min = litres per minute L/hr = litres per hour m 3 /s = meters cubed per second m 3 /day = meters cubed per day ML/day = million litres per day ML/yr = million litres per year Imperial: ft 3 /s = cubic feet per second GPM (Imp.) = gallons (Imperial) per minute US GPM= gallons (US) per minute ig/min = gallons (Imperial) per minute ig/d = gallons (Imperial) per day Conversion: Metric (SI): Metric to Imperial (and back): 1 L/min = 60 L/s 1 gallon (Imperial)/min = L/min L/min x 60 = L/s L/min x = gallons (Imp.) per minute L/s x = L/min gallons (Imp.) per minute x = L/min 1 L/day = 24 L/hr 1 gallon per day = L/d L/day x 24 = L/hr L/d x = gallons (Imp.) per day L/hr x = L/day gallons (Imp.) per day x = L/d 1 m 3 /day = L/day 1 m 3 /s = cubic feet per second m 3 /day x = L/day m 3 /s x = cubic feet per second L/day x = m 3 /day cubic feet per second x = m 3 /s

29 29 Flowrate: Questions 1. It takes 3 min to fill An 12 L jar. What is the flowrate of the water? 2. Water is flowing at a rate of 4 L/min and it takes 3 min to fill a jar. How big is the jar? 3. At a flowrate of 4 L/min, how long does it take to fill a 12 L jar? 4. Water is flowing at a rate of 3.7 L/min and it takes 2.3 min to fill a jar. How big is the jar? 5. It takes 2.3 min to fill An 8.5 L jar. What is the flowrate of the water? 6. At a flowrate of 3.7 L/min, how long does it take to fill an 8.5 L jar? 7. A total of 3,105 m 3 passes through a flow meter in 3 days. What is the flowrate in m 3 /day and l/day? 8. A flowmeter reads l on Monday morning and l on Thursday morning the same week. What is the average daily flow? 9. At a flow rate of 1,000 l/min, how many days would it take to fill a reservoir that 50 m long, 20 m wide and 2 m deep? 10. At a flow rate of 16 m 3 /hr, how long would it take to fill an upright cylindrical tank with a diameter of 5 m and a height of 3.6 m?

30 30 Flowrate: Answers 1. It takes 3 min to fill An 12 l jar. What is the flowrate of the water? Given: Find: Solution: V = 12 l T = 3 min Q V Q = T 12l = 3 min = 4 L/min 2. Water is flowing at a rate of 4 L/min and it takes 3 min to fill a jar. How big is the jar? Given: Q = 4 L/min Find: Solution: T = 3 min V The basic equation is: V Q = T Multiply both sides of the equation by T to isolate V, V = Q x T = 4 L/min x 3 min = 12 L 3. At a flowrate of 4 L/min, how long does it take to fill a 12 L jar? Given: Q = 4 L/min Find: V = 12 L T Solution: Multiply both sides of the basic equation by Q T to isolate T, V T = Q 12L = 4L / min = 3 min 4. Water is flowing at a rate of 3.7 L/min and it takes 2.3 min to fill a jar. How big is the jar?

31 31 Given: Find: Solution: Q = 3.7 L/min T = 2.3 min V V = Q x T = (3.7 L/min)(2.3 min) = 8.5 L 5. It takes 2.3 min to fill An 8.5 L jar. What is the flowrate of the water? Given: V = 8.5 L Find: Solution: T = 2.3 min Q V Q = T 8.5L = 2.3 min = 3.7 l/min 6. At a flowrate of 3.7 L/min, how long does it take to fill an 8.5 L jar? Given: Q = 3.7 l/min Find: Solution: V = 8.5 l T V T = Q 8.5L = 3.7L / min = 2.3 min 7. A total of 3,105 m 3 passes through a flow meter in 3 days. What is the flowrate in m 3 /day and L/day? Given: V =3,105 m 3 Find: Solution: T = 3 days Q V Q = T

32 32 3,105m = 3days 3 = 1,035 m 3 /day m 3 /day x = L/day Q = 1,035 m 3 /day x = 10,035,000 L/day 8. A flowmeter reads L on Monday morning and L on Thursday morning the same week. What is the average daily flow? Given: V 1 =134,567,030 L Find: Solution: V 2 = 137,672,428 L T 1 = Monday morning T 2 = Thursday morning Q V Q = T V = V 2 V 1 = 137,672,428 L - 134,567,030 L = 3,105,398 L T = T 2 T 1 = 3 days 3,105,398L Q = 3days = 1,035,000 L/day 9. At a flow rate of 1,000 l/min, how many days would it take to fill a reservoir that 50 m long, 20 m wide and 2 m deep? Given: Q = 1,000 l/min Find: Solution: L = 50 m W = 20 m D = 2 m T V T = Q V = L x W x H

33 33 = (50 m)(20 m)(2 m) = 2,000 m 3 m 3 x = L V = 2,000 m 3 x = 2,000,000 L 2,000,000L T = 1,000L / min = 2,000 min 1 day = 24 hrs = min min x 1day 1,440 min T = 2,000 min x = days 1day 1,440 min = 1.4 days 10. At a flow rate of 16 m 3 /hr, how long would it take to fill an upright cylindrical tank with a diameter of 5 m and a height of 3.6 m? Given: Q = 16 m 3 /hr D = 5 m H = 3.6 m Find: Solution: T V T = Q V = π R 2 H R = 2 D = 5m 2 = 2.5 m V = (3.14)(2.5 m)(2.5 m)(3.6 m) = m m = 3 16m / hr = 4.4 hrs

34 34 PRESSURE, FORCE AND HEAD Definitions: Force The push that is exerted by water, on the surface that is confining or containing it. Force can be expressed in pounds, tons, grams or kilograms. As an example, a certain volume of water may be exerting 22 pounds of force on the bottom of the bucket that is containing it. Pressure The amount of force per unit of area. Pressure is often measured in pounds per square inch (psi). It may also be expressed in kilopascals (kpa). 1 psi = 6.89 kpa It helps to remember that one cubic foot (1 foot 3 ) of water always weighs 62.4 pounds. A cubic foot of water also contains approximately 7.5 gallons (34L). To calculate the pressure of a cubic foot of water, we need to know that the area the force is being exerted upon is 12 X 12 inches (144 square inches). Therefore, 62.4 pounds per 144 inches can be converted to a pressure per square inch (psi). 1 cubic foot of water = 62.4 pounds 1 foot We can divide 62.4 by 144, and we will find that The pressure exerted is psi. 1 foot 1 foot This means that a column of water that is one square inch and one foot tall exerts a pressure of pounds: pound of pressure 1 foot

35 35 Head - Head refers to the height of a column of water above a point of reference (often expressed as feet or metres). Remember: For every pound per square inch (psi) of pressure, there is 2.31 feet of head this is standard. Head is calculated by the following formula: Head (in feet) = psi x 2.31 Pressure head refers to the amount of energy in water that is a result of pressure. Pressure Head refers to the height above the top of an open-ended pipe that the water will rise to, due to pressure. If there is more pressure put into the system, there is more pressure head and the water would rise further above the open end of the pipe due to the increase. It is important to understand that pressure head depends on the elevation of the column of water, and is independent of how large the tank actually is or what volume it holds. For example, if there are two tanks that have different volumes but are both filled to the same level above the bottom of the tank, they will both cause their pressure gauges to have the same reading. 1m 1m 100L 500L Same pressure readings on gauges

36 36 Pressure, Force and Head: Questions 1. Using the conversion factor that you learned for pressure, convert 2.8 psi to kpa. 2. Calculate the head for a volume of water which exerts 12 psi of pressure. 3. If there are two tanks (one holds 3000L and one holds 1800L) that are the same height, but have different diameters, which will have a greater reading on its pressure gauge if they are both full to the top? (see figure below) 1800L 3000L Pressure gauges

37 37 Pressure, Force and Head: Answers 1. Using the conversion factor that you learned for pressure, convert 2.8 psi to kpa. 1 psi = 6.89 kpa 2.8 psi x 6.89 = kpa 2.8 psi is equal to kpa. 2. Calculate the head for a volume of water which exerts 12 psi of pressure. Head (in feet) = psi x 2.31 Head = 12 x 2.31 Head = feet A volume of water that exerts 12 psi of pressure will have feet of head. 3. If there are two tanks (one holds 3000L and one holds 1800L) that are the same height, but have different diameters, which will have a greater pressure head (or reading on its pressure gauge) if they are both full to the top? - Both tanks will have exactly the same reading on their pressure gauge. - Pressure head depends on how high the column of water is, and is independent of how large the tank actually is or what volume it holds.

38 38 Chlorine Dosage /Feed Rate Definition: Dosage: Amount of chemical applied to water expressed in parts per million (PPM) or milligrams per litre (mg/l). Feed Rate: amount of chlorine added to treat a volume of water over a course of time. Residual: amount of active chlorine in water that can be free available chlorine which is uncombined and available to react water properties, combined which is chlorine combined primarily with organics and not very reactive and total residual is the amount of available chlorine and combined chlorine. Note: It is most important for a plant operator to know how to calculate the dosages of the various chemicals used in water treatment. It is important to be accurate when calculating dosages, as too little chemical may be ineffective and too much may waste money. Exact dosage must be determined through calculation for the purpose of efficient operation and economy. Chlorine Dose = C x 1000 W C D = Chlorine dose C = Chlorine feed rate in kg/day W = volume of water to be treated in m 3 Feed rate = W x CD Residual: Dosage - Demand = Residual 1000 Residual + Demand = Dosage Example: Dosage 3.7 mg/l Subtract Demand 3.0 mg/l Dosage: Calculations Equals Residual 0.7 mg/l 1. The chlorine dosage of an effluent is 15mg/L. How many kilograms of chlorine will be required to dose a flow of m 3 / d? 2. A chlorinator is set to feed a 94.8 kg/d of chlorine. If the average daily flow through the plant is m 3 / d, what is the DAILY AVERAGE CHLORINE DOSAGE IN mg/l? 3. Chlorine dosage is 2.5 mg/l and the Flow rate is m 3 /d, what is the feed rate? 4. What should be the chlorine dose of water that has a chlorine demand of 2.3 mg/l if a residual of 0.5 mg/l is desired?

39 39 HYPOCHLORINATION Hypochlorination is the application of hypochlorite ( a compound of chlorine and another chemical), usually in the form of a solution, for disinfection purposes. 5. The treated product at a water treatment plant requires a chlorine dosage of 98 kg/d for disinfection purposes. If we are using a solution of hypochlorite containing 60% available chlorine, how many kg/d hypochlorite will be required? 6. A hypochlorite solution contains 5% available chlorine. If 4 kg of available chlorine are needed to disinfect a water main, how much 5% solution would be required? BATCH CHLORINATION Batch chlorination is a method of disinfection where by the chlorine is added to a water tank manually. This type of chlorination is used when mechanical methods for chlorination are not available most commonly used to disinfect water in a water truck. C 1 V 1 = C 2 V 2 V 1 = C 2 V 2 C 1 C 1 = Concentration of liquid chlorine solution V 1 = Volume of liquid chlorine solution needed C 2 = Chlorine Dose in Truck V 2 = Volume of water Truck 7. How much liquid bleach (4.5 % chlorine solution) should you add to your 3800L water truck to achieve a chlorine concentration of 0.5 mg/l? 8. What is the concentration of the chlorine solution that was added to 5000L water truck with a chlorine concentration of 1.2 mg/l?

40 40 Dosage: Answers 1. In this question, it will be necessary to utilize your knowledge of the metric system. 1mg/ L = 1kg/1000 m 3 For every 1000 m 3 water of flow, we will need to use 15 kg chlorine. 15kg Cl 2 x 8500 m 3 /d = kg Cl 2 / d 1000 m 3 Above we express 15 mg/l as 15 kg Cl 2 / 1000 m 3 and multiplied it by the flow to obtain the answer expressed as kg Cl 2 / d 2. We know that 1mg/ L = 1kg/1000 m 3 We are told we use 94.8 kg chlorine for every 7900 m 3 water kg Cl 2 / d = 12kg Cl 2 = 12mg/L 7.9 x 1000 m 3 /d 1000 m 3 3. Feed Rate = W x Dosage = x Dose = 217.5kg/day We know that the chlorine dose is equal to the demand plus the residual. 2.3 mg/l mg/l = 2.8 mg/l 5. We are told in the problem that 60% of the hypochlorite is available chlorine which is the portion of the solution capable of disinfecting. Solving the equation we have: kg/d hypochlorite = 98 kg/d of chlorine needed 0.6 available chlorine in solution = kg/d hypochlorite solution 6. We are told 4 kg of chlorine will do the job of disinfection. By a 5% solution we mean that 5% by mass of the solution is to be made up of chlorine. So 100 kg of 5% hypochlorite solution will contain 5kg of chlorine. Using the formula for ratios A = C B D We substitute: 5 kg chlorine = 4kg chlorine required 100 kg solution? kg solution required Since D = C x B = 4kg x 100kg = 80 kg solution A 5 kg 7. V 1 = C 2 V 2 V 1 = (0.5mg/L) (3600L) V 1 = 40 L C 1 45mg/L 8. C 1 = C 2 V 2 C 1 = (0.02 mg/l) (5000L) C 1 = 4.9.mg/L V 1 70L

41 41 End Suction Lift Definition:

42 42 PUMPING RATES Definition: The volume of wastewater that is moved by a pump over a certain amount of time. As an example, a pump may have a pumping rate of 3L/second. It is important to understand that in many cases, you may need to convert from one set of units to another. You may be told that a pumping rate is 30L/second but will be asked to calculate how many m 3 /day that equals. 300 L 100 seconds (1 min, 40 sec) to pump tank out Pump Pumping rate is an expression of Volume Time If you know that a pump has a certain rate if discharge (pumping rate) then you can calculate things such as the amount of time it would take to fill or empty a tank or truck.

43 43 Pumping Rates: Questions 1. It takes 8 minutes to fill a tank that holds 480L of water. What is the pumping rate of the pump that is moving the water? 2. How many minutes will it take to fill a 4,800 liter truck if the pumping rate is 320 L/minute? 3. It takes an hour to fill a 3,000L tank. What is the pumping rate, expressed as L/second?

44 44 Pumping Rates: Answers 1. It takes 8 minutes to fill a tank that holds 480L of water. What is the pumping rate of the pump that is moving the water? Given: Volume = 480L Time = 8 minutes Find: Solution: Rate (ratio between these two) Q = V T = 480L 8 min = 60L 1 min Pumping rate is 60L/minute. 2. How many minutes will it take to fill a 4,800 liter truck if the pumping rate is 320 L/minute? Q = V T 320L/minute = 4800L X time (X) 320L/minute = 4800L (now divide both sides by 320) X = 4800L 320L/minute X = 15 minutes It will take 15 minutes to fill the truck if the pumping rate is 320L/minute.

45 45 3. It takes an hour to fill a 3,000L tank. What is the pumping rate, expressed as L/second? Rate = 3000L 60 minutes Rate = 3000L 3600 seconds Rate = 0.83L/second

46 46 DETENTION TIME Definition: The theoretical amount of time that a particular volume of wastewater is held for treatment in a tank or lagoon. Where Q is the flow rate V is the volume of the tank or lagoon Detention time = V Q Flow Rate Volume of tank/lagoon For example, think of detention time as the amount of time (hours, days, months, or which ever unit applies) sewage sits in a tank or lagoon, before the water is released from it. The detention time depends on the capacity of the tank/lagoon (in litres, cubic metres, etc), and the flow rate out of the tank/lagoon. Detention time can be expressed in many ways as well, depending on the units used. As an example, the detention time can vary from minutes to hours, weeks, months, or perhaps even years depending on the volume and flow rate you are dealing with.

47 47 Detention Time: Questions 1. What is the detention time (in minutes) of a 400L tank that has an outflow rate of 0.5L/second? 2. Calculate the detention time (in months) for a lagoon that holds 2,000m 3 of wastewater, and that has a discharge rate of 10m 3 /day (you can assume 30 days in an average month).

48 48 Detention Time: Answers 1. What is the detention time (in minutes) of a 400L tank that has an outflow rate of 0.5L/second? Detention time = Detention time = Volume Flow rate 400L 0.5L/sec Detention time = 800 seconds Detention time = 13 minutes, 20 seconds (approximately 13 minutes) 2. Calculate the detention time (in months) for a lagoon that holds 2,000m 3 of wastewater, and that has a discharge rate of 10m 3 /day (assume 30 days in an average month). Detention time = Volume Flow rate Detention time = 2,000m 3 10m 3 /day Detention time = Detention time = 200 days 6 months, 20 days (approximately 6 months)

49 49 WEIR OVERFLOW RATE Definition: The volume of wastewater that flows over each metre of weir length, in a given amount of time. Weir overflow rate is determined by measuring the length of the weir (outlet) and then calculating flowrate (volume per unit of time) of wastewater over the weir (outlet). It is important to be able to calculate this number. High weir overflow rates can affect the proper treatment of wastewater. Weir Overflow Rate = Flow (volume/time) Weir length (m) Lagoon Weir length (m) Flow (volume per unit of time) Weir overflow rate is often expressed as liters per second flow over each meter of weir length. For example, a weir overflow rate may be 2.5 L/s/m. In slower systems where discharge is slow and takes place over a long amount of time, weir overflow rate could be expressed as L/day/m, or m 3 /day/m, etc.

50 50 Weir Overflow Rate: Questions 1. Calculate the weir overflow rate (in liters per hour) for a system that has a weir 2.4m long, where the flow rate is 8.2L/minute. 2. If a weir is 32m long where the water flows out, calculate the weir overflow rate (in m 3 /minute) if the flow is 110 L/s.

51 51 Weir Overflow Rate: Answers 1. Calculate the weir overflow rate (in liters per hour) for a system that has a weir 2.4m long, where the flow rate is 8.2L/minute. Weir Overflow Rate = Flow (volume/time) Weir length (m) = 8.2 L/minute (now multiply 8.2 by 60 to get L/hour) 2.4 m = 492L/hour 2.4 m The weir overflow rate is 492 L/h/m. 2. If a weir is 32m long at the outflow, calculate the weir overflow rate (in m 3 /minute) if the flow is 110 L/s. Weir Overflow Rate = Flow (volume/time) Weir length (m) = 110L/second (now multiply 110 by 60 to get L/minute) 32 m = 6600L/minute (now divide 6600 by 1000 to get m 3 /minute) 32 m = 6.6 m 3 /minute (now divide 6.6 by 32 to get rate per 1m) 32 m = 0.21 m 3 /minute/m The weir overflow rate is 0.21 m 3 /min/m.

52 52 DENSITY Definition: The amount of mass that is contained in a particular volume. For example, the mass of waste compacted into a 300L trench, the mass of water in a 1 L jug, or the mass of garbage contained in a 3000 L collection truck. Density = = m V Where m is the mass V is the volume In the figure above, the box on the left has a higher density because there is more mass in the same amount of space (volume) than the box on the right. Density can be expressed in many ways, using many different units. As an example, compacted solid waste is often expressed as kilograms per cubic meter (kg/m 3 ), tons per cubic meter (tons/m 3 ), etc. You can convert back and forth using the conversion factors for volume and mass listed on the provided tables.

Practice Tests Answer Keys

Practice Tests Answer Keys Practice Tests Answer Keys COURSE OUTLINE: Module # Name Practice Test included Module 1: Basic Math Refresher Module 2: Fractions, Decimals and Percents Module 3: Measurement Conversions Module 4: Linear,

More information

MEASUREMENTS. U.S. CUSTOMARY SYSTEM OF MEASUREMENT LENGTH The standard U.S. Customary System units of length are inch, foot, yard, and mile.

MEASUREMENTS. U.S. CUSTOMARY SYSTEM OF MEASUREMENT LENGTH The standard U.S. Customary System units of length are inch, foot, yard, and mile. MEASUREMENTS A measurement includes a number and a unit. 3 feet 7 minutes 12 gallons Standard units of measurement have been established to simplify trade and commerce. TIME Equivalences between units

More information

1. Metric system- developed in Europe (France) in 1700's, offered as an alternative to the British or English system of measurement.

1. Metric system- developed in Europe (France) in 1700's, offered as an alternative to the British or English system of measurement. GS104 Basics Review of Math I. MATHEMATICS REVIEW A. Decimal Fractions, basics and definitions 1. Decimal Fractions - a fraction whose deonominator is 10 or some multiple of 10 such as 100, 1000, 10000,

More information

4.5.1 The Metric System

4.5.1 The Metric System 4.5.1 The Metric System Learning Objective(s) 1 Describe the general relationship between the U.S. customary units and metric units of length, weight/mass, and volume. 2 Define the metric prefixes and

More information

Pump Formulas Imperial and SI Units

Pump Formulas Imperial and SI Units Pump Formulas Imperial and Pressure to Head H = head, ft P = pressure, psi H = head, m P = pressure, bar Mass Flow to Volumetric Flow ṁ = mass flow, lbm/h ρ = fluid density, lbm/ft 3 ṁ = mass flow, kg/h

More information

BASIC MATH FORMULAS - CLASS I. A. Rectangle [clarifiers, ponds] I = length; w = width; A = area; area in square ft [sq ft]

BASIC MATH FORMULAS - CLASS I. A. Rectangle [clarifiers, ponds] I = length; w = width; A = area; area in square ft [sq ft] WASTEWATER MATH CONVERSION FACTORS 1. 1 acre =43,560 sq ft 2. 1 acre =2.47 hectares 3. 1 cu ft [of water] = 7.48 gallons 4. 1 cu ft [of water] = 62.4 Ibs/ft 3 5. Diameter =radius plus radius, D =r + r

More information

2. Length, Area, and Volume

2. Length, Area, and Volume Name Date Class TEACHING RESOURCES BASIC SKILLS 2. In 1960, the scientific community decided to adopt a common system of measurement so communication among scientists would be easier. The system they agreed

More information

Measurement. Customary Units of Measure

Measurement. Customary Units of Measure Chapter 7 Measurement There are two main systems for measuring distance, weight, and liquid capacity. The United States and parts of the former British Empire use customary, or standard, units of measure.

More information

MEASUREMENT. Historical records indicate that the first units of length were based on people s hands, feet and arms. The measurements were:

MEASUREMENT. Historical records indicate that the first units of length were based on people s hands, feet and arms. The measurements were: MEASUREMENT Introduction: People created systems of measurement to address practical problems such as finding the distance between two places, finding the length, width or height of a building, finding

More information

Handout Unit Conversions (Dimensional Analysis)

Handout Unit Conversions (Dimensional Analysis) Handout Unit Conversions (Dimensional Analysis) The Metric System had its beginnings back in 670 by a mathematician called Gabriel Mouton. The modern version, (since 960) is correctly called "International

More information

MATHEMATICS FOR WATER OPERATORS

MATHEMATICS FOR WATER OPERATORS MATHEMATICS FOR WATER OPERATORS Chapter 16: Mathematics The understanding of the mathematics of water hydraulics (flows, pressures, volumes, horsepower, velocities) and water treatment (detention time,

More information

UNIT 1 MASS AND LENGTH

UNIT 1 MASS AND LENGTH UNIT 1 MASS AND LENGTH Typical Units Typical units for measuring length and mass are listed below. Length Typical units for length in the Imperial system and SI are: Imperial SI inches ( ) centimetres

More information

HFCC Math Lab General Math Topics -1. Metric System: Shortcut Conversions of Units within the Metric System

HFCC Math Lab General Math Topics -1. Metric System: Shortcut Conversions of Units within the Metric System HFCC Math Lab General Math Topics - Metric System: Shortcut Conversions of Units within the Metric System In this handout, we will work with three basic units of measure in the metric system: meter: gram:

More information

REVIEW SHEETS INTRODUCTORY PHYSICAL SCIENCE MATH 52

REVIEW SHEETS INTRODUCTORY PHYSICAL SCIENCE MATH 52 REVIEW SHEETS INTRODUCTORY PHYSICAL SCIENCE MATH 52 A Summary of Concepts Needed to be Successful in Mathematics The following sheets list the key concepts which are taught in the specified math course.

More information

EXERCISE # 1.Metric Measurement & Scientific Notation

EXERCISE # 1.Metric Measurement & Scientific Notation EXERCISE # 1.Metric Measurement & Scientific Notation Student Learning Outcomes At the completion of this exercise, students will be able to learn: 1. How to use scientific notation 2. Discuss the importance

More information

DIMENSIONAL ANALYSIS #2

DIMENSIONAL ANALYSIS #2 DIMENSIONAL ANALYSIS #2 Area is measured in square units, such as square feet or square centimeters. These units can be abbreviated as ft 2 (square feet) and cm 2 (square centimeters). For example, we

More information

FLORIDA DEPARTMENT OF ENVIRONMENTAL PROTECTION Wastewater Treatment Formulas/Conversion Table

FLORIDA DEPARTMENT OF ENVIRONMENTAL PROTECTION Wastewater Treatment Formulas/Conversion Table Revised February 2014 FLORIDA DEPARTMENT OF ENVIRONMENTAL PROTECTION Wastewater Treatment Formulas/Conversion Table Measurement Conversion Measurement Conversion Measurement Conversion 12 in= 1 ft 27 cu.

More information

Calculating Area and Volume of Ponds and Tanks

Calculating Area and Volume of Ponds and Tanks SRAC Publication No. 103 Southern Regional Aquaculture Center August 1991 Calculating Area and Volume of Ponds and Tanks Michael P. Masser and John W. Jensen* Good fish farm managers must know the area

More information

ABC & C 2 EP Formula/Conversion Table for Water Treatment, Distribution, & Laboratory Exams

ABC & C 2 EP Formula/Conversion Table for Water Treatment, Distribution, & Laboratory Exams ABC & C EP Formula/Conversion Table for Water Treatment, Distribution, & Laboratory Exams Alkalinity, as mg CaCO 3 /L = (Titrant, ml) (Acid Normality)(50,000) Sample, ml Volts Amps = Ohms * of Circle =

More information

UNIT (1) MEASUREMENTS IN CHEMISTRY

UNIT (1) MEASUREMENTS IN CHEMISTRY UNIT (1) MEASUREMENTS IN CHEMISTRY Measurements are part of our daily lives. We measure our weights, driving distances, and gallons of gasoline. As a health professional you might measure blood pressure,

More information

SELECTED MATH PROBLEMS FOR COLLECTION AND DISTRIBUTION

SELECTED MATH PROBLEMS FOR COLLECTION AND DISTRIBUTION SELECTED MATH PROBLEMS FOR COLLECTION AND DISTRIBUTION Sidney Innerebner, PhD, PE Principal/Owner INDIGO WATER GROUP Sidney@indigowatergroup.com 303-489-9226 For More Math Problems and the Famous PEST

More information

Section 1 Tools and Measurement

Section 1 Tools and Measurement Section 1 Tools and Measurement Key Concept Scientists must select the appropriate tools to make measurements and collect data, to perform tests, and to analyze data. What You Will Learn Scientists use

More information

Chapter 2 Measurement and Problem Solving

Chapter 2 Measurement and Problem Solving Introductory Chemistry, 3 rd Edition Nivaldo Tro Measurement and Problem Solving Graph of global Temperature rise in 20 th Century. Cover page Opposite page 11. Roy Kennedy Massachusetts Bay Community

More information

Sample Questions Chapter 2. Stoker

Sample Questions Chapter 2. Stoker Sample Questions Chapter 2. Stoker 1. The mathematical meaning associated with the metric system prefixes centi, milli, and micro is, respectively, A) 2, 4, and 6. B) 2, 3, and 6. C) 3, 6, and 9. D) 3,

More information

INTERIM UNITS OF MEASURE As suggested by Federal Standard 376B January 27, 1993. hectare (ha) Hundred for traffic buttons.

INTERIM UNITS OF MEASURE As suggested by Federal Standard 376B January 27, 1993. hectare (ha) Hundred for traffic buttons. SI - The Metrics International System of Units The International System of Units (SI) is a modernized version of the metric system established by international agreement. The metric system of measurement

More information

10 g 5 g? 10 g 5 g. 10 g 5 g. scale

10 g 5 g? 10 g 5 g. 10 g 5 g. scale The International System of Units, or the SI Units Vs. Honors Chem 1 LENGTH In the SI, the base unit of length is the Meter. Prefixes identify additional units of length, based on the meter. Smaller than

More information

Unit Conversions. Ben Logan Feb 10, 2005

Unit Conversions. Ben Logan <ben.logan@gmail.com> Feb 10, 2005 Unit Conversions Ben Logan Feb 0, 2005 Abstract Conversion between different units of measurement is one of the first concepts covered at the start of a course in chemistry or physics.

More information

Jones and Bartlett Publishers, LLC. NOT FOR SALE OR DISTRIBUTION.

Jones and Bartlett Publishers, LLC. NOT FOR SALE OR DISTRIBUTION. Chapter 3 Metric System You shall do no unrighteousness in judgment, in measure of length, in weight, or in quantity. Just balances, just weights, shall ye have. Leviticus. Chapter 19, verse 35 36. Exhibit

More information

FCAT FLORIDA COMPREHENSIVE ASSESSMENT TEST. Mathematics Reference Sheets. Copyright Statement for this Assessment and Evaluation Services Publication

FCAT FLORIDA COMPREHENSIVE ASSESSMENT TEST. Mathematics Reference Sheets. Copyright Statement for this Assessment and Evaluation Services Publication FCAT FLORIDA COMPREHENSIVE ASSESSMENT TEST Mathematics Reference Sheets Copyright Statement for this Assessment and Evaluation Services Publication Authorization for reproduction of this document is hereby

More information

METRIC CONVERSION TABLE Multiply By To Obtain Millimetres 0.03937 Inches Millimetres 0.003281 Feet Metres 3.281 Feet Kilometres 0.

METRIC CONVERSION TABLE Multiply By To Obtain Millimetres 0.03937 Inches Millimetres 0.003281 Feet Metres 3.281 Feet Kilometres 0. Linear Measure Square Measure or Area Volume or Capacity Mass Density Force* Pressure* or Stress* Temperature METRIC CONVERSION TABLE Multiply By To Obtain Millimetres 0.03937 Inches Millimetres 0.003281

More information

Chapter 1 Problems. To do all three sections of this problem, we can first convert the radius to kilometers. r = 6.37 10 6 1km 1000m = 6.

Chapter 1 Problems. To do all three sections of this problem, we can first convert the radius to kilometers. r = 6.37 10 6 1km 1000m = 6. Chapter 1 Problems 1.1 The Earth is approximately a sphere of radius 6.37 x 10 6 m. (a) What is is its circumference in kilometers? (b) What is its surface area in square kilometers? (c) What is its volume

More information

Metric Mania Conversion Practice. Basic Unit. Overhead Copy. Kilo - 1000 units. Hecto - 100 units. Deka - 10 units. Deci - 0.

Metric Mania Conversion Practice. Basic Unit. Overhead Copy. Kilo - 1000 units. Hecto - 100 units. Deka - 10 units. Deci - 0. Metric Mania Conversion Practice Overhead Copy Kilo - 1000 Hecto - 100 Deka - 10 To convert to a larger unit, move decimal point to the left or divide. Basic Unit Deci - 0.1 To convert to a smaller unit,

More information

One basic concept in math is that if we multiply a number by 1, the result is equal to the original number. For example,

One basic concept in math is that if we multiply a number by 1, the result is equal to the original number. For example, MA 35 Lecture - Introduction to Unit Conversions Tuesday, March 24, 205. Objectives: Introduce the concept of doing algebra on units. One basic concept in math is that if we multiply a number by, the result

More information

Module 28: Basic Math

Module 28: Basic Math Wastewater & Drinking Water Operator Certification Training Module 28: Basic Math This course includes content developed by the Pennsylvania Department of Environmental Protection (Pa. DEP) in cooperation

More information

Measurement/Volume and Surface Area Long-Term Memory Review Grade 7, Standard 3.0 Review 1

Measurement/Volume and Surface Area Long-Term Memory Review Grade 7, Standard 3.0 Review 1 Review 1 1. Explain how to convert from a larger unit of measurement to a smaller unit of measurement. Include what operation(s) would be used to make the conversion. 2. What basic metric unit would be

More information

Measurement: Converting Distances

Measurement: Converting Distances Measurement: Converting Distances Measuring Distances Measuring distances is done by measuring length. You may use a different system to measure length differently than other places in the world. This

More information

Appendix C: Conversions and Calculations

Appendix C: Conversions and Calculations Appendix C: Conversions and Calculations Effective application of pesticides depends on many factors. One of the more important is to correctly calculate the amount of material needed. Unless you have

More information

Metric Conversion: Stair-Step Method

Metric Conversion: Stair-Step Method ntroduction to Conceptual Physics Metric Conversion: Stair-Step Method Kilo- 1000 Hecto- 100 Deka- 10 Base Unit grams liters meters The Metric System of measurement is based on multiples of 10. Prefixes

More information

Conversions. 12 in. 1 ft = 1.

Conversions. 12 in. 1 ft = 1. Conversions There are so many units that you can use to express results that you need to become proficient at converting from one to another. Fortunately, there is an easy way to do this and it works every

More information

Virginia Mathematics Checkpoint Assessment MATHEMATICS 5.8. Strand: Measurement

Virginia Mathematics Checkpoint Assessment MATHEMATICS 5.8. Strand: Measurement Virginia Mathematics Checkpoint Assessment MATHEMATICS 5.8 Strand: Measurement Standards of Learning Blueprint Summary Reporting Category Grade 5 SOL Number of Items Number & Number Sense 5.1, 5.2(a-b),

More information

Pacific Pump and Power

Pacific Pump and Power Pacific Pump and Power 91-503 Nukuawa Street Kapolei, Hawaii 96707 Phone: (808) 672-8198 or (800) 975-5112 Fax: (866) 424-0953 Email: sales@pacificpumpandpower.com Web: www.pacificpumpandpower.com Table

More information

.001.01.1 1 10 100 1000. milli centi deci deci hecto kilo. Explain that the same procedure is used for all metric units (meters, grams, and liters).

.001.01.1 1 10 100 1000. milli centi deci deci hecto kilo. Explain that the same procedure is used for all metric units (meters, grams, and liters). Week & ay Week 15 ay 1 oncept/skill ompare metric measurements. Standard 7 MG: 1.1ompare weights, capacities, geometric measures, times, and temperatures within and between measurement systems (e.g., miles

More information

Prealgebra Textbook. Chapter 6 Odd Solutions

Prealgebra Textbook. Chapter 6 Odd Solutions Prealgebra Textbook Second Edition Chapter 6 Odd Solutions Department of Mathematics College of the Redwoods 2012-2013 Copyright All parts of this prealgebra textbook are copyrighted c 2009 in the name

More information

Measurements 1. BIRKBECK MATHS SUPPORT www.mathsupport.wordpress.com. In this section we will look at. Helping you practice. Online Quizzes and Videos

Measurements 1. BIRKBECK MATHS SUPPORT www.mathsupport.wordpress.com. In this section we will look at. Helping you practice. Online Quizzes and Videos BIRKBECK MATHS SUPPORT www.mathsupport.wordpress.com Measurements 1 In this section we will look at - Examples of everyday measurement - Some units we use to take measurements - Symbols for units and converting

More information

Revision Notes Adult Numeracy Level 2

Revision Notes Adult Numeracy Level 2 Revision Notes Adult Numeracy Level 2 Place Value The use of place value from earlier levels applies but is extended to all sizes of numbers. The values of columns are: Millions Hundred thousands Ten thousands

More information

Math. The top number (numerator) represents how many parts you have and the bottom number (denominator) represents the number in the whole.

Math. The top number (numerator) represents how many parts you have and the bottom number (denominator) represents the number in the whole. Math This chapter is intended to be an aid to the operator in solving everyday operating problems in the operation of a water system. It deals with basic math that would be required for an operator to

More information

CONNECT: Currency, Conversions, Rates

CONNECT: Currency, Conversions, Rates CONNECT: Currency, Conversions, Rates CHANGING FROM ONE TO THE OTHER Money! Finances! $ We want to be able to calculate how much we are going to get for our Australian dollars (AUD) when we go overseas,

More information

Converting Units of Measure Measurement

Converting Units of Measure Measurement Converting Units of Measure Measurement Outcome (lesson objective) Given a unit of measurement, students will be able to convert it to other units of measurement and will be able to use it to solve contextual

More information

A Mathematical Toolkit. Introduction: Chapter 2. Objectives

A Mathematical Toolkit. Introduction: Chapter 2. Objectives A Mathematical Toolkit 1 About Science Mathematics The Language of Science When the ideas of science are epressed in mathematical terms, they are unambiguous. The equations of science provide compact epressions

More information

Area is a measure of how much space is occupied by a figure. 1cm 1cm

Area is a measure of how much space is occupied by a figure. 1cm 1cm Area Area is a measure of how much space is occupied by a figure. Area is measured in square units. For example, one square centimeter (cm ) is 1cm wide and 1cm tall. 1cm 1cm A figure s area is the number

More information

Name: Seventh Grade Science Teacher: Page 1

Name: Seventh Grade Science Teacher: Page 1 Name: Seventh Grade Science Teacher: Page 1 Why should you do this Packet? Dear future 8 th grade student, You are most likely asking yourself, what the heck is this and why do I have to do it? Let me

More information

History of U.S. Measurement

History of U.S. Measurement SECTION 11.1 LINEAR MEASUREMENT History of U.S. Measurement The English system of measurement grew out of the creative way that people measured for themselves. Familiar objects and parts of the body were

More information

18) 6 3 4 21) 1 1 2 22) 7 1 2 23) 19 1 2 25) 1 1 4. 27) 6 3 qt to cups 30) 5 1 2. 32) 3 5 gal to pints. 33) 24 1 qt to cups

18) 6 3 4 21) 1 1 2 22) 7 1 2 23) 19 1 2 25) 1 1 4. 27) 6 3 qt to cups 30) 5 1 2. 32) 3 5 gal to pints. 33) 24 1 qt to cups Math 081 Chapter 07 Practice Name SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question. 18) 6 3 4 gal to quarts Convert as indicated. 1) 72 in. to feet 19)

More information

Basic Math for the Small Public Water Systems Operator

Basic Math for the Small Public Water Systems Operator Basic Math for the Small Public Water Systems Operator Small Public Water Systems Technology Assistance Center Penn State Harrisburg Introduction Area In this module we will learn how to calculate the

More information

Healthcare Math: Using the Metric System

Healthcare Math: Using the Metric System Healthcare Math: Using the Metric System Industry: Healthcare Content Area: Mathematics Core Topics: Using the metric system, converting measurements within and between the metric and US customary systems,

More information

Chapter 1 Problems. 1micron 1 10 6 m =1 10 9 microns. =1 10 4 cm. 1micron 1 10 6 m = 9.144 105 microns. 1 ft

Chapter 1 Problems. 1micron 1 10 6 m =1 10 9 microns. =1 10 4 cm. 1micron 1 10 6 m = 9.144 105 microns. 1 ft Chapter 1 Problems 1.3 The micrometer is often called the micron. (a) How man microns make up 1 km? (b) What fraction of a centimeter equals 1µm? (c) How many microns are in 1.0 yard We begin by calculating

More information

Objective To introduce a formula to calculate the area. Family Letters. Assessment Management

Objective To introduce a formula to calculate the area. Family Letters. Assessment Management Area of a Circle Objective To introduce a formula to calculate the area of a circle. www.everydaymathonline.com epresentations etoolkit Algorithms Practice EM Facts Workshop Game Family Letters Assessment

More information

VOLUME AND SURFACE AREAS OF SOLIDS

VOLUME AND SURFACE AREAS OF SOLIDS VOLUME AND SURFACE AREAS OF SOLIDS Q.1. Find the total surface area and volume of a rectangular solid (cuboid) measuring 1 m by 50 cm by 0.5 m. 50 1 Ans. Length of cuboid l = 1 m, Breadth of cuboid, b

More information

CHAPTER 29 VOLUMES AND SURFACE AREAS OF COMMON SOLIDS

CHAPTER 29 VOLUMES AND SURFACE AREAS OF COMMON SOLIDS CHAPTER 9 VOLUMES AND SURFACE AREAS OF COMMON EXERCISE 14 Page 9 SOLIDS 1. Change a volume of 1 00 000 cm to cubic metres. 1m = 10 cm or 1cm = 10 6m 6 Hence, 1 00 000 cm = 1 00 000 10 6m = 1. m. Change

More information

2. A painted 2 x 2 x 2 cube is cut into 8 unit cubes. What fraction of the total surface area of the 8 small cubes is painted?

2. A painted 2 x 2 x 2 cube is cut into 8 unit cubes. What fraction of the total surface area of the 8 small cubes is painted? Black Surface Area and Volume (Note: when converting between length, volume, and mass, 1 cm 3 equals 1 ml 3, and 1 ml 3 equals 1 gram) 1. A rectangular container, 25 cm long, 18 cm wide, and 10 cm high,

More information

APPENDIX I SI AND ENGLISH UNITS AND CONVERSION FACTORS

APPENDIX I SI AND ENGLISH UNITS AND CONVERSION FACTORS APPENDIX I SI AND ENGLISH UNITS AND CONVERSION FACTORS The International System of Units (Systéme International d Unités, or SI) recognizes seven basic units from which all others are derived. They are:

More information

Sorting Cards: Common Measures

Sorting Cards: Common Measures Sorting Cards: Common Measures The mass, capacity, length and time cards (pages 2-3) were originally used as a starter activity in a pre-gcse maths class (Level 1 and Level 2 numeracy), after we had done

More information

Multiply circumference by 0.3183. Or divide circumference by 3.1416. Multiply diameter by 3.1416. Or divide diameter by 0.3183.

Multiply circumference by 0.3183. Or divide circumference by 3.1416. Multiply diameter by 3.1416. Or divide diameter by 0.3183. RULES RELATIVE TO THE CIRCLE TO FIND DIAMETER TO FIND CIRCUMFERENCE TO FIND RADIUS TO FIND SIDE OF AN INSCRIBED SQUARE TO FIND SIDE OF AN EQUAL SQUARE Multiply circumference by 0.383. Or divide circumference

More information

Chapter 1 An Introduction to Chemistry

Chapter 1 An Introduction to Chemistry 1 Chapter 1 An Introduction to Chemistry 1.1 What Is Chemistry, and What Can Chemistry Do for You? Special Topic 1.1: Green Chemistry 1.2 Suggestions for Studying Chemistry 1.3 The Scientific Method 1.4

More information

Metric Units of Length

Metric Units of Length 7.2 Metric Units of Length 7.2 OBJECTIVES. Know the meaning of metric prefixes 2. Estimate metric units of length 3. Convert metric units of length NOTE Even in the United States, the metric system is

More information

Module 9: Basics of Pumps and Hydraulics Instructor Guide

Module 9: Basics of Pumps and Hydraulics Instructor Guide Module 9: Basics of Pumps and Hydraulics Instructor Guide Activities for Unit 1 Basic Hydraulics Activity 1.1: Convert 45 psi to feet of head. 45 psis x 1 ft. = 103.8 ft 0.433 psi Activity 1.2: Determine

More information

Perimeter, Area, and Volume

Perimeter, Area, and Volume Perimeter, Area, and Volume Perimeter of Common Geometric Figures The perimeter of a geometric figure is defined as the distance around the outside of the figure. Perimeter is calculated by adding all

More information

MATH 110 Landscape Horticulture Worksheet #6

MATH 110 Landscape Horticulture Worksheet #6 Volume Calculations MATH 110 Landscape Horticulture Worksheet #6 You will often have to do volume calculations in your line of work. Volume is the amount of space in a region. For a rectangular shaped

More information

EXAMPLE EXERCISE 3.1 Metric Basic Units and Prefixes

EXAMPLE EXERCISE 3.1 Metric Basic Units and Prefixes EXAMPLE EXERCISE 3.1 Metric Basic Units and Prefixes Give the symbol for each of the following metric units and state the quantity measured by each unit: (a) gigameter (b) kilogram (c) centiliter (d) microsecond

More information

Units of Measurement: A. The Imperial System

Units of Measurement: A. The Imperial System Units of Measurement: A. The Imperial System Canada uses the metric system most of the time! However, there are still places and occasions where the imperial system of measurement is used. People often

More information

Conversion Formulas and Tables

Conversion Formulas and Tables Conversion Formulas and Tables Metric to English, Introduction Most of the world, with the exception of the USA, uses the metric system of measurements exclusively. In the USA there are many people that

More information

Intermediate Water Math

Intermediate Water Math Intermediate Water Math Sidney Innerebner, PhD, PE Principal / Owner Indigo Water Group 626 West Davies Way Littleton, Colorado 80120 Sidney@indigowatergroup.com 303 489 9226 For More Math Problems and

More information

Chapter 1 Lecture Notes: Science and Measurements

Chapter 1 Lecture Notes: Science and Measurements Educational Goals Chapter 1 Lecture Notes: Science and Measurements 1. Explain, compare, and contrast the terms scientific method, hypothesis, and experiment. 2. Compare and contrast scientific theory

More information

Chapter 19. Mensuration of Sphere

Chapter 19. Mensuration of Sphere 8 Chapter 19 19.1 Sphere: A sphere is a solid bounded by a closed surface every point of which is equidistant from a fixed point called the centre. Most familiar examples of a sphere are baseball, tennis

More information

Applied Fluid Mechanics

Applied Fluid Mechanics Applied Fluid Mechanics 1. The Nature of Fluid and the Study of Fluid Mechanics 2. Viscosity of Fluid 3. Pressure Measurement 4. Forces Due to Static Fluid 5. Buoyancy and Stability 6. Flow of Fluid and

More information

Metric Prefixes. 10 12 Tera- T 10 2 centi- c 10 9 Giga- G 10 3 milli- m 10 6 Mega- M 10 6 micro- µ 10 3 kilo- k 10 9 nano- n

Metric Prefixes. 10 12 Tera- T 10 2 centi- c 10 9 Giga- G 10 3 milli- m 10 6 Mega- M 10 6 micro- µ 10 3 kilo- k 10 9 nano- n Metric Prefixes Meaning Name Abbreviation Meaning Name Abbreviation 10 12 Tera- T 10 2 centi- c 10 9 Giga- G 10 3 milli- m 10 6 Mega- M 10 6 micro- µ 10 3 kilo- k 10 9 nano- n These are the most commonly

More information

1) (-3) + (-6) = 2) (2) + (-5) = 3) (-7) + (-1) = 4) (-3) - (-6) = 5) (+2) - (+5) = 6) (-7) - (-4) = 7) (5)(-4) = 8) (-3)(-6) = 9) (-1)(2) =

1) (-3) + (-6) = 2) (2) + (-5) = 3) (-7) + (-1) = 4) (-3) - (-6) = 5) (+2) - (+5) = 6) (-7) - (-4) = 7) (5)(-4) = 8) (-3)(-6) = 9) (-1)(2) = Extra Practice for Lesson Add or subtract. ) (-3) + (-6) = 2) (2) + (-5) = 3) (-7) + (-) = 4) (-3) - (-6) = 5) (+2) - (+5) = 6) (-7) - (-4) = Multiply. 7) (5)(-4) = 8) (-3)(-6) = 9) (-)(2) = Division is

More information

I Gotta Know What? A Math Tutorial For Prospective CPO Students. FR = FA times FMR or FR = FA x FMR Volume (V)gallons = Volume (V)cubic feet x 7.

I Gotta Know What? A Math Tutorial For Prospective CPO Students. FR = FA times FMR or FR = FA x FMR Volume (V)gallons = Volume (V)cubic feet x 7. olume (V) = Area (A) x Average Depth (AD) I Gotta Know What? FR = FA times FMR or FR = FA x FMR Volume (V)gallons = Volume (V)cubic feet x 7.5 A = L x W A Math Tutorial For Prospective CPO Students AD

More information

VOLUME of Rectangular Prisms Volume is the measure of occupied by a solid region.

VOLUME of Rectangular Prisms Volume is the measure of occupied by a solid region. Math 6 NOTES 7.5 Name VOLUME of Rectangular Prisms Volume is the measure of occupied by a solid region. **The formula for the volume of a rectangular prism is:** l = length w = width h = height Study Tip:

More information

Metric System Conversion Factors 1

Metric System Conversion Factors 1 AGR39 1 J. Bryan Unruh, Barry J. Brecke, and Ramon G. Leon-Gonzalez 2 Area Equivalents 1 Acre (A) = 43,560 square feet (ft 2 ) = 4,840 square yards (yd 2 ) = 0.405 hectares (ha) = 160 square rods (rd 2

More information

MOST COMMON METRIC UNITS USED IN THE MEDICAL FIELD *BASE. deci. King Henry Died (from a) Disease Called Mumps. (k) (h) (da) gram (g) (d) (c) (m)

MOST COMMON METRIC UNITS USED IN THE MEDICAL FIELD *BASE. deci. King Henry Died (from a) Disease Called Mumps. (k) (h) (da) gram (g) (d) (c) (m) MOST COMMON METRIC UNITS USED IN THE MEDICAL FIELD Micro (mc) microgram 0 6 One millionth 0.00000 Milli (m) milligram milliliter* millimeter 0 3 One thousandth 0.00 Centi (c) centimeter 0 2 One hundredth

More information

MATH 110 Landscape Horticulture Worksheet #4

MATH 110 Landscape Horticulture Worksheet #4 MATH 110 Landscape Horticulture Worksheet #4 Ratios The math name for a fraction is ratio. It is just a comparison of one quantity with another quantity that is similar. As a Landscape Horticulturist,

More information

Appendix 3 Water-Harvesting Calculations

Appendix 3 Water-Harvesting Calculations Appendix 3 Water-Harvesting Calculations List of Equations and Other Information Box A3.1. Abbreviations, Conversions, and Constants for English and Metric Measurement Units Equation 1. Catchment Area

More information

Appendix 1: Units of Measure Used in the Lead-Based Paint Field

Appendix 1: Units of Measure Used in the Lead-Based Paint Field Appendix 1: Units of Measure Used in the Lead-Based Paint Field Many of the units, terms, and concepts used in these Guidelines are new to the users. Most of the measures cited are in the Metric System

More information

RAINWATER HARVESTING FOR DRYLANDS - VOLUME 1. By Brad Lancaster, 2006. Appendix 3. Water-Harvesting Calculations

RAINWATER HARVESTING FOR DRYLANDS - VOLUME 1. By Brad Lancaster, 2006. Appendix 3. Water-Harvesting Calculations RAINWATER HARVESTING FOR DRYLANDS - VOLUME 1 By Brad Lancaster, 2006 Appendix 3 Water-Harvesting Calculations List of Equations and Other Information Box A3.1. Abbreviations, Conversions, and Constants

More information

Chapter 8 Unit Conversions

Chapter 8 Unit Conversions Chapter 8 Unit Conversions [M]athematics is the easiest of sciences, a fact which is obvious in that no one s brain rejects it. Roger Bacon (c. 1214-c. 1294), English philosopher and scientist Stand firm

More information

APES Math Review. For each problem show every step of your work, and indicate the cancellation of all units No Calculators!!

APES Math Review. For each problem show every step of your work, and indicate the cancellation of all units No Calculators!! APES Math Review For each problem show every step of your work, and indicate the cancellation of all units No Calculators!! Scientific Notation All APES students should be able to work comfortably with

More information

Biological Principles Lab: Scientific Measurements

Biological Principles Lab: Scientific Measurements Biological Principles Lab: Scientific Measurements Name: PURPOSE To become familiar with the reference units and prefixes in the metric system. To become familiar with some common laboratory equipment.

More information

The entire document shall be read and understood before proceeding with a test. ISTA 3B 2013 - Page 1 of 35

The entire document shall be read and understood before proceeding with a test. ISTA 3B 2013 - Page 1 of 35 Packaged-Products for Less-Than-Truckload (LTL) Shipment ISTA 3 Series General Simulation Performance Test PROCEDURE VERSION DATE Last TECHNICAL Change: NOVEMBER 2012 Last EDITORIAL Change: JANUARY 2013

More information

$566.30. What is the monthly interest rate on the account? (Round to the nearest hundredth of a percent.) 4 = x 12. 7)

$566.30. What is the monthly interest rate on the account? (Round to the nearest hundredth of a percent.) 4 = x 12. 7) Exam Name SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question. 1)What percent of 6 is 27? 1) 2)64.288 is 28.7% of what number? 2) 3)112% of what number is

More information

Calculating Area, Perimeter and Volume

Calculating Area, Perimeter and Volume Calculating Area, Perimeter and Volume You will be given a formula table to complete your math assessment; however, we strongly recommend that you memorize the following formulae which will be used regularly

More information

1. Site plans assist the Fire Department to determine where a potential spill can be contained. The detailed site plan shall include the following:

1. Site plans assist the Fire Department to determine where a potential spill can be contained. The detailed site plan shall include the following: Secondary Containment, Spill Control and Drainage Guidelines for Hazardous Materials per 2010 CFC PURPOSE The intent of this guideline is to provide the requirements for the design and construction of

More information

CHEM 101 / 105 LECT 1

CHEM 101 / 105 LECT 1 CHEM 101 / 105 LECT 1 Rules of the road: Your Loyola computer account (activate it). Class Web site (visit and send me an e-mail B4 Tues.) spavko1@luc.edu Chapter 1. Chemistry is... Matter is... Classifications

More information

MEASUREMENT CONVERSION CHARTS

MEASUREMENT CONVERSION CHARTS MEASUREMENT CONVERSION CHARTS Metric - Imperial Conversions 2 Lumber Conversion Table 3 Drywalling Estimator 4 Shingle Estimator 5 Roof Pitch Sighter Card 5 Fencing Conversion Table 6 The Country Junction

More information

Area & Volume. 1. Surface Area to Volume Ratio

Area & Volume. 1. Surface Area to Volume Ratio 1 1. Surface Area to Volume Ratio Area & Volume For most cells, passage of all materials gases, food molecules, water, waste products, etc. in and out of the cell must occur through the plasma membrane.

More information

100 cm 1 m. = 614 cm. 6.14 m. 2.54 cm. 1 m 1 in. 1 m. 2.54 cm 1ft. 1 in = 242 in. 614 cm. 242 in 1 ft. 1 in. 100 cm = 123 m

100 cm 1 m. = 614 cm. 6.14 m. 2.54 cm. 1 m 1 in. 1 m. 2.54 cm 1ft. 1 in = 242 in. 614 cm. 242 in 1 ft. 1 in. 100 cm = 123 m Units and Unit Conversions 6. Define the problem: If the nucleus were scaled to a diameter of 4 cm, determine the diameter of the atom. Develop a plan: Find the accepted relationship between the size of

More information

Third Grade Illustrated Math Dictionary Updated 9-13-10 As presented by the Math Committee of the Northwest Montana Educational Cooperative

Third Grade Illustrated Math Dictionary Updated 9-13-10 As presented by the Math Committee of the Northwest Montana Educational Cooperative Acute An angle less than 90 degrees An acute angle is between 1 and 89 degrees Analog Clock Clock with a face and hands This clock shows ten after ten Angle A figure formed by two line segments that end

More information

Illinois Environmental Protection Agency Division of Water Pollution Control Class K Study Guide Industrial Wastewater Operator Certification

Illinois Environmental Protection Agency Division of Water Pollution Control Class K Study Guide Industrial Wastewater Operator Certification Illinois Environmental Protection Agency Division of Water Pollution Control Class K Study Guide Industrial Wastewater Operator Certification Revised March 2003 The purpose of this study guide is to help

More information

Imperial and metric quiz

Imperial and metric quiz Level A 1. Inches are a metric measure of length. 2. Pints are smaller than gallons. 3. 1 foot is the same as: A) 12 inches B) 14 inches C) 16 inches D) 3 yards 4. foot is usually shortened to: A) 1 f

More information

Lab Activity: Measuring with Metric. Introduction: Standard Metric Units. Names

Lab Activity: Measuring with Metric. Introduction: Standard Metric Units. Names Names Date Period Introduction: The purpose of this activity is to practice using the metric system. To conduct a scientific investigation, a researcher must be able to make accurate measurements. In today

More information