Biology of Taste Buds and the Clinical Problem of Taste Loss

Size: px
Start display at page:

Download "Biology of Taste Buds and the Clinical Problem of Taste Loss"

Transcription

1 70 THE ANATOMICAL RECORD (NEW ANAT.) FEATURE ARTICLE Biology of Taste Buds and the Clinical Problem of Taste Loss GINA M. NELSON Taste buds are the anatomical structures that mediate the sense of taste. They comprise taste cells and nerve fibers within specialized epithelial structures. Taste cells are traditionally described by histologic methods as basal, dark, intermediate, and light cells, with the nerve fibers surrounding and infiltrating the taste buds. By means of immunohistochemical methods, taste cells and gustatory nerve fibers can be classified in functional groups based on the expression of various cell adhesion molecules and other proteins. When taste buds become damaged, the loss of the ability to taste results. This loss is not uncommon and can impact health and quality of life. Patients who receive radiation therapy for head and neck cancer often experience taste loss, which leads to compromised nutritional intake and a worse outcome than patients who do not experience taste loss. The mode of radiation damage to taste cells and nerve fibers has been investigated using cell adhesion molecules, synaptic vesicle proteins, and other cell markers. The light and intermediate cells are preferentially affected by ionizing radiation, whereas the nerve fibers remain structurally intact. Experimental studies of radiation-induced taste loss are performed via a unique animal/human model. Anat. Rec. (New Anat.) 253:70 78, Wiley-Liss, Inc. KEY WORDS: taste buds; taste loss; head/neck cancer; radiation therapy; radiation model; cancer therapy WHAT MAKES UP THE SENSE OF TASTE? Of the five senses, taste is the sense which is least thought about by most people. Unlike the senses of vision and hearing, taste does not have much impact on our day-to-day life or does it? Taste buds play a greater role in our lives than we might imagine. In combination with our sense of smell, we are able to enjoy the aroma and taste of our food and drink. More importantly, we recognize spoiled food, if not by the smell then by the terrible taste. For our ancestors more than for modern humans, taste warned of poisonous Dr. Nelson has long had an interest in chemoreceptive sciences, beginning with invertebrate chemoreception. She has an MD and PhD from the University of Colorado Health Sciences Center, where she developed an animal model of radiation-induced taste loss. Dr. Nelson is currently a resident in anatomic pathology at the University of Iowa Hospitals and Clinics and plans to continue work on the animal model and human studies in taste loss through the Department of Anatomy and Cell Biology after residency Wiley-Liss, Inc. plants, as they have a very bitter taste due to the presence of various alkaloid compounds. What happens when our sense of taste goes awry? The understanding of the mechanisms of vision and hearing is far ahead of the understanding of the mechanisms of taste. Glasses and artificial lenses are available to correct vision deficits, and hearing aids are available for those with diminished hearing, but what corrective aids are available for the loss of taste? Have you ever known a person, a relative or a friend perhaps, who cannot taste? What is the world of taste like for that person? What causes taste loss? Is the ability to taste affected by illness or by therapies designed to treat these illnesses? WHERE ARE MY TASTE BUDS? Taste buds are the anatomical structures which contain the receptor cells that mediate the sense of taste. Taste buds are found in the oral cavity, primarily on the tongue but also on the palate, back of the mouth, pharynx, epiglottis, and larynx. The tongue (Fig. 1) is covered with numerous papillae which come in four varieties. Filliform papillae are the most numerous and appear as short, rough structures covered with thick keratinized epithelium (they feel particularly rough on a cat s tongue). They do not contain taste buds. The fungiform papillae are dispersed across the surface of the tongue. They are more box-like, with a connective tissue core and a thin covering of epithelium. Most of the fungiform papillae contain a single taste bud on the tip. The larger circumvallate papillae are located on the posterior aspect of the dorsal surface, appearing as pincushions with a surrounding trough, called a crypt. The crypt is lined by an epithelium, called the gustatory epithelium, which contains several taste buds. The pores of the taste buds open into the crypt. In humans there are circumvallate papillae, but in rodents (as in mice or rats) there is only one. Foliate papillae lie on the lateral sides of the tongue and appear like slits. These are less developed in rats and humans than they are in other species. Each taste bud is oval (Fig. 2) and opens to the epithelial surface via a small opening called a taste pore. From

2 REVIEW THE ANATOMICAL RECORD (NEW ANAT.) 71 Fig. 1. Dorsal surface of tongue. Pictured is the upper surface of the tongue showing the location of the pincushion shaped circumvallate papillae on the very back of the tongue and the fungiform papillae over the surface between the circumvallate papillae and the tip of the tongue. this pore protrudes the microvilli arising from the tips of the individual taste cells. Each taste bud contains taste receptor cells and support cells. Taste cells are described as basal, dark, intermediate, and light, based on electron microscopic characteristics 1 (Fig. 2). The basal cells are at the base of the taste bud and constitute a proliferative population of cells. They divide to produce postmitotic light, intermediate, and dark taste cells with a life span of days. Dark cells are defined by a dark cytoplasm (electron-dense), dense-core granules (small vesicles with a dark center) at the tip of the cell, indentations in the nuclear membrane, and collections of heterochromatin (the DNA) along the inner edge of the nucleus. Light cells are characterized by a light cytoplasm (electron-lucent), clear vesicles and mitochondria in the tip of the cell, and a round to oval nucleus with less heterochromatin (DNA) along the inner edge. Intermediate cells have characteristics that are intermediate between the light *Authors vary in their use of the different systems of nomenclature. While some correlations have been made between the two systems, they are not totally equivalent. The information here is given in relation to the article in which it was originally presented, maintaining the system by which it was described. and dark cells. Which taste cell type is actually the receptor has not been proven, although every type has been proposed. Taste cells have also been designated as Type I, II, III, and IV, with Type I being similar to dark cells, Type II similar to light cells, and Type IV being the basal cells. In this schema, the Type III cells are like intermediate cells and are thought to be the gustatory receptor cells, 2 primarily due to the presence of what are believed to be afferent synaptic contacts* (afferent nerve fibers carrying information to the brain). The dense-core vesicles are located in dark cells and to a lesser extent in intermediate cells 1 in association with both the tip of the cells and the presynaptic regions. These vesicles are thought to contain serotonin. 3 Fungiform taste buds are innervated by the chorda tympani branch of cranial nerve VII, while the circumvallate taste buds are innervated by cranial nerve IX. Taste buds in the pharynx are innervated by cranial nerve X. In the region of the taste buds, nerve fibers are described by anatomical location (refer to Fig. 2). The subepithelial plexus are the nerve fibers in the connective tissue beneath the gustatory epithelium (the epithelium containing the taste buds). The basal plexus nerve fibers are in the basal portion of each bud, forming a kind of a nest around the basal cells. Intragemmal fibers are those within the taste bud, and perigemmal fibers are those around the taste bud. The intragemmal nerve fibers are the nerve fibers which receive synaptic contacts from all three types of taste cells. 4 While the perigemmal fibers are generally thought to be outside of the taste bud, some perigemmal nerve fibers enter the taste bud from the side. Some perigemmal nerve fibers reach the surface of the epithelium; others reach around the taste pore. In addition, both Type II and III cells form two types of synaptic contacts with the intragemmal nerve fibers, thought to represent efferent (efferent nerve fibers carrying information from the brain) and afferent synaptic contacts. 5 It has been proposed that the substance P containing fibers within the taste bud may mediate oral pain. 6 A nutritional, or trophic, interaction (i.e., one cell emits a substance that a second cell needs to grow) between the nerve fiber and taste buds exists. Interruption of the nerve fiber by either cut or crush injury results in the Taste buds play a greater role in our lives than we might imagine. disappearance of the taste buds (Fig. 3). If the nerve fiber is allowed to grow back, the taste buds will reappear. This indicates that there is an unknown molecule originating from the nerve fiber that is required for the taste buds to retain their form. The mechanisms of sensory transduction of various taste stimuli across the taste cell membrane is a topic worthy of its own review, and the reader is referred to excellent papers on this topic. 7 ANATOMICAL CONCEPTS BASED ON CELL MARKERS Until recently, the elements of the taste system have been described anatomically and histologically. An alternative method is to describe the components of the taste system based on their function, which makes sense biologically. By comparison, vision receptors are the rods and cones, and the vestibular and cochlear nerves transmit specific sensory information in the ear.

3 72 THE ANATOMICAL RECORD (NEW ANAT.) REVIEW Fig. 2. Schematic of a normal taste bud. All of the elements of a taste bud are illustrated. The taste bud contains basal cells (B) in the lower portion of the bud and all three types of taste cells extending upward to the opening at the top, the taste pore. The light cells (L), intermediate cells (I), and dark cells (D) are pictured with some of the features that characterize each cell type. In addition, the intragemmal and perigemmal nerve fibers are seen. The nerve fibers are present in the subepithelial connective tissue and enter each bud from the base. The red fibers represent the nerve fibers which contain synaptic vesicle proteins, and the black fibers represent nerve fibers which contain peptides. S, synapse. Fig. 3. Damage to the taste bud following nerve injury. After crushing or cutting the nerve (e.g., glossopharyngeal) that innervates the taste buds, the taste buds degenerate. Small, atrophic buds remain, as seen in the illustration. If the nerve fiber regenerates, the taste buds will grow back.

4 REVIEW THE ANATOMICAL RECORD (NEW ANAT.) 73 Fig. 4. The technique of immunohistochemistry. The protein of interest (pentagon in the illustration), termed the antigen, is isolated and purified and then injected into the host mouse. The mouse s immune system sees the antigen as a foreign molecule and makes antibodies against it. The antibodies are then taken from the mouse s serum. A thin piece of tissue from a second animal is put on a glass slide, and the antibody is applied to it. The antibody will recognize the antigen in the tissue (the pentagon) and stick to it. In order to visualize where the antibody is located, a secondary antibody is applied which recognizes the first. The secondary antibody has a tag on the end (star) which can be seen in a microscope equipped for fluorescence microscopy. These descriptors are related to the function of the anatomical structure. It would be logical to take the same approach for the sense of taste and designate a salt receptor or a bittertaste fiber. However, the details are not known at a sufficient level to always determine the functional designations. Investigators in many laboratories are improving on the knowledge of the taste system, so this descriptive system may be realized in the future. One way to approach this is to identify groups of taste cells or nerve fibers based on the expression of a particular protein. With a technique called immunohistochemistry, an antibody is made which recognizes a particular protein for example, protein X (Fig. 4). Simply, an amount of protein X is injected into a mouse, the host animal. The immune system of the host generates antibodies directed against protein X. The serum is removed from the animal, and the new anti-x antibodies are purified. Thin sections of tissue from the animal being investigated (usually not a mouse) are put on slides, and the anti-x antibodies are added. The antibodies attach to the X molecules in the tissue. Then a secondary antibody with a fluorescent tag is attached to the first antibody. A microscope equipped to view the fluorescent tag is then used to visualize where the anti-x antibodies attached. The correlation can be made that protein X resides in the location where fluorescent patterns are seen. The markers used to identify cells and nerve fibers can be cell surface molecules, neurotransmitters, structural proteins, synaptic vesicle proteins, peptides, blood group markers, enzymes, lectins, or many other types of proteins. The identification of a group of taste cells or nerve fibers that share a given histochemical property suggests that these cells or nerve fibers have a common biological characteristic which may be more closely related to a common function. Taste cells or nerve fibers classified in this manner can be studied in various experimental situations. Often the expression of a particular protein is found primarily in a histologically designated type of taste cell (i.e., light cells), although only a few of the light cells contain the protein. Sometimes a few cells from two groups will express a particular protein (i.e., a few of the light and intermediate cells). This suggests that the histological classifications of light, intermediate, and dark do not correlate with function. Examples of various proteins expressed by taste cells include the blood group antigens, 8 the transmembrane G protein gusducin 9 neural cell adhesion molecule (NCAM), 10 the calcium binding protein calbindin, 11 and keratins. 12 Some are located in specific taste cell types; others are not. Many other examples are described in the literature. Using light and electron microscopic immunohistochemistry, we demonstrated the presence of NCAM 10 and a form of growth associated protein (GAP) in taste cells recognized by the antibody designated B50 13 (Fig. 5). NCAM appears as smooth, continuous outlines on long, thin, distinct taste cells identified as light or intermediate cells. The B50 antibody produces a diffuse label throughout taste cells identified as intermediate or dark cells, located in the mid to apical portion of the taste bud. These cells appear different from the thin, elongated cells labeled by the NCAM antibody. Not all of the intermediate and dark cells label. Experiments with NCAM and B50 together indicate that these proteins occur on separate populations of taste cells. No cell in normal taste buds ever showed reactivity to both of these antibodies together. ANATOMICAL CONCEPTS BASED ON NERVE FIBER MARKERS Nerve fibers can also be described in a similar fashion. In the construct of a sensory system, there are nerve fibers to bring the signal of the perceived stimulus to the brain (the nerve fibers which are postsynaptic to the taste cells, the afferent fibers) and nerve fibers to bring modulating information to the sensory cells (efferent fibers). There may also be nerve fibers

5 74 THE ANATOMICAL RECORD (NEW ANAT.) REVIEW Fig. 5. Taste bud with antibody-labeled taste cells. After application of an antibody which recognizes NCAM, some of the light to intermediate taste cells appear bright, having a long, thin outline (taste cells with white dots in illustration). The application of the B50 antibody labels some of the dark cells with a more diffuse pattern (bright taste cell without dot). In this example, the nerve fibers are not labeled. Fig. 6. The effects of radiation on taste buds. At the peak of radiation damage (approximately 7 days), some of the light to intermediate taste cells are degenerating, but the dark cells and all subtypes of nerve fibers remain intact. The nerve fibers containing synaptic vesicle proteins (red) and the nerve fibers containing peptides (black) remain as they were in the normal taste bud. The overall pattern of degeneration is different than that seen in the taste buds affected by nerve cut (refer to Fig. 3).

6 REVIEW THE ANATOMICAL RECORD (NEW ANAT.) 75 to carry visceral information (hot, cold, pain, etc.) which may or may not be located within the taste bud. In an effort to identify these various types of nerve fibers, much like the taste cells, immunohistochemical techniques were utilized to demonstrate that different nerve fibers express different proteins. For example, many perigemmal fibers contain the peptide substance P, while others contain calcitonin gene-related peptide (CGRP). The intragemmal nerve fibers contain synaptic vesicle proteins, like synaptophysin. 14 (Of note, even though all of the types of taste cells, light, intermediate, and dark, make synaptic contacts with the intragemmal nerve fibers, 4 none of the synaptic vesicle proteins to date have been found to label the presynaptic vesicles located within the taste cells). Numerous basal plexus nerve fibers and nerve fibers in the dermis or in the core of the fungiform papillae also contain the synaptic vesicle proteins and peptides. Electron micrographs show that small vesicles within these nerve processes, measuring nm in diameter, are the same size as the vesicles described as containing the synaptic vesicle proteins in other locations. The nerve fibers that label with synaptic vesicle proteins are postsynaptic to some taste cells. 14 All of the nerve fibers, both intragemmal and perigemmal, can be identified with proteins common to most neurons, like protein gene product 9.5 (PGP 9.5) and S When the synaptic vesicle proteincontaining nerve fibers are compared with those containing peptides or PGP 9.5 using double labeled fluorescence immunohistochemistry, the two types of nerve fibers are not distinct groups, and the location of the proteins does not correlate exactly with the anatomical classifications. The nerve fibers containing synaptophysin have a small subset that also contain CGRP. There are occasional intragemmal nerve fibers that contain CGRP only. Most perigemmal nerve fibers show labeling with either synaptophysin or CGRP. Analysis of SV2 (another synaptic vesicle protein 16 ) and CGRP gives slightly different results. For both the intragemmal and perigemmal nerve fibers, there is a group of fibers that contain both proteins, and there is a group of fibers that contain SV2 only and CGRP only. All synaptophysin nerve fibers are also PGP 9.5 nerve fibers, but the reverse is not true. Even though there is some overlap in the described categories of gustatory nerve fibers, the results of examining the distribution of these proteins in the gustatory nerve fibers allows their division into functional groups: postsynaptic intragemmal (labeled with synaptic vesicle proteins), nonpostsynaptic intragemmal (labeled with peptides), perigemmal (labeled with peptides), and nerve fibers around the taste pore (labeled with SV2). This gives us a tool to follow what happens to these categories of nerve fibers during experimental manipulation, as described below. TASTE LOSS IN HUMANS While not discussed widely in the biochemical literature, ageusia (taste loss) and hypogeusia (decrease in taste) and dysgeusia (abnormal taste) are widespread and associated with a variety of illnesses, from common to obscure. Taste loss occurs as a natural phenomenon of aging and also in response to normal changes such as pregnancy and menopause. 17 Poor dentition and hygiene are common oral conditions that affect taste. Patients with xerostomia (dry mouth), Sjögren syndrome (inflammation of the salivary glands resulting in a dry mouth), and zinc deficiency may also experience taste loss. Other conditions in which taste loss may occur include liver and kidney disorders, diabetes mellitus, depression, and surgical procedures around the chorda tympani or glossopharyngeal nerve. Patients with head trauma and epilepsy may also experience taste loss. Taste loss can range from mild to severe, resulting in subsequent decrease in nutritional intake. (Many investigators contributed to the accumulation of this knowledge. The reader is referred to the many chapters that cover these topics in more detail in Getchell et al. 18 ) Various types of therapy can also induce taste loss. Numerous drugs are associated with taste loss. However, an incomplete understanding of how the taste system works and the interaction of drug compounds with the taste system make it difficult to assign the taste loss to a drug alone. One cannot rule out that the taste loss is caused by the underlying disease process. Most of the drugs associated with taste loss affect the turnover of cells, as is seen in other systems, but other mechanisms are possible. Drugs usually induce a temporary effect which diminishes after the drug is discontinued. Chemotherapy employs drugs associated with taste loss. A few examples include methotrexate and dexamethasone, antihypertensives, antimicrobial agents, and antiproliferative agents. 18 RADIATION THERAPY INDUCED TASTE LOSS Radiation is often used either alone or in addition to surgery to treat various types of cancers. The typical dose for patients with head and neck cancer or oral cancer is 5,000 7,000 cgy. (A centigrey (cgy) is the deposition of 1 erg of energy per 100 g of tissue.) It is administered in divided doses of about 180 cgy/week until the desired dose is achieved. Radiation is composed of charged particles that disrupt the electron orbital structure of the atoms in the tissue, causing tissue destruction. 19 The theory behind the therapy is to disrupt the proliferative capacity of the tumor, thus destroying it, while doing as little damage as possible to the normal tissue. Since the tissue lining the mouth and the gastrointestinal tract divides at a faster rate than tissues of other organs (e.g., liver), they are more susceptible to radiation damage. The resulting side effects to the oral cavity include mucositis (swelling and tenderness of the oral mucosa with sloughing off of dead cells), xerostomia, and taste loss. Of particular interest is the taste loss that occurs with the administration of radiation therapy, termed postirradiation gustatory dysfunction. It occurs following administration of radiation to the region of the oral cavity and thus the taste buds. In some patients, the taste loss can be severe. The loss of taste has been reported in the literature only as case reports and as occasional small studies. The loss of taste due to radiation therapy is a common problem which is underrepresented in the literature. In patients who lose their sense of taste, one result is a marked decrease in the ability to eat and thus a decrease in nutrition

7 76 THE ANATOMICAL RECORD (NEW ANAT.) REVIEW intake. These patients experience greater weight loss than those patients who do not report a change in taste, 20 and it has been well documented that these patients have a worse outcome than the patients who do not lose their sense of taste and are able to maintain their food intake and nutritional support. 21 Nutritional supplements have been shown to positively impact cancer therapy when administered in addition to the therapy for the disease. 22 The changes in the taste thresholds for all tastes (sweet, sour, bitter, salty) varies among treated patients. Quinine taste (bitter) is most consistently lost, but the loss of sugar and salt taste varies considerably among patients. Decreases in taste thresholds begin from treatment with as little as cgy. 23 Also, a discrepancy is noted between the speed with which taste sensation is lost and the deterioration of the taste cells. The taste buds degenerate 6 7 days after irradiation, but taste alteration is seen as early as 2 3 days after irradiation. In mice, following a single radiation dose between 1,000 and 4,000 cgy, taste buds are either entirely destroyed or, if they remain, lose 30 50% of their cells. The taste bud degeneration peaks at 9 days after injury, and then the taste buds begin to regenerate. 24 In another study, 25 single doses of 850 cgy cause a smaller number of taste buds to degenerate, and recovery begins sooner. At a single dose of 2,200 cgy, the taste buds degenerate much faster. This illustrates that the number of taste buds that degenerate is related to the size of the dose. When permanent damage occurs, it is usually with accumulated doses exceeding 6,000 cgy. Long-term effects include lowered taste detection and threshold levels as well as xerostomia. The maximum tolerance dose giving a 50% complication rate is approximately 4,000 6,500 cgy for xerostomia and 5,000 6,500 cgy for taste loss. 26 The loss of taste does not vary by type of radiation (i.e. neutron vs. photon radiation). 27 Radiation affects elements of cells that cannot easily be repaired or replaced, namely the DNA. As a consequence, proliferative cells are most sensitive to the effects of radiation. Inside the taste buds are the nondividing nerve fibers and a proliferative population of taste cells. This suggests two possible sites of radiation damage leading to taste loss: (1) the intragemmal nerve fibers and (2) the taste cells. If the nerve fibers are the site of damage, one possibility could be a significant physical loss in the population of postsynaptic intragemmal nerve fibers. Since the neurons are a nondividing population of cells, they are thought to be generally radioresistant. However, disruption of the functional integrity of the neuron could lead to the symptom of taste loss. Synaptic uncoupling or disruption of membrane integrity leading to a disruption in the contact between the taste cells and nerve fibers, resulting in the inability to conduct action potentials, is a possibility. A similar finding was demonstrated in the disruption of neuromuscular junctions in mouse tongues following a single dose of radiation. 28 Other investigators have actually proposed the nerve fiber as the site of damage leading to taste loss but mostly incidentally. 24,25 Radiation affects elements of cells that cannot easily be repaired or replaced, namely the DNA. The second possible site of damage is the taste cells. Previously it has been demonstrated that following irradiation the cells within the taste bud lose their characteristic histological appearances (light, intermediate, and dark) and all appear as intermediate cells. 25 The disruption of the proliferative capacity of the taste cells would cause stem cells to stop dividing, and, once the current receptors die off, no new ones would be there to replace them. This would be experienced as a loss of taste. It does not, however, account for the changes in taste measured at 2 3 days following irradiation in both animals and humans. This is more likely to be a disruption of the current receptor cells, possibly via membrane damage causing loss of structural integrity, or loss of the synaptic contacts. Other possibilities suggested include radiation-induced changes in metabolism, possibly associated to depleted zinc stores. 20 In an attempt to test these various hypotheses, the projects described herein use a novel approach of combining histological evaluation with behavioral assessment in an effective model of radiation-induced taste loss in rats, as well as extending the studies to human cancer patients receiving radiation therapy. In this model, hypotheses about the function of taste cells and nerve fibers can be formulated based on quantitative behavioral data. The tool we have designed to direct the radiation to the surface of the tongue results in a method of radiation which eliminates the problematic side effects encountered with conventional radiation, typically mucositis and xerostomia. In addition, the labels for the various subpopulations of taste cells and nerve fibers make it possible to follow what happens to each of these components of the taste system following radiation. The eventual goal of this model is to understand the biological mechanisms underlying radiation-induced taste loss so that methods to prevent taste loss can be developed and thus improve the quality of life and treatment outcome of these cancer patients. RADIATION-INDUCED TASTE LOSS IN ANIMALS In studies described previously, 29 the effects of radiation on the taste system were examined in rats given a single dose (1,700 cgy) of radiation to the oral cavity. Behavioral measurements were made based on the consumption of either a 1.8% NaCl (salt) solution or a quinine-hcl (bitter) solution and correlated with the histological changes in two groups of nerve fibers and two groups of taste cells at various time points after radiation. The nerve fibers followed were labeled with either synaptophysin or CGRP, and the taste cells followed were labeled with either NCAM antibodies or B50. Briefly, following irradiation, two changes in the consumption of 1.8% NaCl are noted: (1) a decrease in the total volume of fluid consumed and (2) an increase in the amount of NaCl consumed. Both of these changes begin to occur on day 4 (day 0 is the day the animals received radiation), peak

8 REVIEW THE ANATOMICAL RECORD (NEW ANAT.) 77 at days 7 8, and return to preirradiation levels by day 11. The statistical analysis showed no significant difference prior to radiation between the two groups of animals (experimental and control). Following irradiation, a significant difference was seen for the NaCl consumption on days 7 and 8. Following the dose of radiation, the distribution of the nerve fibers labeled with synaptophysin or CGRP does not change. However, the NCAM-labeled cells show a dramatic change in appearance. At 6 days, the NCAM cells appear normal, with one or possibly two cells demonstrating label only in small patches. At day 7 there is a dramatic change. Only rare, abnormalappearing cells labeled with NCAM remain. Also, the rare cells with any NCAM are also immunoreactive with the GAP antibody B50. The normal pattern of NCAM labeling begins to return at 11 days, and NCAM-labeled cells are more numerous by 16 days. The change in the pattern of labeling for antibody B50 is different from that observed for NCAM. Unlike NCAM antibody labeling, B50 labeling retains its normal pattern until 11 days. At this time, the B50-labeled cells begin to appear irregular in shape and remain so throughout 21 days. Again, the two proteins begin to appear in the same taste cells at day 7. These findings, which are summarized in Figure 6, indicate that changes in taste acuity do indeed occur and can be measured effectively and correlated with histological changes. The loss of the NCAM-labeled taste cells correlates with the noted changes in consumption of 1.8% NaCl. However, the B50-labeled cells remains intact. This suggests that NCAM-labeled cells could be NaCl receptors, while the B50-labeled cells are not. Clearly the division of these two groups of taste cells is altered by the radiation when the two proteins begin to colocalize. The biology of the cells is altered by the radiation, but its meaning is not yet understood. CAN TASTE LOSS BE TREATED? Two questions arise naturally out of these findings. Can the same type of behavioral and histological measurements be done in humans? And how will this information impact taste loss in human cancer patients? Psychophysical measurements of taste acuity and taste thresholds have been reviewed extensively in the literature (see Bartoshuk 30 ) Detection thresholds are stable over time (M. Linschoten, personal communication) and can be measured using a two alternative forced choice procedure. 31 The premise is to offer the subject two solutions (one water, one containing a tastant) to taste, and the subject chooses which one has a taste different from water. When the patient cannot distinguish between correct and incorrect for a given tastant concentration, the patient is believed to be at his or her threshold for that tastant. As patients receive radiation or chemotherapy, the changes that occur in the taste thresholds of any or all of the four tastants (sweet, sour, bitter, salty) can be followed. It is even possible to monitor the recovery, or lack thereof, of taste thresholds in these patients over long periods of time. The purpose of this entire area of study is twofold: to improve on the quality of life of cancer patients receiving radiation therapy and to improve the outcome of therapy by maximizing the patients ability to eat and maintain nutritional support. Once the biology of the taste loss is understood including the degree of taste loss and what taste qualities are lost modifications to the way the patient receives treatment can be made. One possibility is to design a diet that maximizes on the remaining abilities to taste, resulting in the most palatable diet available to the patient. This would require individual diet management, depending on the thresholds that change for that patient. This is similar to other specialized diets, such as diabetic diets. Another approach would be to protect the taste cells from the radiation damage. A fine balance has to be made between using enough radiation to kill the tumor cells and keeping damage to normal tissue at a tolerable level. A local application of a molecular substance in a foam or gel vehicle applied to the oral mucosa and tongue to impart a temporary resistance to the penetrating photons may reduce the damage to taste cells. Such a compound is only theoretical at the present. In summary, radiation-induced taste loss is a real problem that has a significant effect on the treatment of cancer. With information gathered from the animal model and human studies, we hope to achieve a better understanding of the function of the taste system and to positively impact the treatment outcome of cancer patients receiving radiation therapy. ACKNOWLEDGMENTS I would like to thank Drs. Mary J.C. Hendrix, Richard Lynch, and Thomas E. Finger for their support and encouragement. Also thanks to Jolene Redvale for review of the manuscript and especially Ken Nelson for the invaluable assistance with the computer graphics. The clip art in Figures 1 and 4 was provided by the Corel Corporation. LITERATURE CITED 1 Kinnamon JC, Taylor BJ, Delay RJ, Roper SD (1985) Ultrastructure of mouse vallate taste buds. I. Taste cells and their associated synapses. J Comp Neurol 235: Kanazawa H, Yoshie S (1996) The taste bud and its innervation in the rat as studied by immunohistochemistry for PGP 9.5. Arch Histol Cytol 59: Fugimoto S, Ueda H, Kagawa H (1987) Immunocytochemistry of the localization of 5-hydroxytryptamine in monkey and rabbit taste buds. Acta Anat 128: Royer, SM, Kinnamon JC (1988) Ultrastructure of mouse foliate taste buds: Synaptic and nonsynaptic interactions between taste cells and nerve fibers. J Comp Neurol 270: Yoshie S, Kanazawa H, Fujita T (1996) A possibility of efferent innervation of the gustatory cell in the rat circumvallate taste bud. Arch Histol Cytol 59: Chang G-Q, Vigna SR, Simon SA (1996) Localization of substance P NK-1 receptors in rat tongue. Regul Pept 63: Kinnamon S, Getchell T (1991) Sensory transduction in olfactory receptor neurons and gustatory receptor cells. In Getchell TV, Doty RL, Bartoshuk LM, Snow JB (eds): Smell and Taste in Health and Disease. New York: Raven Press, pp Smith DV, Klevitsky R, Akeson RA, Shipley MT (1994) Taste bud expression of human blood group antigens. J Comp Neurol 343: Kusakabe Y, Abe K, Tanemura K, Emori Y, Arai S (1996) GUST27 and closely related G-protein coupled receptors are local-

9 78 THE ANATOMICAL RECORD (NEW ANAT.) REVIEW ized in taste buds together with Gi-protein alpha-subunit. Chem Senses 21: Nelson GM, Finger TE (1993) Immunolocalization of different forms of neural cell adhesion molecule (NCAM) in rat taste buds. J Comp Neurol 336: Johnson EW, Eller PM, Jafek BW, Norman AW (1992) Calbindin-like immunoreactivity in two peripheral chemosensory tissues of the rat: Taste buds and the vomeronasal organ. Brain Res 572: Knapp L, Lawton A, Oakley B, Wong L, Zhang C (1995) Keratins as markers of differentiated taste cells of the rat. Differentiation 58: Biffo S, Verhaagen J, Schrama LH, Schotman P, Danho W, Margolis FL (1990) B-50/GAP43 expression correlates with process outgrowth in the embryonic mouse nervous system. Eur J Neurosci 2: Nelson GM, Finger TE (1990) Localization of synaptophysin immunoreactivity in rat lingual tissue. Chem Senses 15: Astback J, Arvidson K, Johansson O (1997) An immunohistochemical screening of xneurochemical markers in fungiform papillae and taste buds of the anterior rat tongue. Arch Oral Biol 42: Buckley KM, Kelly RB (1985) Identification of a transmembrane glycoprotein specific for secretory vesicles of neural and endocrine cells. J Cell Biol 100: Bartoshuk LM, Catlanotto FC, Scott AE, Solomon GM (1989) Spatial taste losses associated with head trauma, upper respiratory infection and nasal symptoms. Chem Senses 14: Getchell TV, Doty RL, Bartoshuk LM, Snow JB Jr (1991). Smell and Taste in Health and Disease. New York: Raven. 19 Carl W (1988) Managing the oral manifestations of cancer therapy, part I: Headand-neck radiation therapy. Compend Contin Educ Dent 9: Bolze MS, Fosmire GJ, Stryker JA, Chung CK, Flipse BG (1982) Taste acuity, plasma zinc levels, and weight loss during radiotherapy: A study of relationships. Therapeutic Radiology 144: Semba SE, Mealey BL, Hallamon WW (1994) The head and neck radiotherapy patient: Part 1 oral manifestations of radiation therapy. Compend Contin Edu Dent 15: Copeland EM, Daly JM, Dudrick SJ (1977) Nutrition as an adjunct to cancer treatment in the adult. Cancer Res 37: Conger AD (1973) Loss and recovery of taste acuity in patients irradiated to the oral cavity. Radiat Res 53: Conger AD, Wells MA (1969) Radiation and aging effect on taste structure and function. Radiat Res 37: Esses BA, Jafek BW, Hommel DJ, Eller PM (1988) Histological and ultrastructural changes of the murine taste bud following ionizing irradiation. Ear Nose Throat J 67: Mossman K, Shatzman A, Chencharick J (1982) Long-term effects of radiotherapy on taste and salivary function in man. J Radiat Oncol Biol Phys 8: Mossman KL, Chencharick JD, Scheer AC, et al. (1979) Radiation-induced changes in gustatory function comparison of effects of neutron and photon irradiation. Int J Radiat Oncol Biol Phys 5: Gorodetsky R, Amir G, Yarom R (1992) Effect of ionizing radiation on neuromuscular junctions in mouse tongues. Int J Radiat Biol 61: Nelson GM (1994) Early Changes in Anatomical and Behavioral Aspects of Post- Irradiation Gustatory Dysfunction. Doctoral dissertation, University of Colorado Health Sciences Center. 30 Bartoshuk LM (1978) The psychophysics of taste. Am J Clin Nutr 31: Linschoten MRI, Kroeze JHA (1991) Spatial summation in taste: NaCl thresholds and stimulated area on the anterior human tongue. Chem Senses 16:

Vision: Receptors. Modes of Perception. Vision: Summary 9/28/2012. How do we perceive our environment? Sensation and Perception Terminology

Vision: Receptors. Modes of Perception. Vision: Summary 9/28/2012. How do we perceive our environment? Sensation and Perception Terminology How do we perceive our environment? Complex stimuli are broken into individual features, relayed to the CNS, then reassembled as our perception Sensation and Perception Terminology Stimulus: physical agent

More information

Parts of the Nerve Cell and Their Functions

Parts of the Nerve Cell and Their Functions Parts of the Nerve Cell and Their Functions Silvia Helena Cardoso, PhD [ 1. Cell body] [2. Neuronal membrane] [3. Dendrites] [4. Axon] [5. Nerve ending] 1. Cell body The cell body (soma) is the factory

More information

North Bergen School District Benchmarks

North Bergen School District Benchmarks Grade: 10,11, and 12 Subject: Anatomy and Physiology First Marking Period Define anatomy and physiology, and describe various subspecialties of each discipline. Describe the five basic functions of living

More information

14 Taste. 14 The Nature of Taste. Vocabulary conventions. Systems of taste classification. Odor Perceived through the orthonasal pathway

14 Taste. 14 The Nature of Taste. Vocabulary conventions. Systems of taste classification. Odor Perceived through the orthonasal pathway Taste Taste Some definitions --- again 4 basic tastes anatomy and physiology coding of taste quality genetic variation in taste experience the pleasures of taste The Nature of Taste Vocabulary conventions

More information

Thyroid Eye Disease. Anatomy: There are 6 muscles that move your eye.

Thyroid Eye Disease. Anatomy: There are 6 muscles that move your eye. Thyroid Eye Disease Your doctor thinks you have thyroid orbitopathy. This is an autoimmune condition where your body's immune system is producing factors that stimulate enlargement of the muscles that

More information

Smell and Taste Disorders

Smell and Taste Disorders Smell and Taste Disorders Delivering the best in care UHB is a no smoking Trust To see all of our current patient information leaflets please visit www.uhb.nhs.uk/patient-information-leaflets.htm What

More information

Nerves and Nerve Impulse

Nerves and Nerve Impulse Nerves and Nerve Impulse Terms Absolute refractory period: Period following stimulation during which no additional action potential can be evoked. Acetylcholine: Chemical transmitter substance released

More information

Endocrine System: Practice Questions #1

Endocrine System: Practice Questions #1 Endocrine System: Practice Questions #1 1. Removing part of gland D would most likely result in A. a decrease in the secretions of other glands B. a decrease in the blood calcium level C. an increase in

More information

Integration and Coordination of the Human Body. Nervous System

Integration and Coordination of the Human Body. Nervous System I. General Info Integration and Coordination of the Human Body A. Both the and system are responsible for maintaining 1. Homeostasis is the process by which organisms keep internal conditions despite changes

More information

Slide 1: Introduction Introduce the purpose of your presentation. Indicate that you will explain how the brain basically works and how and where

Slide 1: Introduction Introduce the purpose of your presentation. Indicate that you will explain how the brain basically works and how and where Slide 1: Introduction Introduce the purpose of your presentation. Indicate that you will explain how the brain basically works and how and where drugs such as heroin and cocaine work in the brain. Tell

More information

X-Plain Trigeminal Neuralgia Reference Summary

X-Plain Trigeminal Neuralgia Reference Summary X-Plain Trigeminal Neuralgia Reference Summary Introduction Trigeminal neuralgia is a condition that affects about 40,000 patients in the US every year. Its treatment mostly involves the usage of oral

More information

Lassen Community College Course Outline

Lassen Community College Course Outline Lassen Community College Course Outline BIOL-25 Human Anatomy and Physiology I 4.0 Units I. Catalog Description First semester of a two semester sequence covering structure and function, integration and

More information

Human Anatomy & Physiology I with Dr. Hubley. Practice Exam 1

Human Anatomy & Physiology I with Dr. Hubley. Practice Exam 1 Human Anatomy & Physiology I with Dr. Hubley Practice Exam 1 1. Which definition is the best definition of the term gross anatomy? a. The study of cells. b. The study of tissues. c. The study of structures

More information

Disease/Illness GUIDE TO ASBESTOS LUNG CANCER. What Is Asbestos Lung Cancer? www.simpsonmillar.co.uk Telephone 0844 858 3200

Disease/Illness GUIDE TO ASBESTOS LUNG CANCER. What Is Asbestos Lung Cancer? www.simpsonmillar.co.uk Telephone 0844 858 3200 GUIDE TO ASBESTOS LUNG CANCER What Is Asbestos Lung Cancer? Like tobacco smoking, exposure to asbestos can result in the development of lung cancer. Similarly, the risk of developing asbestos induced lung

More information

Origin of Electrical Membrane Potential

Origin of Electrical Membrane Potential Origin of Electrical Membrane Potential parti This book is about the physiological characteristics of nerve and muscle cells. As we shall see, the ability of these cells to generate and conduct electricity

More information

Biology Slide 1 of 38

Biology Slide 1 of 38 Biology 1 of 38 2 of 38 35-2 The Nervous System What are the functions of the nervous system? 3 of 38 35-2 The Nervous System 1. Nervous system: a. controls and coordinates functions throughout the body

More information

Chapter 7: The Nervous System

Chapter 7: The Nervous System Chapter 7: The Nervous System Objectives Discuss the general organization of the nervous system Describe the structure & function of a nerve Draw and label the pathways involved in a withdraw reflex Define

More information

Absorption of Drugs. Transport of a drug from the GI tract

Absorption of Drugs. Transport of a drug from the GI tract Absorption of Drugs Absorption is the transfer of a drug from its site of administration to the bloodstream. The rate and efficiency of absorption depend on the route of administration. For IV delivery,

More information

Chetek-Weyerhaeuser High School

Chetek-Weyerhaeuser High School Chetek-Weyerhaeuser High School Anatomy and Physiology Units and Anatomy and Physiology A Unit 1 Introduction to Human Anatomy and Physiology (6 days) Essential Question: How do the systems of the human

More information

Animal Tissues. I. Epithelial Tissue

Animal Tissues. I. Epithelial Tissue Animal Tissues There are four types of tissues found in animals: epithelial tissue, connective tissue, muscle tissue, and nervous tissue. In this lab you will learn the major characteristics of each tissue

More information

guides BIOLOGY OF AGING STEM CELLS An introduction to aging science brought to you by the American Federation for Aging Research

guides BIOLOGY OF AGING STEM CELLS An introduction to aging science brought to you by the American Federation for Aging Research infoaging guides BIOLOGY OF AGING STEM CELLS An introduction to aging science brought to you by the American Federation for Aging Research WHAT ARE STEM CELLS? Stem cells are cells that, in cell cultures

More information

Cardiovascular System. Blood Components

Cardiovascular System. Blood Components Cardiovascular System Blood Components 1 Components of Blood Formed elements: erythrocytes, leukocytes, platelets Plasma: water, proteins, other solutes The components of blood can be divided into two

More information

Nerve Cell Communication

Nerve Cell Communication Nerve Cell Communication Core Concept: Nerve cells communicate using electrical and chemical signals. Class time required: Approximately 2 forty minute class periods Teacher Provides: For each student

More information

An Overview of Cells and Cell Research

An Overview of Cells and Cell Research An Overview of Cells and Cell Research 1 An Overview of Cells and Cell Research Chapter Outline Model Species and Cell types Cell components Tools of Cell Biology Model Species E. Coli: simplest organism

More information

NEURON AND NEURAL TRAMSMISSION: ANATOMY OF A NEURON. created by Dr. Joanne Hsu

NEURON AND NEURAL TRAMSMISSION: ANATOMY OF A NEURON. created by Dr. Joanne Hsu NEURON AND NEURAL TRAMSMISSION: ANATOMY OF A NEURON NEURON AND NEURAL TRAMSMISSION: MICROSCOPIC VIEW OF NEURONS A photograph taken through a light microscope (500x) of neurons in the spinal cord. NEURON

More information

Dental health following cancer treatment

Dental health following cancer treatment Dental health following cancer treatment Treatment for cancer often increases the risk for dental problems. As a cancer survivor, it is important for you to understand the reasons why dental care is especially

More information

What role does the nucleolus have in cell functioning? Glial cells

What role does the nucleolus have in cell functioning? Glial cells Nervous System Lab The nervous system of vertebrates can be divided into the central nervous system, which consists of the brain and spinal cord, and the peripheral nervous system, which contains nerves,

More information

Nervous Tissue Dr. Archana Rani Associate Professor Department of Anatomy KGMU UP, Lucknow

Nervous Tissue Dr. Archana Rani Associate Professor Department of Anatomy KGMU UP, Lucknow 13.01.2015 Nervous Tissue Dr. Archana Rani Associate Professor Department of Anatomy KGMU UP, Lucknow Introduction Property of irritability and conductivity Respond to various types of stimuli Distributed

More information

Biology 141 Anatomy and Physiology I

Biology 141 Anatomy and Physiology I Fall 2016 Biology 141 Anatomy and Physiology I COURSE OUTLINE Faculty Name: Enter Faculty Name Here Program Head: Enter Program Head Here Dean s Review: Dean s Signature: Date Reviewed: / / Revised: Fall

More information

Questions on The Nervous System and Gas Exchange

Questions on The Nervous System and Gas Exchange Name: Questions on The Nervous System and Gas Exchange Directions: The following questions are taken from previous IB Final Papers on Topics 6.4 (Gas Exchange) and 6.5 (Nerves, hormones and homeostasis).

More information

Exploring Creation with Advanced Biology ~ Schedule for 2015-2016 Apologia ~ Exploring Creation with Biology ~ Module 1 (Week 1) Date:

Exploring Creation with Advanced Biology ~ Schedule for 2015-2016 Apologia ~ Exploring Creation with Biology ~ Module 1 (Week 1) Date: Apologia ~ Exploring Creation with Biology ~ Module 1 (Week 1) Mon., Aug. 31 Tue., Sep. 1 Wed., Sept. 2 Thurs., Sept. 3 Fri., Sept. 4 Reading Pgs. 1-4; Introduction, Heart of the matter, Pgs. 5-8; Organization

More information

Resting membrane potential ~ -70mV - Membrane is polarized

Resting membrane potential ~ -70mV - Membrane is polarized Resting membrane potential ~ -70mV - Membrane is polarized (ie) Electrical charge on the outside of the membrane is positive while the electrical charge on the inside of the membrane is negative Changes

More information

Development of Teeth

Development of Teeth Development of Teeth Dr. Khaldoun Darwich Specialist in Oral and Maxillo-Facial Surgery Hamburg University PhD Hamburg University Academic Teacher - Department of OMF Surgery in Damascus University Instructor

More information

Class 10 NCERT Science Text Book Chapter 7 Control and Coordination

Class 10 NCERT Science Text Book Chapter 7 Control and Coordination Class 10 NCERT Science Text Book Chapter 7 Control and Coordination Question 1: What is the difference between a reflex action and walking? A reflex action is a rapid, automatic response to a stimulus.

More information

Name Date Hour. Nerve Histology Microscope Lab

Name Date Hour. Nerve Histology Microscope Lab Name Date Hour Nerve Histology Microscope Lab PRE-LAB: Answer the following questions using your reading and class notes before starting the microscope lab. 1. What is the difference between the functions

More information

Blood & Marrow Transplant Glossary. Pediatric Blood and Marrow Transplant Program Patient Guide

Blood & Marrow Transplant Glossary. Pediatric Blood and Marrow Transplant Program Patient Guide Blood & Marrow Transplant Glossary Pediatric Blood and Marrow Transplant Program Patient Guide Glossary Absolute Neutrophil Count (ANC) -- Also called "absolute granulocyte count" amount of white blood

More information

Breast Cancer. Sometimes cells keep dividing and growing without normal controls, causing an abnormal growth called a tumor.

Breast Cancer. Sometimes cells keep dividing and growing without normal controls, causing an abnormal growth called a tumor. Breast Cancer Introduction Cancer of the breast is the most common form of cancer that affects women but is no longer the leading cause of cancer deaths. About 1 out of 8 women are diagnosed with breast

More information

1333 Plaza Blvd, Suite E, Central Point, OR 97502 * www.mountainviewvet.net

1333 Plaza Blvd, Suite E, Central Point, OR 97502 * www.mountainviewvet.net 1333 Plaza Blvd, Suite E, Central Point, OR 97502 * www.mountainviewvet.net Diabetes Mellitus (in cats) Diabetes, sugar Affected Animals: Most diabetic cats are older than 10 years of age when they are

More information

SARCOIDOSIS. Signs and symptoms associated with specific organ involvement can include the following:

SARCOIDOSIS. Signs and symptoms associated with specific organ involvement can include the following: SARCOIDOSIS Sarcoidosis is a disease that occurs when areas of inflammation develop in different organs of the body. Very small clusters of inflammation, called granulomas, are seen with sarcoidosis. They

More information

Section B: Epithelial Tissue 1. Where are epithelial tissues found within the body? 2. What are the functions of the epithelial tissues?

Section B: Epithelial Tissue 1. Where are epithelial tissues found within the body? 2. What are the functions of the epithelial tissues? Tissue worksheet Name Section A: Intro to Histology Cells are the smallest units of life. In complex organisms, cells group together with one another based on similar structure and function to form tissues.

More information

The Immune System: A Tutorial

The Immune System: A Tutorial The Immune System: A Tutorial Modeling and Simulation of Biological Systems 21-366B Shlomo Ta asan Images taken from http://rex.nci.nih.gov/behindthenews/uis/uisframe.htm http://copewithcytokines.de/ The

More information

The Nervous System, Part I.Unlecture

The Nervous System, Part I.Unlecture The Nervous System, Part I.Unlecture Review basic nervous system anatomy before you begin this lecture. The lecture touches on a few of the major characteristics, but you are expected to have already been

More information

Paramedic Program Anatomy and Physiology Study Guide

Paramedic Program Anatomy and Physiology Study Guide Paramedic Program Anatomy and Physiology Study Guide Define the terms anatomy and physiology. List and discuss in order of increasing complexity, the body from the cell to the whole organism. Define the

More information

LYMPHOMA IN DOGS. Diagnosis/Initial evaluation. Treatment and Prognosis

LYMPHOMA IN DOGS. Diagnosis/Initial evaluation. Treatment and Prognosis LYMPHOMA IN DOGS Lymphoma is a relatively common cancer in dogs. It is a cancer of lymphocytes (a type of white blood cell) and lymphoid tissues. Lymphoid tissue is normally present in many places in the

More information

Histology. Epithelial Tissue

Histology. Epithelial Tissue Histology Epithelial Tissue Epithelial Tissue Lines internal and external body surfaces Forms glands Epithelial Tissue Little extracellular matrix Attached on one side Avascular Basement membrane Apical

More information

Hemophilia Care. Will there always be new people in the world with hemophilia? Will hemophilia be treated more effectively and safely in the future?

Hemophilia Care. Will there always be new people in the world with hemophilia? Will hemophilia be treated more effectively and safely in the future? Future of This chapter provides answers to these questions: Will there always be new people in the world with hemophilia? Will hemophilia be treated more effectively and safely in the future? Will the

More information

The Tissue Level of Organization

The Tissue Level of Organization The Tissue Level of Organization Tissues A groups of similar cells, usually having similar embryonic origin and specialized function Histology: the study of tissues Four general types Epithelial Muscle

More information

ANATOMY AND PHYSIOLOGY I (BIO 2311) SYLLABUS

ANATOMY AND PHYSIOLOGY I (BIO 2311) SYLLABUS ANATOMY AND PHYSIOLOGY I (BIO 2311) SYLLABUS NEW YORK CITY COLLEGE OF TECHNOLOGY The City University Of New York School of Arts and Sciences Department of Biological Sciences Course Information Course

More information

Compartmentalization of the Cell. Objectives. Recommended Reading. Professor Alfred Cuschieri. Department of Anatomy University of Malta

Compartmentalization of the Cell. Objectives. Recommended Reading. Professor Alfred Cuschieri. Department of Anatomy University of Malta Compartmentalization of the Cell Professor Alfred Cuschieri Department of Anatomy University of Malta Objectives By the end of this session the student should be able to: 1. Identify the different organelles

More information

Goiter. This reference summary explains goiters. It covers symptoms and causes of the condition, as well as treatment options.

Goiter. This reference summary explains goiters. It covers symptoms and causes of the condition, as well as treatment options. Goiter Introduction The thyroid gland is located at the base of your neck. If the gland becomes abnormally enlarged, it is called a goiter. Goiters usually do not cause pain. But a large goiter could cause

More information

2) Macrophages function to engulf and present antigen to other immune cells.

2) Macrophages function to engulf and present antigen to other immune cells. Immunology The immune system has specificity and memory. It specifically recognizes different antigens and has memory for these same antigens the next time they are encountered. The Cellular Components

More information

PART I: Neurons and the Nerve Impulse

PART I: Neurons and the Nerve Impulse PART I: Neurons and the Nerve Impulse Identify each of the labeled structures of the neuron below. A. B. C. D. E. F. G. Identify each of the labeled structures of the neuron below. A. dendrites B. nucleus

More information

I will be having surgery and radiation treatment for breast cancer. Do I need drug treatment too?

I will be having surgery and radiation treatment for breast cancer. Do I need drug treatment too? What is node-positive breast cancer? Node-positive breast cancer means that cancer cells from the tumour in the breast have been found in the lymph nodes (sometimes called glands ) in the armpit area.

More information

Lesson 2: Save your Smile from Tooth Decay

Lesson 2: Save your Smile from Tooth Decay Lesson 2: Save your Smile from Tooth Decay OVERVIEW Objectives: By the end of the lesson, the Lay Health Worker will be able to: 1. Describe what tooth decay is and how it happens. 2. State the causes

More information

Ear Disorders and Problems

Ear Disorders and Problems Ear Disorders and Problems Introduction Your ear has three main parts: outer, middle and inner. You use all of them to hear. There are many disorders and problems that can affect the ear. The symptoms

More information

Inflammation and Healing. Review of Normal Defenses. Review of Normal Capillary Exchange. BIO 375 Pathophysiology

Inflammation and Healing. Review of Normal Defenses. Review of Normal Capillary Exchange. BIO 375 Pathophysiology Inflammation and Healing BIO 375 Pathophysiology Review of Normal Defenses Review of Normal Capillary Exchange 1 Inflammation Inflammation is a biochemical and cellular process that occurs in vascularized

More information

CAMBRIDGE UNIVERSITY CENTRE FOR BRAIN REPAIR A layman's account of our scientific objectives What is Brain Damage? Many forms of trauma and disease affect the nervous system to produce permanent neurological

More information

Maxillary Sinus. (Antrum of Higmore)

Maxillary Sinus. (Antrum of Higmore) Maxillary Sinus (Antrum of Higmore) The maxillary sinus is a pneumatic space. It is the largest bilateral air sinus located in the body of the maxilla and opens in the middle nasal meatus of the nasal

More information

THE EFFECT OF SODIUM CHLORIDE ON THE GLUCOSE TOLERANCE OF THE DIABETIC RAT*

THE EFFECT OF SODIUM CHLORIDE ON THE GLUCOSE TOLERANCE OF THE DIABETIC RAT* THE EFFECT OF SODIUM CHLORIDE ON THE GLUCOSE TOLERANCE OF THE DIABETIC RAT* BY JAMES M. ORTEN AND HENRY B. DEVLINt (From the Deparkment of Physiological Chemistry, Wayne University College of Medicine,

More information

4 Week Body Contour / Lipo Light Program

4 Week Body Contour / Lipo Light Program Natural Health Solutions 14698 Galaxie Ave. Apple Valley, MN 55124 (952) 891-22225 4 Week Body Contour / Lipo Light Program Welcome and Congratulations! This is an important decision towards improving

More information

BIO 201 ANATOMY AND PHYSIOLOGY I with LAB

BIO 201 ANATOMY AND PHYSIOLOGY I with LAB BIO 201 ANATOMY AND PHYSIOLOGY I with LAB (Title change ONLY Oct. 2013) Presented and Approved: January 12, 2012 Effective: 2012-13 FA Prefix & Number BIO 201 Course Title: Anatomy and Physiology I Purpose

More information

2. What Should Advocates Know About Diabetes? O

2. What Should Advocates Know About Diabetes? O 2. What Should Advocates Know About Diabetes? O ften a school district s failure to properly address the needs of a student with diabetes is due not to bad faith, but to ignorance or a lack of accurate

More information

Intensity-Modulated Radiation Therapy (IMRT)

Intensity-Modulated Radiation Therapy (IMRT) Scan for mobile link. Intensity-Modulated Radiation Therapy (IMRT) Intensity-modulated radiotherapy (IMRT) uses linear accelerators to safely and painlessly deliver precise radiation doses to a tumor while

More information

Methyl groups, like vitamins, are

Methyl groups, like vitamins, are Methyl groups are essential for the body to function properly and must be obtained from the diet The need for methyl groups increases under stress Chapter 11 Betaine a new B vitamin Methyl groups reduce

More information

Lecture One: Brain Basics

Lecture One: Brain Basics Lecture One: Brain Basics Brain Fractured Femur Bone Spinal Cord 1 How does pain get from here to here 2 How does the brain work? Every cell in your body is wired to send a signal to your brain The brain

More information

Exercise 9: Blood. Readings: Silverthorn 5 th ed, 547 558, 804 805; 6 th ed, 545 557, 825 826.

Exercise 9: Blood. Readings: Silverthorn 5 th ed, 547 558, 804 805; 6 th ed, 545 557, 825 826. Exercise 9: Blood Readings: Silverthorn 5 th ed, 547 558, 804 805; 6 th ed, 545 557, 825 826. Blood Typing The membranes of human red blood cells (RBCs) contain a variety of cell surface proteins called

More information

Immunity. Humans have three types of immunity innate, adaptive, and passive: Innate Immunity

Immunity. Humans have three types of immunity innate, adaptive, and passive: Innate Immunity Immunity Humans have three types of immunity innate, adaptive, and passive: Innate Immunity Everyone is born with innate (or natural) immunity, a type of general protection. Many of the germs that affect

More information

Multifocal Motor Neuropathy. Jonathan Katz, MD Richard Lewis, MD

Multifocal Motor Neuropathy. Jonathan Katz, MD Richard Lewis, MD Multifocal Motor Neuropathy Jonathan Katz, MD Richard Lewis, MD What is Multifocal Motor Neuropathy? Multifocal Motor Neuropathy (MMN) is a rare condition in which multiple motor nerves are attacked by

More information

10. T and B cells are types of a. endocrine cells. c. lymphocytes. b. platelets. d. complement cells.

10. T and B cells are types of a. endocrine cells. c. lymphocytes. b. platelets. d. complement cells. Virus and Immune System Review Directions: Write your answers on a separate piece of paper. 1. Why does a cut in the skin threaten the body s nonspecific defenses against disease? a. If a cut bleeds, disease-fighting

More information

Thymus Cancer. This reference summary will help you better understand what thymus cancer is and what treatment options are available.

Thymus Cancer. This reference summary will help you better understand what thymus cancer is and what treatment options are available. Thymus Cancer Introduction Thymus cancer is a rare cancer. It starts in the small organ that lies in the upper chest under the breastbone. The thymus makes white blood cells that protect the body against

More information

Chapter 15 Anatomy and Physiology Lecture

Chapter 15 Anatomy and Physiology Lecture 1 THE AUTONOMIC NERVOUS SYSTEM Chapter 15 Anatomy and Physiology Lecture 2 THE AUTONOMIC NERVOUS SYSTEM Autonomic Nervous System (ANS) regulates the activity of smooth muscles, cardiac muscles, and certain

More information

U.S. Department of Health and Human Services National Institutes of Health National Institute of Dental and Craniofacial Research

U.S. Department of Health and Human Services National Institutes of Health National Institute of Dental and Craniofacial Research U.S. Department of Health and Human Services National Institutes of Health National Institute of Dental and Craniofacial Research What do I need to know about dry mouth? Dry mouth is the feeling that

More information

Best Teaching Practices Conference. Teacher ID: BTPC07_07 SUBJECT: BIOLOGY. Class: X. TOPIC: Exploring our Nervous System

Best Teaching Practices Conference. Teacher ID: BTPC07_07 SUBJECT: BIOLOGY. Class: X. TOPIC: Exploring our Nervous System Best Teaching Practices Conference Teacher ID: BTPC07_07 SUBJECT: BIOLOGY Class: X TOPIC: Exploring our Nervous System OBJECTIVES: Use Information Technology to enable the students to: Explain the general

More information

Bile Duct Diseases and Problems

Bile Duct Diseases and Problems Bile Duct Diseases and Problems Introduction A bile duct is a tube that carries bile between the liver and gallbladder and the intestine. Bile is a substance made by the liver that helps with digestion.

More information

Overactive bladder is a common condition thought to. women, and is a serious condition that can lead to. significant lifestyle changes.

Overactive bladder is a common condition thought to. women, and is a serious condition that can lead to. significant lifestyle changes. Overactive bladder is a common condition thought to FADE UP TO WIDE SHOT OF FEMALE MODEL WITH TRANSPARENT SKIN. URINARY BLADDER VISIBLE IN PELVIC REGION affect over 16 percent of adults. It affects men

More information

Cells & Cell Organelles

Cells & Cell Organelles Cells & Cell Organelles The Building Blocks of Life H Biology Types of cells bacteria cells Prokaryote - no organelles Eukaryotes - organelles animal cells plant cells Cell size comparison Animal cell

More information

Water Homeostasis. Graphics are used with permission of: Pearson Education Inc., publishing as Benjamin Cummings (http://www.aw-bc.

Water Homeostasis. Graphics are used with permission of: Pearson Education Inc., publishing as Benjamin Cummings (http://www.aw-bc. Water Homeostasis Graphics are used with permission of: Pearson Education Inc., publishing as Benjamin Cummings (http://www.aw-bc.com) 1. Water Homeostasis The body maintains a balance of water intake

More information

X-Plain Rheumatoid Arthritis Reference Summary

X-Plain Rheumatoid Arthritis Reference Summary X-Plain Rheumatoid Arthritis Reference Summary Introduction Rheumatoid arthritis is a fairly common joint disease that affects up to 2 million Americans. Rheumatoid arthritis is one of the most debilitating

More information

RAD 223. Radiography physiology. Lecture Notes. First lecture: Cell and Tissue

RAD 223. Radiography physiology. Lecture Notes. First lecture: Cell and Tissue RAD 223 Radiography physiology Lecture Notes First lecture: Cell and Tissue Physiology: the word physiology derived from a Greek word for study of nature. It is the study of how the body and its part work

More information

Digestive System Digestive Tract

Digestive System Digestive Tract Digestive System Digestive Tract Dept. of Histology and Embryology 周 莉 教 授 Introduction of digestive system * a long tube extending from the mouth to the anus, and associated with glands. * its main function:

More information

RADIATION THERAPY FOR LYMPHOMA. Facts to Help Patients Make an Informed Decision TARGETING CANCER CARE AMERICAN SOCIETY FOR RADIATION ONCOLOGY

RADIATION THERAPY FOR LYMPHOMA. Facts to Help Patients Make an Informed Decision TARGETING CANCER CARE AMERICAN SOCIETY FOR RADIATION ONCOLOGY RADIATION THERAPY FOR Facts to Help Patients Make an Informed Decision TARGETING CANCER CARE AMERICAN SOCIETY FOR RADIATION ONCOLOGY FACTS ABOUT The lymphatic system is a network of tiny vessels extending

More information

Multiple Myeloma. This reference summary will help you understand multiple myeloma and its treatment options.

Multiple Myeloma. This reference summary will help you understand multiple myeloma and its treatment options. Multiple Myeloma Introduction Multiple myeloma is a type of cancer that affects white blood cells. Each year, thousands of people find out that they have multiple myeloma. This reference summary will help

More information

Name Class Date Laboratory Investigation 24A Chapter 24A: Human Skin

Name Class Date Laboratory Investigation 24A Chapter 24A: Human Skin Name Class Date Laboratory Investigation 24A Chapter 24A: Human Skin Human Anatomy & Physiology: Integumentary System You may refer to pages 386-394 in your textbook for a general discussion of the integumentary

More information

Stem Cell Quick Guide: Stem Cell Basics

Stem Cell Quick Guide: Stem Cell Basics Stem Cell Quick Guide: Stem Cell Basics What is a Stem Cell? Stem cells are the starting point from which the rest of the body grows. The adult human body is made up of hundreds of millions of different

More information

X-Plain Perforated Ear Drum Reference Summary

X-Plain Perforated Ear Drum Reference Summary X-Plain Perforated Ear Drum Reference Summary Introduction Perforated eardrum is a common condition. The eardrum is a thin layer of tissue at the end of the ear canal inside the ear. Eardrum perforations

More information

12. Nervous System: Nervous Tissue

12. Nervous System: Nervous Tissue 12. Nervous System: Nervous Tissue I. Introduction to the Nervous System General functions of the nervous system The nervous system has three basic functions: 1. Gather sensory input from the environment

More information

CELL MEMBRANES, TRANSPORT, and COMMUNICATION. Teacher Packet

CELL MEMBRANES, TRANSPORT, and COMMUNICATION. Teacher Packet AP * BIOLOGY CELL MEMBRANES, TRANSPORT, and COMMUNICATION Teacher Packet AP* is a trademark of the College Entrance Examination Board. The College Entrance Examination Board was not involved in the production

More information

CHAPTER 2 ANTIGEN/ANTIBODY INTERACTIONS

CHAPTER 2 ANTIGEN/ANTIBODY INTERACTIONS CHAPTER 2 ANTIGEN/ANTIBODY INTERACTIONS See APPENDIX (1) THE PRECIPITIN CURVE; (2) LABELING OF ANTIBODIES The defining characteristic of HUMORAL immune responses (which distinguishes them from CELL-MEDIATED

More information

(From the Department of Anatomy, Harvard Medical School, Boston)

(From the Department of Anatomy, Harvard Medical School, Boston) THE FINE STRUCTURE OF THE ELECTRIC ORGAN OF THE ELECTRIC EEL AND TORPEDO RAY* PRELIMINARY COMMUNICATION BY JOHN H. LUFT, M.D. (From the Department of Anatomy, Harvard Medical School, Boston) PLATE 76 Electric

More information

Reavis High School Anatomy and Physiology Curriculum Snapshot

Reavis High School Anatomy and Physiology Curriculum Snapshot Reavis High School Anatomy and Physiology Curriculum Snapshot Unit 1: Introduction to the Human Body 10 days As part of this unit, students will define anatomy, physiology, and pathology. They will identify

More information

Brain Cancer. This reference summary will help you understand how brain tumors are diagnosed and what options are available to treat them.

Brain Cancer. This reference summary will help you understand how brain tumors are diagnosed and what options are available to treat them. Brain Cancer Introduction Brain tumors are not rare. Thousands of people are diagnosed every year with tumors of the brain and the rest of the nervous system. The diagnosis and treatment of brain tumors

More information

Chapter 8. Movement across the Cell Membrane. AP Biology

Chapter 8. Movement across the Cell Membrane. AP Biology Chapter 8. Movement across the Cell Membrane More than just a barrier Expanding our view of cell membrane beyond just a phospholipid bilayer barrier phospholipids plus Fluid Mosaic Model In 1972, S.J.

More information

Structure and Function of Neurons

Structure and Function of Neurons CHPTER 1 Structure and Function of Neurons Varieties of neurons General structure Structure of unique neurons Internal operations and the functioning of a neuron Subcellular organelles Protein synthesis

More information

The Polio Virus. Getting to Know Your Old Enemy. Marcia Falconer, Ph.D.

The Polio Virus. Getting to Know Your Old Enemy. Marcia Falconer, Ph.D. The Polio Virus Getting to Know Your Old Enemy Marcia Falconer, Ph.D. The Polio Virus Virus is smallest living thing that can reproduce itself Outer shell (capsid) Inner genetic material (RNA) and one

More information

Learning about Mouth Cancer

Learning about Mouth Cancer Learning about Mouth Cancer Creation of this material was made possible in part by a pioneering grant from CBCC-USA. Distributed by India Cancer Initiative What is mouth cancer? Our bodies are made up

More information

X-Plain Chemotherapy for Breast Cancer - Adriamycin, Cytoxan, and Tamoxifen Reference Summary

X-Plain Chemotherapy for Breast Cancer - Adriamycin, Cytoxan, and Tamoxifen Reference Summary X-Plain Chemotherapy for Breast Cancer - Adriamycin, Cytoxan, and Tamoxifen Reference Summary Introduction Breast cancer is a common condition that affects one out of every 11 women. Your doctor has recommended

More information

Anatomy and Physiology

Anatomy and Physiology Learning Activities It is important that you do not lecture all of the time. If you employ a variety of teaching styles, your students will stay focused better and they will find it easier to process the

More information

Biology 13A Lab #3: Cells and Tissues

Biology 13A Lab #3: Cells and Tissues Biology 13A Lab #3: Cells and Tissues Lab #3 Table of Contents: Expected Learning Outcomes.... 28 Introduction...... 28 Activity 1: Eukaryotic Cell Structure... 29 Activity 2: Perspectives on Tissue Preparations.

More information

Understanding How Existing and Emerging MS Therapies Work

Understanding How Existing and Emerging MS Therapies Work Understanding How Existing and Emerging MS Therapies Work This is a promising and hopeful time in the field of multiple sclerosis (MS). Many new and different therapies are nearing the final stages of

More information

Descemet s Stripping Endothelial Keratoplasty (DSEK)

Descemet s Stripping Endothelial Keratoplasty (DSEK) Descemet s Stripping Endothelial Keratoplasty (DSEK) Your doctor has decided that you will benefit from a corneal transplant operation. This handout will explain your options to you. It explains the differences

More information