CHAPTER 2 ANTIGEN/ANTIBODY INTERACTIONS

Size: px
Start display at page:

Download "CHAPTER 2 ANTIGEN/ANTIBODY INTERACTIONS"

Transcription

1 CHAPTER 2 ANTIGEN/ANTIBODY INTERACTIONS See APPENDIX (1) THE PRECIPITIN CURVE; (2) LABELING OF ANTIBODIES The defining characteristic of HUMORAL immune responses (which distinguishes them from CELL-MEDIATED responses), is their ability to be transferred by serum, and the proteins within serum which are responsible for such immunity are ANTIBODIES. We can formulate intriguingly circular definitions for antibodies and ANTIGENS, and note that the universal property of antibodies is their ability to specifically bind their cognate antigens. The consequences of such binding, however, can vary considerably, depending on the nature of the particular antigen and antibody involved. We distinguish the PHYSICAL and the BIOLOGICAL PROPERTIES of antibodies, and the properties of ANTIGENICITY versus IMMUNOGENICITY, and introduce the concept of ADJUVANTS, substances which are capable of increasing immunogenicity. We'll begin by defining three important terms: ANTIBODY - The molecule present in serum and other body fluids which mediates humoral immunity, and which can bind specifically to an antigen. Serum which contains antibodies (directed against one or more antigens) is termed an antiserum. ANTIGEN - A molecule which can be specifically bound by an antibody (typically a protein or carbohydrate recognized as "foreign"). EPITOPE (= antigenic determinant = "antigenic specificity") - The minimum target structure on an antigen which is bound by a particular antibody molecule. A particular antigen molecule may (and generally does) bear many different epitopes or determinants, each of which can be a target for antibody binding. (NOTE: Antibodies themselves can serve as antigens; human antibodies, for instance, are "foreign" to rabbits, and can elicit rabbit antibodies to human antibody molecules. As we will see later, the use of antibodies as antigens has been an extremely powerful tool for understanding antibody structure and genetics.) 9

2 DEFINING HUMORAL IMMUNITY Experimentally defining a humoral immune response involves demonstrating that such immunity can be transferred by serum (or other fluids). The example below (Fig, 2-1) illustrates some key features of humoral immunity. Live DIES Naive Killed Live SURVIVES Naive Immune wait 2 weeks TRANSFER SERUM Naive Live Immune "Active Immunity" SURVIVES "Passive Immunity" Figure 2-1 If a mouse is injected with a sufficient dose of live bacteria, it will die of infection within a few days. If, however, it has previously been injected with killed organisms, not only does it not succumb to infection, but it will survive a subsequent injection of a normally lethal dose of this organism; such a mouse has been immunized, and is therefore said to be immune to. Although not illustrated here, we can further demonstrate that this resistance is specific the immune mouse will retain normal susceptibility to some other organism to which it had not previously been exposed. Such specificity establishes that the immunity we see is a result of the mouse s adaptive immune response. Question: Does this resistance represent humoral immunity? To find out, we take serum from the immune mouse and inject it into a non-immune recipient, then inject a lethal dose of. We find that this recipient survives this treatment; serum from an immune mouse transfers immunity to a naïve recipient. This demonstrates that immunity to this organism is mediated by humoral immunity. (NOTE: This does not, however, mean that resistance to all bacterial infections is mediated by humoral immunity. As we will see in Chapter 12, transferring serum from a mouse which is immune to another bacterium, Listeria (which is an intracellular pathogen), does not confer resistance to naïve recipients; such immunity is therefore not humoral.) This illustration also serves to define two distinct modes of adaptive immunity, namely ACTIVE IMMUNITY and PASSIVE IMMUNITY. Immunization of the mouse in the second line of Fig. 2-1 results in a state of "active" immunity; the animal's own immune system is responsible for resistance to the subsequent bacterial challenge. On the other hand, transfer of serum, as in line 3 above, results in a state of "passive" immunity in the recipient; such immunity is the result of the presence of transferred antibody (see below). The animal's own immune system does not participate at all, and this immunity lasts only as long as sufficient levels of antibody are present. 10

3 The substance present in immune serum which is responsible for transferring immunity is antibody. In addition to transferring resistance to infection, these serum antibodies can carry out a variety of other functions. For example, if immune serum is mixed with a suspension of, the bacteria will be seen to rapidly "clump" together. This effect is known as agglutination, and is one of the many ways in which antibodies can be detected and quantitated. The various effects that antibodies may exhibit can be generally categorized as physical effects, which depend only on the physical nature of the antibody and antigen, or biological effects, which additionally depend on the particular biological properties of the target antigen or other biologically active molecules which are involved. PHYSICAL EFFECTS OF ANTIBODY Agglutination. "Clumping" of a particulate antigen, e.g. bacteria or SRBC (sheep red blood cells). Agglutination of red blood cells is a technique which has been widely used in clinical and basic research as well as in the clinical laboratory, and is called HEMAGGLUTINATION. Many soluble antigens can be made effectively particulate by coating them onto SRBC or latex or other particles; the resulting clumping by antibody is known as passive agglutination. Precipitation. Interaction of antibody with a soluble antigen to form an insoluble complex, e.g., with BSA (bovine serum albumin). In liquid - the precipitate can be recovered by centrifugation and analyzed (see APPENDIX 1, THE PRECIPITIN CURVE). If either the antigen or antibody is radioactively labeled (see APPENDIX 2, LABELLING OF ANTIBODIES), it can be used in a RadioImmunoPrecipitation (RIP) assay, first developed in the 1950s. In agarose - if the antigen-antibody interaction takes place in a semi-solid medium such as agarose, the resulting precipitate can be easily visualized. This is of special significance in a configuration known as Ouchterlony Analysis (see APPENDIX 3, OUCHTERLONY ANALYSIS). Precipitation and agglutination are both consequence of cross-linking of antigens by antibody into large complexes. The ability of antibodies to carry out this process implies that each antibody can bind at least two antigen molecules, and that it can only occur if the antigen molecule has two or more epitopes ( determinants ") which can be recognized by that antibody. Binding. If an antigen is bound to a solid matrix (latex particles or a plastic dish, for example), and if the antibody is labeled in some way (with a visible, radioactive or enzyme molecule), binding of the antibody to its antigen can be easily and sensitively measured. If a radioactive label is used, the assay is called a solid-state RadioImmunoAssay (RIA). With an enzyme-based label, on the other hand, it becomes an Enzyme-Linked ImmunoSorbent Assay (ELISA). These solid state assays (particularly ELISA's) have largely replaced precipitation and agglutination assays in a wide variety of clinical and research applications. 11

4 BIOLOGICAL EFFECTS OF ANTIBODY Protection from infectious disease. We have already seen in the example (Figure 2-1) how this manifestation of antibody can be assayed by transferring serum from one animal to another. Immobilization. An antibody directed against components of the flagellae of motile bacteria or protozoa can cause these flagellae to stop moving. This results in the loss of the organisms' ability to move around, and this loss of motility can be detected by microscopic examination. Cytolysis. If the target antigen is an integral component of the membrane of certain sensitive cells, antibodies may cause disruption of the membrane and death of the cell. This requires the participation of a collection of other serum components collectively known as COMPLEMENT (see Chapter 5), and binding of these components to antibodies is referred to as Complement Fixation. If the antigen target is a red blood cell, this effect is known as hemolysis, which can be readily detected visually. In the case of a bacterial cell target, the effect is referred to as bacteriolysis. If the target is a nucleated cell the effect is referred to as cytotoxicity, and may be measured by release of a radioactive label incorporated into the cell (such as 51 Cr), exclusion of "vital" dyes such as Trypan Blue, or any of several other measures of cell viability. Opsonization. If the target antigen is particulate (e.g. a bacterium, or an antigencoated latex particle), bound antibodies may greatly increase the efficiency with which the particles are phagocytosed by macrophages and other "scavenger" cells. This improvement of phagocytosis is known as opsonization, and may be facilitated even further by the presence of complement. As will be discussed later, opsonization is the result of antibodies increasing the degree to which antigenic particles will "stick" to phagocytic cells. This phenomenon has therefore been referred to as immune adherence, and depends on the presence in the membranes of white blood cells of specific receptors either for antibody (FcR, or "Fc-receptors") or for complement (CR, or "complement receptors"), both of which will be discussed later (see Chapter 14, for example). ONE COMMON DEFINING PROPERTY OF ANTIBODIES: ALL ANTIBODIES EXHIBIT SPECIFIC BINDING TO ANTIGEN Different antibodies may show various combinations of effects; some antibodies may precipitate but not interact with complement (and therefore not show cytolysis), some may be opsonizing but not be capable of agglutination. The single common feature of all antibodies, however, is that of specific recognition and binding to antigen. All other effects, physical or biological, are secondary consequences of this specific binding. The structure of antibodies and the basis of their ability to specifically bind antigen are the subjects of the next two chapters (Chapters 3 and 4). 12

5 ANTIGENS, IMMUNOGENS AND HAPTENS We have been discussing "antigens" as molecules (1) which can elicit antibody production upon injection into an appropriate host; and (2) to which these antibodies can then bind. The difference between these two properties is an important one which we will now make explicit by defining two related but distinct terms: IMMUNOGEN. A molecule which can elicit the production of specific antibody upon injection into a suitable host. ANTIGEN. A molecule which can be specifically recognized and bound by an antibody. These definitions imply that an immunogen must be an antigen, but an antigen is not necessarily an immunogen. Let s illustrate this in the following table: Substance Molecular weight Immunogen? Antigen? 1) BSA "68,000" yes yes 2) DNP ~200 no yes 3) DNP 10 -BSA "70,000" DNP - yes yes BSA - yes yes 4) "clarified" BSA 68,000 no (see Note) yes If we take a conventional preparation of purified bovine serum albumin (BSA) and inject it into a mouse (line 1 in the table above), the mouse will produce antibodies which will bind to BSA. BSA is therefore both an immunogen and an antigen. If we take the small organic molecule dinitrophenol (DNP) and inject it into a mouse (line 2), no antibodies will be produced which can bind DNP. DNP is therefore not immunogenic; we will deal with its antigenicity shortly. We can chemically couple DNP molecules to the protein BSA, yielding DNP-BSA. If we inject this material into a mouse (line 3), we see that antibodies to BSA are elicited (as we would expect), but also find antibodies which will bind specifically to the DNP groups on BSA; we can further demonstrate that these anti-dnp antibodies will also bind free DNP (or DNP coupled to any other molecule). Therefore, DNP-BSA is both immunogenic and antigenic (with respect to both the DNP groups and the BSA itself), and the free DNP is also antigenic, even though we have shown it is not immunogenic. DNP is an example of a HAPTEN, a small molecule which is not immunogenic unless it is coupled to a larger immunogenic CARRIER molecule, in this case BSA. (Such a hapten/carrier system will be used in Chapter 14 to illustrate the mechanisms of cell interactions required to generate humoral immune responses). We can further demonstrate that the immunogenicity of BSA depends on the presence of aggregates of BSA molecules. If we take a sample of our BSA and centrifuge it at high speed we can remove any aggregated material, leaving behind only single, monomeric BSA molecules in solution. If we immediately inject this "clarified" BSA into a mouse we find that it does not elicit the production of antibodies (as seen in line 4); this monomeric BSA is 13

6 therefore not immunogenic (nor can it serve as an effective carrier for a hapten). It is still antigenic, however, which we can show by reacting it with the anti-bsa antibodies which we made against the non-clarified BSA (in line 1, for example). (NOTE: "Clarified" BSA not only fails to induce antibody formation, but can induce a state of TOLERANCE to BSA, defined as the specific inability of the mouse to respond to subsequent injections of normally immunogenic BSA. The mechanism of such tolerance will be discussed in Chapter 18.) REASONS FOR LACK OF IMMUNOGENICITY Substances may lack immunogenicity for a variety of reasons: 1) Molecular weight too low. Haptens, for example, are not immunogenic until they are coupled to a high molecular weight carrier. There is no simple cutoff for required molecular weight, however; we have already seen that even the 68,000 mw of BSA is not sufficient to be immunogenic unless the molecules are aggregated into even larger complexes. 2) Not foreign to host. The adaptive immune system normally responds only to "foreign" substances. A sheep, for instance, will normally not make antibodies against its own red blood cells (SRBC), although SRBC are highly immunogenic in mice. (The basis of normal SELF-TOLERANCE is covered in Chapter 18). 3) Some molecules are intrinsically poor immunogens for reasons which are not well understood. Lipids, in general, are poor immunogens, probably because they do not have a structure rigid enough to be stably bound by antibodies. Nucleic acids are also relatively weak immunogens, although they are nevertheless common targets for antibodies present in various autoimmune diseases (discussed in Chapter 19) HOW TO INCREASE IMMUNOGENICITY: ADJUVANTS (See also CHAPTER 22) An ADJUVANT is any substance which, when administered together with an antigen, increases the immune response to that antigen. One of the most widely used adjuvants (in animals but not in humans) is FREUND'S ADJUVANT, which consists of mineral oil, an emulsifying agent, and killed Mycobacterium (the organism which causes tuberculosis). A solution of the desired antigen in water or saline is homogenized with this oil mixture, resulting in a water-in-oil emulsion which is injected into the recipient. Its powerful adjuvant properties result from several factors: 1) The antigen is released from the emulsion over an extended period of time, causing a continuous and more effective stimulation of the immune system. (Antigen given in soluble form will typically be cleared in a matter of hours or days, whereas it can persist for weeks or months in a depot created by the adjuvant.) 14

7 2) The Mycobacteria contain substances which non-specifically stimulate the immune system, resulting in a higher level of response to the specific antigen. One of these substances which has been extensively studied is Muramyl Dipeptide (MDP). Although Freund's Adjuvant is not used in humans, other forms of adjuvant can be used, such as alum precipitation of antigen, by which a soluble antigen is precipitated together with aluminum hydroxide, resulting in particles of the salt coated with antigen. A soluble antigen is thus converted to a particulate form, and again is released from the mixture over an extended period of time. Substances such as purified MDP and others are also being used to develop effective adjuvants which are less toxic, and therefore potentially usable in humans (see Chapter 22) CHAPTER 2, STUDY QUESTIONS: 1. Define ANTIBODY, ANTIGEN, IMMUNOGEN and HAPTEN. 2. How would you determine if a particular immune response is a HUMORAL response? 3. Describe assays which could be used to measure AGGLUTINATION, PRECIPITATION, HEMOLYSIS and OPSONIZATION. 4. Describe two antibody assays which require no antibody function other than specific binding to an antigen. 5. Define and distinguish ACTIVE versus PASSIVE immunity. 15

Chapter 18: Applications of Immunology

Chapter 18: Applications of Immunology Chapter 18: Applications of Immunology 1. Vaccinations 2. Monoclonal vs Polyclonal Ab 3. Diagnostic Immunology 1. Vaccinations What is Vaccination? A method of inducing artificial immunity by exposing

More information

Antigens & Antibodies II. Polyclonal antibodies vs Monoclonal antibodies

Antigens & Antibodies II. Polyclonal antibodies vs Monoclonal antibodies A Brief Review of Antibody Structure A Brief Review of Antibody Structure The basic antibody is a dimer of dimer (2 heavy chain-light chain pairs) composed of repeats of a single structural unit known

More information

Topic: Serological reactions: the purpose and a principle of reactions. Agglutination test. Precipitation test. CFT, IFT, ELISA, RIA.

Topic: Serological reactions: the purpose and a principle of reactions. Agglutination test. Precipitation test. CFT, IFT, ELISA, RIA. Topic: Serological reactions: the purpose and a principle of reactions. Agglutination test. Precipitation test. CFT, IFT, ELISA, RIA. Serology is the study and use of immunological tests to diagnose and

More information

Chapter 6: Antigen-Antibody Interactions

Chapter 6: Antigen-Antibody Interactions Chapter 6: Antigen-Antibody Interactions I. Strength of Ag-Ab interactions A. Antibody Affinity - strength of total noncovalent interactions between single Ag-binding site on an Ab and a single epitope

More information

Hapten - a small molecule that is antigenic but not (by itself) immunogenic.

Hapten - a small molecule that is antigenic but not (by itself) immunogenic. Chapter 3. Antigens Terminology: Antigen: Substances that can be recognized by the surface antibody (B cells) or by the TCR (T cells) when associated with MHC molecules Immunogenicity VS Antigenicity:

More information

Basic Immunologic Procedures. Complex Serological Tests

Basic Immunologic Procedures. Complex Serological Tests Basic Immunologic Procedures Complex Serological Tests Amal Alghamdi 2014-2015 1 Classification of antigen-antibody interactions: 1. Primary serological tests: (Marker techniques) e.g. Enzyme linked immuonosorben

More information

Microbiology AN INTRODUCTION EIGHTH EDITION

Microbiology AN INTRODUCTION EIGHTH EDITION TORTORA FUNKE CASE Microbiology AN INTRODUCTION EIGHTH EDITION Differentiate between innate and acquired immunity. Chapter 17 Specific Defenses of the Host: The Immune Response B.E Pruitt & Jane J. Stein

More information

Some Immunological Test. Presented by Alaa Faeiz Ashwaaq Dyaa Aseel Abd AL-Razaq Supervised by D.Feras

Some Immunological Test. Presented by Alaa Faeiz Ashwaaq Dyaa Aseel Abd AL-Razaq Supervised by D.Feras Some Immunological Test Presented by Alaa Faeiz Ashwaaq Dyaa Aseel Abd AL-Razaq Supervised by D.Feras Alaa Faeiz Antigen -Antibody Reactions. Antigen antibody reactions are performed to determine the presence

More information

Chapter 3. Immunity and how vaccines work

Chapter 3. Immunity and how vaccines work Chapter 3 Immunity and how vaccines work 3.1 Objectives: To understand and describe the immune system and how vaccines produce immunity To understand the differences between Passive and Active immunity

More information

Chapter 6. Antigen-Antibody Properties 10/3/2012. Antigen-Antibody Interactions: Principles and Applications. Precipitin reactions

Chapter 6. Antigen-Antibody Properties 10/3/2012. Antigen-Antibody Interactions: Principles and Applications. Precipitin reactions Chapter 6 Antigen-Antibody Interactions: Principles and Applications Antigen-Antibody Properties You must remember antibody affinity (single) VS avidity (multiple) High affinity: bound tightly and longer!

More information

specific B cells Humoral immunity lymphocytes antibodies B cells bone marrow Cell-mediated immunity: T cells antibodies proteins

specific B cells Humoral immunity lymphocytes antibodies B cells bone marrow Cell-mediated immunity: T cells antibodies proteins Adaptive Immunity Chapter 17: Adaptive (specific) Immunity Bio 139 Dr. Amy Rogers Host defenses that are specific to a particular infectious agent Can be innate or genetic for humans as a group: most microbes

More information

10. T and B cells are types of a. endocrine cells. c. lymphocytes. b. platelets. d. complement cells.

10. T and B cells are types of a. endocrine cells. c. lymphocytes. b. platelets. d. complement cells. Virus and Immune System Review Directions: Write your answers on a separate piece of paper. 1. Why does a cut in the skin threaten the body s nonspecific defenses against disease? a. If a cut bleeds, disease-fighting

More information

2) Macrophages function to engulf and present antigen to other immune cells.

2) Macrophages function to engulf and present antigen to other immune cells. Immunology The immune system has specificity and memory. It specifically recognizes different antigens and has memory for these same antigens the next time they are encountered. The Cellular Components

More information

Name (print) Name (signature) Period. (Total 30 points)

Name (print) Name (signature) Period. (Total 30 points) AP Biology Worksheet Chapter 43 The Immune System Lambdin April 4, 2011 Due Date: Thurs. April 7, 2011 You may use the following: Text Notes Power point Internet One other person in class "On my honor,

More information

Direct Antiglobulin Test (DAT)

Direct Antiglobulin Test (DAT) Exercise 8 Exercise 9 Direct Antiglobulin Test (DAT) Elution Study Task Aim Introduction To perform the DAT and elution procedure with correct interpretation of results. To perform with 100% accuracy the

More information

Basics of Immunology

Basics of Immunology Basics of Immunology 2 Basics of Immunology What is the immune system? Biological mechanism for identifying and destroying pathogens within a larger organism. Pathogens: agents that cause disease Bacteria,

More information

ANIMALS FORM & FUNCTION BODY DEFENSES NONSPECIFIC DEFENSES PHYSICAL BARRIERS PHAGOCYTES. Animals Form & Function Activity #4 page 1

ANIMALS FORM & FUNCTION BODY DEFENSES NONSPECIFIC DEFENSES PHYSICAL BARRIERS PHAGOCYTES. Animals Form & Function Activity #4 page 1 AP BIOLOGY ANIMALS FORM & FUNCTION ACTIVITY #4 NAME DATE HOUR BODY DEFENSES NONSPECIFIC DEFENSES PHYSICAL BARRIERS PHAGOCYTES Animals Form & Function Activity #4 page 1 INFLAMMATORY RESPONSE ANTIMICROBIAL

More information

Candy Antigens and Antibodies

Candy Antigens and Antibodies LAB ACTIVITY: Candy Antigens and Antibodies TEACHER S EDITION Curricular Links: Biology 20, Science 30 Class Time: 1 period Suggested Answers: Question 1: What is the main function of red blood cells?

More information

ELISA BIO 110 Lab 1. Immunity and Disease

ELISA BIO 110 Lab 1. Immunity and Disease ELISA BIO 110 Lab 1 Immunity and Disease Introduction The principal role of the mammalian immune response is to contain infectious disease agents. This response is mediated by several cellular and molecular

More information

SUMMARY AND CONCLUSIONS

SUMMARY AND CONCLUSIONS SUMMARY AND CONCLUSIONS Summary and Conclusions This study has attempted to document the following effects of targeting protein antigens to the macrophage scavenger receptors by maleylation. 1. Modification

More information

CONTENT. Chapter 1 Review of Literature. List of figures. List of tables

CONTENT. Chapter 1 Review of Literature. List of figures. List of tables Abstract Abbreviations List of figures CONTENT I-VI VII-VIII IX-XII List of tables XIII Chapter 1 Review of Literature 1. Vaccination against intracellular pathogens 1-34 1.1 Role of different immune responses

More information

The Body s Defenses CHAPTER 24

The Body s Defenses CHAPTER 24 CHAPTER 24 The Body s Defenses PowerPoint Lectures for Essential Biology, Third Edition Neil Campbell, Jane Reece, and Eric Simon Essential Biology with Physiology, Second Edition Neil Campbell, Jane Reece,

More information

Chapter 43: The Immune System

Chapter 43: The Immune System Name Period Our students consider this chapter to be a particularly challenging and important one. Expect to work your way slowly through the first three concepts. Take particular care with Concepts 43.2

More information

1) Siderophores are bacterial proteins that compete with animal A) Antibodies. B) Red blood cells. C) Transferrin. D) White blood cells. E) Receptors.

1) Siderophores are bacterial proteins that compete with animal A) Antibodies. B) Red blood cells. C) Transferrin. D) White blood cells. E) Receptors. Prof. Lester s BIOL 210 Practice Exam 4 (There is no answer key. Please do not email or ask me for answers.) Chapters 15, 16, 17, 19, HIV/AIDS, TB, Quorum Sensing 1) Siderophores are bacterial proteins

More information

Immunity and how vaccines work

Immunity and how vaccines work 1 Introduction Immunity is the ability of the human body to protect itself from infectious disease. The defence mechanisms of the body are complex and include innate (non-specific, non-adaptive) mechanisms

More information

LAB 14 ENZYME LINKED IMMUNOSORBENT ASSAY (ELISA)

LAB 14 ENZYME LINKED IMMUNOSORBENT ASSAY (ELISA) STUDENT GUIDE LAB 14 ENZYME LINKED IMMUNOSORBENT ASSAY (ELISA) GOAL The goal of this laboratory lesson is to explain the concepts and technique of enzyme linked immunosorbent assay (ELISA). OBJECTIVES

More information

Blood-Based Cancer Diagnostics

Blood-Based Cancer Diagnostics The Biotechnology Education Company Blood-Based Cancer Diagnostics EDVO-Kit 141 Store entire experiment at room temperature. EXPERIMENT OBJECTIVE: The objective of this experiment is to learn and understand

More information

From Biology to Discovery

From Biology to Discovery POLYCLONAL ANTIBODY PRODUCTION SERVICES Abbiotec offers custom polyclonal antibody production services to the scientific community to accelerate a project From Biology to Discovery. When the antibody for

More information

Core Topic 2. The immune system and how vaccines work

Core Topic 2. The immune system and how vaccines work Core Topic 2 The immune system and how vaccines work Learning outcome To be able to describe in outline the immune system and how vaccines work in individuals and populations Learning objectives Explain

More information

Immunity Unit Test Z

Immunity Unit Test Z Immunity Unit Test Z Name MB Multiple Choice Identify the choice that best completes the statement or answers the question. 1. Which of the pathogens in Figure 31.1 cause disease by taking over healthy

More information

CHAPTER 8 IMMUNOLOGICAL IMPLICATIONS OF PEPTIDE CARBOHYDRATE MIMICRY

CHAPTER 8 IMMUNOLOGICAL IMPLICATIONS OF PEPTIDE CARBOHYDRATE MIMICRY CHAPTER 8 IMMUNOLOGICAL IMPLICATIONS OF PEPTIDE CARBOHYDRATE MIMICRY Immunological Implications of Peptide-Carbohydrate Mimicry 8.1 Introduction The two chemically dissimilar molecules, a peptide (12mer)

More information

CUSTOM ANTIBODIES. Fully customised services: rat and murine monoclonals, rat and rabbit polyclonals, antibody characterisation, antigen preparation

CUSTOM ANTIBODIES. Fully customised services: rat and murine monoclonals, rat and rabbit polyclonals, antibody characterisation, antigen preparation CUSTOM ANTIBODIES Highly competitive pricing without compromising quality. Rat monoclonal antibodies for the study of gene expression and proteomics in mice and in mouse models of human diseases available.

More information

How Does a Doctor Test for AIDS?

How Does a Doctor Test for AIDS? Edvo-Kit #S-70 How Does a Doctor Test for AIDS? S-70 Experiment Objective: The Human Immunodefi ciency Virus (HIV) is an infectious agent that causes Acquired Immunodefi ciency Syndrome (AIDS) in humans.

More information

Why use passive immunity?

Why use passive immunity? Vaccines Active vs Passive Immunization Active is longer acting and makes memory and effector cells Passive is shorter acting, no memory and no effector cells Both can be obtained through natural processes:

More information

Essentials in Immunology Prof. R. Manjunath Department of Biochemistry Indian Institute of Science, Bangalore

Essentials in Immunology Prof. R. Manjunath Department of Biochemistry Indian Institute of Science, Bangalore Essentials in Immunology Prof. R. Manjunath Department of Biochemistry Indian Institute of Science, Bangalore Lecture No. # 02 Cells and Organs of the immune system Part 1 (Refer Slide Time: 00:27) Hello

More information

One of the more complex systems we re looking at. An immune response (a response to a pathogen) can be of two types:

One of the more complex systems we re looking at. An immune response (a response to a pathogen) can be of two types: Immune system. One of the more complex systems we re looking at. An immune response (a response to a pathogen) can be of two types: (pathogen - disease causing organism) 1) Non specific. Anything foreign

More information

Can receive blood from: * I A I A and I A i o Type A Yes No A or AB A or O I B I B and I B i o Type B No Yes B or AB B or O

Can receive blood from: * I A I A and I A i o Type A Yes No A or AB A or O I B I B and I B i o Type B No Yes B or AB B or O Genetics of the ABO Blood Groups written by J. D. Hendrix Learning Objectives Upon completing the exercise, each student should be able: to explain the concept of blood group antigens; to list the genotypes

More information

The Immune System. 2 Types of Defense Mechanisms. Lines of Defense. Line of Defense. Lines of Defense

The Immune System. 2 Types of Defense Mechanisms. Lines of Defense. Line of Defense. Lines of Defense The Immune System 2 Types of Defense Mechanisms Immune System the system that fights infection by producing cells to inactivate foreign substances to avoid infection and disease. Immunity the body s ability

More information

Dot Blot Analysis. Teacher s Guidebook. (Cat. # BE 502) think proteins! think G-Biosciences www.gbiosciences.com

Dot Blot Analysis. Teacher s Guidebook. (Cat. # BE 502) think proteins! think G-Biosciences www.gbiosciences.com PR110 G-Biosciences 1-800-628-7730 1-314-991-6034 technical@gbiosciences.com A Geno Technology, Inc. (USA) brand name Dot Blot Analysis Teacher s Guidebook (Cat. # BE 502) think proteins! think G-Biosciences

More information

Direct Antiglobulin Test (DAT)

Direct Antiglobulin Test (DAT) Exercise 8 Direct Antiglobulin Test (DAT) Objectives: 1. State the purpose for performing the DAT. 2. State what a positive DAT indicates. 3. List the reagents which are used for performing the DAT. 4.

More information

Guide to Purification of Polyclonal Antibodies

Guide to Purification of Polyclonal Antibodies Guide to Purification of Polyclonal Antibodies When choosing a polyclonal antibody, either as a primary or secondary antibody in an immunoassay, researchers are often inundated with an array of antibody

More information

CHAPTER 6 ANTIBODY GENETICS: ISOTYPES, ALLOTYPES, IDIOTYPES

CHAPTER 6 ANTIBODY GENETICS: ISOTYPES, ALLOTYPES, IDIOTYPES CHAPTER 6 ANTIBODY GENETICS: ISOTYPES, ALLOTYPES, IDIOTYPES See APPENDIX: (3) OUCHTERLONY; (4) AFFINITY CHROMATOGRAPHY Human immunoglobulins are made up of LIGHT and HEAVY chains encoded by a total of

More information

LESSON 3: ANTIBODIES/BCR/B-CELL RESPONSES

LESSON 3: ANTIBODIES/BCR/B-CELL RESPONSES Introduction to immunology. LESSON 3: ANTIBODIES/BCR/B-CELL RESPONSES Today we will get to know: The antibodies How antibodies are produced, their classes and their maturation processes Antigen recognition

More information

The Human Immune System

The Human Immune System The Human Immune System What is the immune system? The body s defense against disease causing organisms, malfunctioning cells, and foreign particles The First Line of Defense Skin The dead, outer layer

More information

Supplemental Material CBE Life Sciences Education. Su et al.

Supplemental Material CBE Life Sciences Education. Su et al. Supplemental Material CBE Life Sciences Education Su et al. APPENDIX Human Body's Immune System Test This test consists of 31 questions, with only 1 answer to be selected for each question. Please select

More information

HuCAL Custom Monoclonal Antibodies

HuCAL Custom Monoclonal Antibodies HuCAL Custom Monoclonal HuCAL Custom Monoclonal Antibodies Highly Specific, Recombinant Antibodies in 8 Weeks Highly Specific Monoclonal Antibodies in Just 8 Weeks HuCAL PLATINUM (Human Combinatorial Antibody

More information

JIANGSU CARTMAY INDUSTRIAL CO.,LTD www.labfurniture.asia mail: info@labfurniture.asia

JIANGSU CARTMAY INDUSTRIAL CO.,LTD www.labfurniture.asia mail: info@labfurniture.asia The basic layout, the main functions and instrumentation concept of micro Inspection Division laboratory, 1, Virology Laboratory 1. Functions: for the city to monitor the prevalence of HIV disease, dealing

More information

www.gbo.com/bioscience Tissue Culture 1 Cell/ Microplates 2 HTS- 3 Immunology/ HLA 4 Microbiology/ Bacteriology Purpose Beakers 5 Tubes/Multi-

www.gbo.com/bioscience Tissue Culture 1 Cell/ Microplates 2 HTS- 3 Immunology/ HLA 4 Microbiology/ Bacteriology Purpose Beakers 5 Tubes/Multi- 11 Cryo 5 Tubes/Multi 2 HTS 3 Immunology / Immunology Technical Information 3 I 2 96 Well ELISA 3 I 4 96 Well ELISA Strip Plates 3 I 6 8 Well Strip Plates 3 I 7 12 Well Strip Plates 3 I 8 16 Well Strip

More information

The Immune System and Disease

The Immune System and Disease Chapter 40 The Immune System and Disease Section 40 1 Infectious Disease (pages 1029 1033) This section describes the causes of disease and explains how infectious diseases are transmitted Introduction

More information

Optimal Conditions for F(ab ) 2 Antibody Fragment Production from Mouse IgG2a

Optimal Conditions for F(ab ) 2 Antibody Fragment Production from Mouse IgG2a Optimal Conditions for F(ab ) 2 Antibody Fragment Production from Mouse IgG2a Ryan S. Stowers, 1 Jacqueline A. Callihan, 2 James D. Bryers 2 1 Department of Bioengineering, Clemson University, Clemson,

More information

Overview of the Cattle Immune System 1

Overview of the Cattle Immune System 1 Oregon State University BEEF043 Beef Cattle Library Beef Cattle Sciences Overview of the Cattle Immune System 1 Reinaldo F. Cooke 2 Introduction On average, the U.S. cattle industry loses more than $1

More information

Immunology Ambassador Guide (updated 2014)

Immunology Ambassador Guide (updated 2014) Immunology Ambassador Guide (updated 2014) Immunity and Disease We will talk today about the immune system and how it protects us from disease. Also, we ll learn some unique ways that our immune system

More information

Title: Mapping T cell epitopes in PCV2 capsid protein - NPB #08-159. Date Submitted: 12-11-09

Title: Mapping T cell epitopes in PCV2 capsid protein - NPB #08-159. Date Submitted: 12-11-09 Title: Mapping T cell epitopes in PCV2 capsid protein - NPB #08-159 Investigator: Institution: Carol Wyatt Kansas State University Date Submitted: 12-11-09 Industry summary: Effective circovirus vaccines

More information

6 Characterization of Casein and Bovine Serum Albumin

6 Characterization of Casein and Bovine Serum Albumin 6 Characterization of Casein and Bovine Serum Albumin (BSA) Objectives: A) To separate a mixture of casein and bovine serum albumin B) to characterize these proteins based on their solubilities as a function

More information

Objectives. Immunologic Methods. Objectives. Immunology vs. Serology. Cross Reactivity. Sensitivity and Specificity. Definitions

Objectives. Immunologic Methods. Objectives. Immunology vs. Serology. Cross Reactivity. Sensitivity and Specificity. Definitions Immunologic Methods Part One Definitions Part Two Antigen-Antibody Reactions CLS 420 Clinical Immunology and Molecular Diagnostics Kathy Trudell MLS (ASCP) CM SBB CM ktrudell@nebraskamed.com Discuss the

More information

Medical Microbiology Culture Media :

Medical Microbiology Culture Media : Lecture 3 Dr. Ismail I. Daood Medical Microbiology Culture Media : Culture media are used for recognition and identification (diagnosis) of microorganisms. The media are contained in plates (Petri dishes),

More information

Bio 20 Chapter 11 Workbook Blood and the Immune System Ms. Nyboer

Bio 20 Chapter 11 Workbook Blood and the Immune System Ms. Nyboer Bio 20 Chapter 11 Workbook Blood and the Immune System Ms. Nyboer Name: Part A: Components of Blood 1. List the 3 plasma proteins and describe the function of each Albumins osmotic balance Globulins antibodies,

More information

RhD typing. Practice for IV year medical students. Zita Csernus MD. National Blood Transfusion Service Blood Transfusion Centre Pécs

RhD typing. Practice for IV year medical students. Zita Csernus MD. National Blood Transfusion Service Blood Transfusion Centre Pécs immunisation Bed side test Antibody tests RhD typing Practice for IV year medical students Zita Csernus MD National Blood Transfusion Service Blood Transfusion Centre Pécs Rh Blood Group System Discovery:

More information

Blood Typing Laboratory Exercise 40

Blood Typing Laboratory Exercise 40 Blood Typing Laboratory Exercise 40 Background Blood typing involves identifying protein substances called antigens that are present in red blood cell membranes. Although there are many different antigens

More information

LAB 1 - Direct agglutination. Serology-the study of the in vitro reactions between antibody and antigen

LAB 1 - Direct agglutination. Serology-the study of the in vitro reactions between antibody and antigen LAB 1 - Direct agglutination Serology-the study of the in vitro reactions between antibody and antigen Serological reaction: - quantitative (weight/volume) - qualitative Agglutination - the aggregation

More information

Autoimmunity and immunemediated. FOCiS. Lecture outline

Autoimmunity and immunemediated. FOCiS. Lecture outline 1 Autoimmunity and immunemediated inflammatory diseases Abul K. Abbas, MD UCSF FOCiS 2 Lecture outline Pathogenesis of autoimmunity: why selftolerance fails Genetics of autoimmune diseases Therapeutic

More information

HuCAL Custom Monoclonal Antibodies

HuCAL Custom Monoclonal Antibodies HuCAL Custom Monoclonal Antibodies Highly Specific Monoclonal Antibodies in just 8 Weeks PROVEN, HIGHLY SPECIFIC, HIGH AFFINITY ANTIBODIES IN 8 WEEKS WITHOUT HuCAL PLATINUM IMMUNIZATION (Human Combinatorial

More information

3 months 1.5 months 1.5 months. 1 month

3 months 1.5 months 1.5 months. 1 month Rabbit monoclonal antibody (Mab) is secreted by the plasma B-cell of the rabbit. Traditional generation of rabbit Mab relies on a rabbit myeloma for B- cell fusion (

More information

The Immune System: A Tutorial

The Immune System: A Tutorial The Immune System: A Tutorial Modeling and Simulation of Biological Systems 21-366B Shlomo Ta asan Images taken from http://rex.nci.nih.gov/behindthenews/uis/uisframe.htm http://copewithcytokines.de/ The

More information

B Cells and Antibodies

B Cells and Antibodies B Cells and Antibodies Andrew Lichtman, MD PhD Brigham and Women's Hospital Harvard Medical School Lecture outline Functions of antibodies B cell activation; the role of helper T cells in antibody production

More information

Guidelines for Monoclonal Antibody Production

Guidelines for Monoclonal Antibody Production Guidelines for Monoclonal Antibody Production 2008 Guidelines for Monclonal Antibody Production 2008 Commonwealth of Australia 2008 Electronic documents This work is copyright. You may download, display,

More information

VLLM0421c Medical Microbiology I, practical sessions. Protocol to topic J10

VLLM0421c Medical Microbiology I, practical sessions. Protocol to topic J10 Topic J10+11: Molecular-biological methods + Clinical virology I (hepatitis A, B & C, HIV) To study: PCR, ELISA, your own notes from serology reactions Task J10/1: DNA isolation of the etiological agent

More information

Protein immunoblotting

Protein immunoblotting Protein immunoblotting (Western blotting) Dr. Serageldeen A. A. Sultan Lecturer of virology Dept. of Microbiology SVU, Qena, Egypt seaas@lycos.com Western blotting -It is an analytical technique used to

More information

Functions of Blood. Collects O 2 from lungs, nutrients from digestive tract, and waste products from tissues Helps maintain homeostasis

Functions of Blood. Collects O 2 from lungs, nutrients from digestive tract, and waste products from tissues Helps maintain homeostasis Blood Objectives Describe the functions of blood Describe blood plasma Explain the functions of red blood cells, white blood cells, and platelets Summarize the process of blood clotting What is Blood?

More information

1.1.2. thebiotutor. AS Biology OCR. Unit F211: Cells, Exchange & Transport. Module 1.2 Cell Membranes. Notes & Questions.

1.1.2. thebiotutor. AS Biology OCR. Unit F211: Cells, Exchange & Transport. Module 1.2 Cell Membranes. Notes & Questions. thebiotutor AS Biology OCR Unit F211: Cells, Exchange & Transport Module 1.2 Cell Membranes Notes & Questions Andy Todd 1 Outline the roles of membranes within cells and at the surface of cells. The main

More information

TOTAL PROTEIN FIBRINOGEN

TOTAL PROTEIN FIBRINOGEN UNIT: Proteins 16tproteins.wpd Task Determination of Total Protein, Albumin and Globulins Objectives Upon completion of this exercise, the student will be able to: 1. Explain the ratio of albumin and globulin

More information

Blood Physiology. Practical 4. Contents. Practical tasks. Erythrocytes The blood types

Blood Physiology. Practical 4. Contents. Practical tasks. Erythrocytes The blood types Blood Physiology Practical 4 Contents Erythrocytes The blood types Practical tasks Determination of blood groups of the ABO system Determination of the Rhesus system (Rh factor) The cross matching test

More information

KMS-Specialist & Customized Biosimilar Service

KMS-Specialist & Customized Biosimilar Service KMS-Specialist & Customized Biosimilar Service 1. Polyclonal Antibody Development Service KMS offering a variety of Polyclonal Antibody Services to fit your research and production needs. we develop polyclonal

More information

QED Bioscience Inc. Revision 05/04/11 ADVANCED ANTIBODY TECHNOLOGIES

QED Bioscience Inc. Revision 05/04/11 ADVANCED ANTIBODY TECHNOLOGIES CUSTOM POLYCLONAL ANTIBODY DEVELOPMENT QED is committed to excellence across all facets of our operations, and to responding to the ever-changing needs of our customers. We have been developing monoclonal

More information

Chapter 2 Antibodies. Contents. Introduction

Chapter 2 Antibodies. Contents. Introduction Chapter 2 Antibodies Keywords Immunohistochemistry Antibody labeling Fluorescence microscopy Fluorescent immunocytochemistry Fluorescent immunohistochemistry Indirect immunocytochemistry Immunostaining

More information

Interim Progress Report R&D Project 348. Development of a Field Test Kit for Detection of Blue-Green Algal Toxins

Interim Progress Report R&D Project 348. Development of a Field Test Kit for Detection of Blue-Green Algal Toxins Interim Progress Report R&D Project 348 Development of a Field Test Kit for Detection of Blue-Green Algal Toxins Biocode Limited November 1992 R&D 348/04/A ENVIRONMENT AGENCY 135357 CONTENTS SUMMARY KEYWORDS

More information

Some terms: An antigen is a molecule or pathogen capable of eliciting an immune response

Some terms: An antigen is a molecule or pathogen capable of eliciting an immune response Overview of the immune system We continue our discussion of protein structure by considering the structure of antibodies. All organisms are continually subject to attack by microorganisms and viruses.

More information

PROTOCOL. Immunostaining for Flow Cytometry. Background. Materials and equipment required.

PROTOCOL. Immunostaining for Flow Cytometry. Background. Materials and equipment required. PROTOCOL Immunostaining for Flow Cytometry 1850 Millrace Drive, Suite 3A Eugene, Oregon 97403 Rev.0 Background The combination of single cell analysis using flow cytometry and the specificity of antibody-based

More information

The immune response Antibodies Antigens Epitopes (antigenic determinants) the part of a protein antigen recognized by an antibody Haptens small

The immune response Antibodies Antigens Epitopes (antigenic determinants) the part of a protein antigen recognized by an antibody Haptens small The immune response Antibodies Antigens Epitopes (antigenic determinants) the part of a protein antigen recognized by an antibody Haptens small molecules that can elicit an immune response when linked

More information

Absorption of Drugs. Transport of a drug from the GI tract

Absorption of Drugs. Transport of a drug from the GI tract Absorption of Drugs Absorption is the transfer of a drug from its site of administration to the bloodstream. The rate and efficiency of absorption depend on the route of administration. For IV delivery,

More information

POLYCLONAL ANTIBODY DEVELOPMENT

POLYCLONAL ANTIBODY DEVELOPMENT POLYCLONAL ANTIBODY DEVELOPMENT Abcore is committed to excellence, and to responding to the changing needs of our customers. We have developed polyclonal antibodies for biotechnology and pharmaceutical

More information

Non Specific Binding (NSB) in Antigen-Antibody Assays

Non Specific Binding (NSB) in Antigen-Antibody Assays Non Specific Binding (NSB) in Antigen-Antibody Assays Chem 395 Spring 2007 Instructor : Dr. James Rusling Presenter : Bhaskara V. Chikkaveeraiah OUTLINE Immunoassays Introduction Factors contributing to

More information

Custom Antibodies Services. GeneCust Europe. GeneCust Europe

Custom Antibodies Services. GeneCust Europe. GeneCust Europe GeneCust Europe Laboratoire de Biotechnologie du Luxembourg S.A. 6 rue Dominique Lang L-3505 Dudelange Luxembourg Tél. : +352 27620411 Fax : +352 27620412 Email : info@genecust.com Web : www.genecust.com

More information

Chapter 16: Innate Immunity

Chapter 16: Innate Immunity Chapter 16: Innate Immunity 1. Overview of Innate Immunity 2. Inflammation & Phagocytosis 3. Antimicrobial Substances 1. Overview of Innate Immunity The Body s Defenses The body has 2 types of defense

More information

6023-1 - Page 1. Name: 4) The diagram below represents a beaker containing a solution of various molecules involved in digestion.

6023-1 - Page 1. Name: 4) The diagram below represents a beaker containing a solution of various molecules involved in digestion. Name: 6023-1 - Page 1 1) Which one of the following situations indicates a serious organ system malfunction? A) Mitochondria stop functioning in a unicellular organism exposed to pollutants. B) White blood

More information

Course Curriculum for Master Degree in Medical Laboratory Sciences/Clinical Microbiology, Immunology and Serology

Course Curriculum for Master Degree in Medical Laboratory Sciences/Clinical Microbiology, Immunology and Serology Course Curriculum for Master Degree in Medical Laboratory Sciences/Clinical Microbiology, Immunology and Serology The Master Degree in Medical Laboratory Sciences / Clinical Microbiology, Immunology or

More information

CHAPTER 35 HUMAN IMMUNE SYSTEM STANDARDS:SC.912.L.14.52 & SC.912.L.14.6

CHAPTER 35 HUMAN IMMUNE SYSTEM STANDARDS:SC.912.L.14.52 & SC.912.L.14.6 CHAPTER 35 HUMAN IMMUNE SYSTEM STANDARDS:SC.912.L.14.52 & SC.912.L.14.6 SECTION 1 - Infectious Disease 1.Identify the causes of infectious disease. 2.Explain how infectious diseases are spread. Causes

More information

GUIDELINES FOR THE REGISTRATION OF BIOLOGICAL PEST CONTROL AGENTS FOOD AND AGRICULTURE ORGANIZATION OF THE UNITED NATIONS

GUIDELINES FOR THE REGISTRATION OF BIOLOGICAL PEST CONTROL AGENTS FOOD AND AGRICULTURE ORGANIZATION OF THE UNITED NATIONS GUIDELINES FOR THE REGISTRATION OF BIOLOGICAL PEST CONTROL AGENTS FOOD AND AGRICULTURE ORGANIZATION OF THE UNITED NATIONS -ii- GUIDELINES ON THE REGISTRATION OF BIOLOGICAL PEST CONTROL AGENTS FOOD AND

More information

Final Review. Aptamers. Making Aptamers: SELEX 6/3/2011. sirna and mirna. Central Dogma. RNAi: A translation regulation mechanism.

Final Review. Aptamers. Making Aptamers: SELEX 6/3/2011. sirna and mirna. Central Dogma. RNAi: A translation regulation mechanism. Central Dogma Final Review Section Week 10 DNA RNA Protein DNA DNA replication DNA RNA transcription RNA Protein translation **RNA DNA reverse transcription http://bass.bio.uci.edu/~hudel/bs99a/lecture20/lecture1_1.html

More information

Blood, Plasma, and Cellular Blood Components INTRODUCTION

Blood, Plasma, and Cellular Blood Components INTRODUCTION Blood, Plasma, and Cellular Blood Components INTRODUCTION This chapter of the Guideline provides recommendations to Sponsors of Requests for Revision for new monographs for blood, plasma, and cellular

More information

The Use of Antibodies in Immunoassays

The Use of Antibodies in Immunoassays TECHNICAL NOTE The Use of Antibodies in Immunoassays Introduction Structure of an IgG Antibody Immunological reagents are the backbone of every immunoassay system. Immunoassays can be utilized to quantitatively

More information

Immunity. Humans have three types of immunity innate, adaptive, and passive: Innate Immunity

Immunity. Humans have three types of immunity innate, adaptive, and passive: Innate Immunity Immunity Humans have three types of immunity innate, adaptive, and passive: Innate Immunity Everyone is born with innate (or natural) immunity, a type of general protection. Many of the germs that affect

More information

HiPer RA Test Teaching Kit

HiPer RA Test Teaching Kit HiPer RA Test Teaching Kit Product Code: HTI019 Number of experiments that can be performed: 20 Duration of Experiment: 1hour Storage Instructions: The kit is stable for 6 months from the date of receipt

More information

Monoclonal Antibody Therapy: Innovations in Cancer Treatment. James Choi ENGL 202C

Monoclonal Antibody Therapy: Innovations in Cancer Treatment. James Choi ENGL 202C Monoclonal Antibody Therapy: Innovations in Cancer Treatment James Choi ENGL 202C Treating Cancer with Monoclonal Antibody Therapy Researchers and scientists have been working for decades to find a cure

More information

TOOLS sirna and mirna. User guide

TOOLS sirna and mirna. User guide TOOLS sirna and mirna User guide Introduction RNA interference (RNAi) is a powerful tool for suppression gene expression by causing the destruction of specific mrna molecules. Small Interfering RNAs (sirnas)

More information

How To Use An Antibody

How To Use An Antibody GUIDELINES FOR THE PRODUCTION OF ANTIBODIES IN LABORATORY ANIMALS Table of Contents 1. Purpose 2. Choice of Species and Strain 3. Immunizing Antigen 4. Procedures for Polyclonal Antibody Production 5.

More information

CHAPTER 1 INTRODUCTION

CHAPTER 1 INTRODUCTION CHAPTER 1 INTRODUCTION 1.1 Research Background Diabetes mellitus is a disease in which the body cannot produce sufficient insulin in their pancreas to adequately control the level of glucose in their blood

More information

Expression and Purification of Recombinant Protein in bacteria and Yeast. Presented By: Puspa pandey, Mohit sachdeva & Ming yu

Expression and Purification of Recombinant Protein in bacteria and Yeast. Presented By: Puspa pandey, Mohit sachdeva & Ming yu Expression and Purification of Recombinant Protein in bacteria and Yeast Presented By: Puspa pandey, Mohit sachdeva & Ming yu DNA Vectors Molecular carriers which carry fragments of DNA into host cell.

More information

Enzymes: Practice Questions #1

Enzymes: Practice Questions #1 Enzymes: Practice Questions #1 1. Compound X increases the rate of the reaction below. Compound X is most likely A. an enzyme B. a lipid molecule C. an indicator D. an ADP molecule 2. The equation below

More information

Human CD4+T Cell Care Manual

Human CD4+T Cell Care Manual Human CD4+T Cell Care Manual INSTRUCTION MANUAL ZBM0067.02 SHIPPING CONDITIONS Human CD4+T Cells, cryopreserved Cryopreserved human CD4+T cells are shipped on dry ice and should be stored in liquid nitrogen

More information