Chapter 4  Practice Problems 2


 Byron Holmes
 1 years ago
 Views:
Transcription
1 Chapter  Practice Problems 2 MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Find the indicated probability. 1) If you flip a coin three times, the possible outcomes are HHH HHT HTH HTT THH THT TTH TTT. What is the probability of getting at least one head? 1) A) 3 B) D) 1 2) If two balanced die are rolled, what is the probability that the sum of the dice is or 12. 2) A) 1 9 B) D) 1 6 3) A committee of three people is to be formed. The three people will be selected from a list of five possible committee members. A simple random sample of three people is taken, without replacement, from the group of five people. Using the letters A, B, C, D, E to represent the five people, list the possible samples of size three and use your list to determine the probability that B is included in the sample. 3) (Hint: There are 10 possible samples. List them all) A) 3 5 B) D) 7 10 ) A bag contains four chips of which one is red, one is blue, one is green, and one is yellow. A chip is selected at random from the bag and then replaced in the bag. A second chip is then selected at random. Make a list of the possible outcomes (for example RB represents the outcome red chip followed by blue chip) and use your list to determine the probability that the two chips selected are the same color. ) (Hint: There are 16 possible outcomes.) A) 1 8 B) D) 1 16 Estimate the probability of the event. 5) The data set represents the income levels of the members of a country club. Estimate the probability that a randomly selected member earns at least $100,000. Round your answers to the nearest tenth. 5) 112,000 12,000 92, ,000 96, , ,000 8,000 12, ,000 88, , ,000 96,000 12, , ,000 18,000 80, ,000 A) 0.6 B) D) 0.8 1
2 List the outcomes comprising the specified event. 6) When a quarter is tossed four times, 16 outcomes are possible. 6) HHHH HHHT HHTH HHTT HTHH HTHT HTTH HTTT THHH THHT THTH THTT TTHH TTHT TTTH TTTT Here, for example, HTTH represents the outcome that the first toss is heads, the next two tosses are tails, and the fourth toss is heads. List the outcomes that comprise the following event. A = event exactly three tails are tossed A) HTTT, THTT, TTHT, TTTH, TTTT B) TTTH HTTT, THTT, TTHT, TTTH D) HTTT, THTT, TTTH 7) Three board members for a nonprofit organization will be selected from a group of five people. The board members will be selected by drawing names from a hat. The names of the five possible board members are Allison, Betty, Charlie, Dave, and Emily. The possible outcomes can be represented as follows. 7) ABC ABD ABE ACD ACE ADE BCD BCE BDE CDE Here, for example, ABC represents the outcome that Allison, Betty, and Charlie are selected to be on the board. List the outcomes that comprise the following event. A = event that fewer than two men are selected A) ABC, ABD, ADE, BCE, BDE B) ABC, ABD, ACE, ADE, BCE, BDE ABC, ABD, ABE, ACE, ADE, BCE, BDE D) ACD, BCD, CDE Describe the specified event in words. 8) When a quarter is tossed four times, 16 outcomes are possible. The events A and B are defined as follows. 8) A = event exactly two tails are tossed B = event the first toss is heads Describe the event (A or B) in words. A) Event that the first toss is heads or the last two tosses are tails or both B) Event that exactly two tails are tossed and the first toss is heads Event that exactly two tails are tossed or the first toss is heads but not both D) Event that exactly two tails are tossed or the first toss is heads or both 2
3 9) The age distribution of students at a community college is given below. 9) Age (years) Number of students (f) Under Over A student from the community college is selected at random. The event A is defined as follows. A = event the student is between 26 and 35 inclusive. Describe the event (not A) in words. A) The event the student is at most 26 or at least 35 B) The event the student is under 26 or over 35 The event the student is under 26 and over 35 D) The event the student is over 35 Determine the number of outcomes that comprise the specified event. 10) The age distribution of students at a community college is given below. 10) Age (years) Number of students (f) Under Over A student from the community college is selected at random. The event A is defined as follows. A = event the student is between 26 and 35 inclusive. Determine the number of outcomes that comprise the event (not A). A) 527 B) D) 205 3
4 11) The number of hours needed by sixth grade students to complete a research project was recorded with the following results. 11) Hours Number of students (f) A student is selected at random. The events A and B are defined as follows. A = the event the student took between 6 and 9 hours inclusive B = the event the student took at most 7 hours Determine the number of outcomes that comprise the event (A or B). A) 6 B) D) 99 Determine whether the events are mutually exclusive. 12) The number of hours needed by sixth grade students to complete a research project was recorded with the following results. 12) Hours Number of students (f) A student is selected at random. The events A, B, and C are defined as follows. A = event the student took more than 9 hours B = event the student took less than 6 hours C = event the student took between 7 and 9 hours inclusive Is the collection of events A, B, and C mutually exclusive? A) Yes B) No
5 Find the indicated probability. 13) A bag contains 6 red marbles, 3 blue marbles, and 5 green marbles. If a marble is randomly selected from the bag, what is the probability that it is blue? 13) A) 1 3 B) D) 1 6 1) A class consists of 59 women and 62 men. If a student is randomly selected, what is the probability that the student is a woman? 1) A) B) D) Find the indicated probability by using the special addition rule. 15) A relative frequency distribution is given below for the size of families in one U.S. city. 15) Size Relative frequency A family is selected at random. Find the probability that the size of the family is less than 5. Round approximations to three decimal places. A) B) D) ) A card is drawn from a wellshuffled deck of 52 cards. What is the probability of drawing a face card or a 5? A) 16 B) 8 D) ) 17) Two 6sided dice are rolled. What is the probability that the sum of the numbers on the dice is 6 or 9? A) 1 B) 3 5 D) ) Find the indicated probability by using the complementation rule. 18) If a person is randomly selected, find the probability that his or her birthday is not in May. Ignore leap years. 18) A) B) D)
6 19) The age distribution of students at a community college is given below. 19) Age (years) Number of students (f) Under Over A student from the community college is selected at random. Find the probability that the student is 21 years or over. Give your answer as a decimal rounded to three decimal places. A) B) D) Find the indicated probability. 20) The following contingency table provides a joint frequency distribution for the popular votes cast in the presidential election by region and political party. Data are in thousands, rounded to the nearest thousand. 20) A person who voted in the presidential election is selected at random. Compute the probability that the person selected voted Democrat. A) 0.2 B) D)
7 21) The table below shows the soft drink preferences of people in three age groups. 21) cola root beer lemonlime under 21 years of age between 21 and over 0 years of age If one of the 255 subjects is randomly selected, find the probability that the person is over 0 and drinks cola. A) B) 17 D) None of the above is correct. 7
8 Answer Key Testname: CH SET 2 1) B 2) A 3) A ) C 5) B 6) C 7) C 8) D 9) B 10) C 11) D 12) A 13) C 1) B 15) C 16) B 17) D 18) A 19) D 20) C 21) A 8
5_2 MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.
5_2 MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Provide an appropriate response. 1) A prix fixed menu offers a choice of 2 appetizers, 4 main
More informationSHORT ANSWER. Write the word or phrase that best completes each statement or answers the question.
Math 1342 (Elementary Statistics) Test 2 Review SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question. Find the indicated probability. 1) If you flip a coin
More informationThe Central Limit Theorem Part 1
The Central Limit Theorem Part. Introduction: Let s pose the following question. Imagine you were to flip 400 coins. To each coin flip assign if the outcome is heads and 0 if the outcome is tails. Question:
More informationMATH 10: Elementary Statistics and Probability Chapter 4: Discrete Random Variables
MATH 10: Elementary Statistics and Probability Chapter 4: Discrete Random Variables Tony Pourmohamad Department of Mathematics De Anza College Spring 2015 Objectives By the end of this set of slides, you
More informationBasics of Probability
Basics of Probability August 27 and September 1, 2009 1 Introduction A phenomena is called random if the exact outcome is uncertain. The mathematical study of randomness is called the theory of probability.
More informationMath 141. Lecture 3: The Binomial Distribution. Albyn Jones 1. 1 Library 304. jones/courses/141
Math 141 Lecture 3: The Binomial Distribution Albyn Jones 1 1 Library 304 jones@reed.edu www.people.reed.edu/ jones/courses/141 Outline Coin Tossing Coin Tosses Independent Coin Tosses Crucial Features
More informationChapter 4  Practice Problems 1
Chapter 4  Practice Problems SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question. Provide an appropriate response. ) Compare the relative frequency formula
More informationGrade 7/8 Math Circles Fall 2012 Probability
1 University of Waterloo Faculty of Mathematics Centre for Education in Mathematics and Computing Grade 7/8 Math Circles Fall 2012 Probability Probability is one of the most prominent uses of mathematics
More informationLesson 1. Basics of Probability. Principles of Mathematics 12: Explained! www.math12.com 314
Lesson 1 Basics of Probability www.math12.com 314 Sample Spaces: Probability Lesson 1 Part I: Basic Elements of Probability Consider the following situation: A six sided die is rolled The sample space
More informationChapter 4 & 5 practice set. The actual exam is not multiple choice nor does it contain like questions.
Chapter 4 & 5 practice set. The actual exam is not multiple choice nor does it contain like questions. MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.
More informationChapter 6. 1. What is the probability that a card chosen from an ordinary deck of 52 cards is an ace? Ans: 4/52.
Chapter 6 1. What is the probability that a card chosen from an ordinary deck of 52 cards is an ace? 4/52. 2. What is the probability that a randomly selected integer chosen from the first 100 positive
More informationName Please Print MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.
Review Problems for MidTerm 1, Fall 2012 (STA120 Cal.Poly. Pomona) Name Please Print MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Determine whether
More informationTRANSFORMATIONS OF RANDOM VARIABLES
TRANSFORMATIONS OF RANDOM VARIABLES 1. INTRODUCTION 1.1. Definition. We are often interested in the probability distributions or densities of functions of one or more random variables. Suppose we have
More informationSection 6.2 Definition of Probability
Section 6.2 Definition of Probability Probability is a measure of the likelihood that an event occurs. For example, if there is a 20% chance of rain tomorrow, that means that the probability that it will
More informationMULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.
Ch.  Problems to look at Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Provide an appropriate response. 1) A coin is tossed. Find the probability
More informationProbability QUESTIONS Principles of Math 12  Probability Practice Exam 1 www.math12.com
Probability QUESTIONS Principles of Math  Probability Practice Exam www.math.com Principles of Math : Probability Practice Exam Use this sheet to record your answers:... 4... 4... 4.. 6. 4.. 6. 7..
More informationExample: Use the Counting Principle to find the number of possible outcomes of these two experiments done in this specific order:
Section 4.3: Tree Diagrams and the Counting Principle It is often necessary to know the total number of outcomes in a probability experiment. The Counting Principle is a formula that allows us to determine
More informationDistributions. and Probability. Find the sample space of an experiment. Find the probability of an event. Sample Space of an Experiment
C Probability and Probability Distributions APPENDIX C.1 Probability A1 C.1 Probability Find the sample space of an experiment. Find the probability of an event. Sample Space of an Experiment When assigning
More informationX X X X X X X X X X X
AP Statistics Solutions to Packet 6 Probability The Study of Randomness The Idea of Probability Probability Models General Probability Rules HW #37 3, 4, 8, 11, 14, 15, 17, 18 6.3 SHAQ The basketball player
More informationI. WHAT IS PROBABILITY?
C HAPTER 3 PROBABILITY Random Experiments I. WHAT IS PROBABILITY? The weatherman on 0 o clock news program states that there is a 20% chance that it will snow tomorrow, a 65% chance that it will rain and
More information33 Probability: Some Basic Terms
33 Probability: Some Basic Terms In this and the coming sections we discuss the fundamental concepts of probability at a level at which no previous exposure to the topic is assumed. Probability has been
More informationSection 6.2 ~ Basics of Probability. Introduction to Probability and Statistics SPRING 2016
Section 6.2 ~ Basics of Probability Introduction to Probability and Statistics SPRING 2016 Objective After this section you will know how to find probabilities using theoretical and relative frequency
More informationContemporary Mathematics MAT 130. Probability. a) What is the probability of obtaining a number less than 4?
Contemporary Mathematics MAT 30 Solve the following problems:. A fair die is tossed. What is the probability of obtaining a number less than 4? What is the probability of obtaining a number less than
More informationFind the indicated probability. 1) If a single fair die is rolled, find the probability of a 4 given that the number rolled is odd.
Math 0 Practice Test 3 Fall 2009 Covers 7.5, 8.8.3 MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Find the indicated probability. ) If a single
More informationLesson 1: Experimental and Theoretical Probability
Lesson 1: Experimental and Theoretical Probability Probability is the study of randomness. For instance, weather is random. In probability, the goal is to determine the chances of certain events happening.
More informationH + T = 1. p(h + T) = p(h) x p(t)
Probability and Statistics Random Chance A tossed penny can land either heads up or tails up. These are mutually exclusive events, i.e. if the coin lands heads up, it cannot also land tails up on the same
More informationChapter 15. Definitions: experiment: is the act of making an observation or taking a measurement.
MATH 11008: Probability Chapter 15 Definitions: experiment: is the act of making an observation or taking a measurement. outcome: one of the possible things that can occur as a result of an experiment.
More informationMATH 251  Introduction to MATLAB
KINGDOM OF SAUDI ARABIA  ALIMAM MUHAMMAD BIN SAUD ISLAMIC UNIVERSITY  FACULTY OF SCIENCES   May 9, 2011 Semester 2, 14311432 (201020111) MATH 251  Introduction to MATLAB Exercise sheet 6 Dr. Samy
More informationExample: If we roll a dice and flip a coin, how many outcomes are possible?
12.5 Tree Diagrams Sample space Sample point Counting principle Example: If we roll a dice and flip a coin, how many outcomes are possible? TREE DIAGRAM EXAMPLE: Use a tree diagram to show all the possible
More informationProbability distributions
Probability distributions (Notes are heavily adapted from Harnett, Ch. 3; Hayes, sections 2.142.19; see also Hayes, Appendix B.) I. Random variables (in general) A. So far we have focused on single events,
More information2. How many ways can the letters in PHOENIX be rearranged? 7! = 5,040 ways.
Math 142 September 27, 2011 1. How many ways can 9 people be arranged in order? 9! = 362,880 ways 2. How many ways can the letters in PHOENIX be rearranged? 7! = 5,040 ways. 3. The letters in MATH are
More informationDetermine the empirical probability that a person selected at random from the 1000 surveyed uses Mastercard.
Math 120 Practice Exam II Name You must show work for credit. 1) A pair of fair dice is rolled 50 times and the sum of the dots on the faces is noted. Outcome 2 4 5 6 7 8 9 10 11 12 Frequency 6 8 8 1 5
More informationUpper primary (some maths ability required) Probability, scientific method, mathematical average, graphing
Lesson Plan 19 Flipping Coins Brief description Flipping a coin one hundred times might sound mundane but it always produces truly astonishing results. You ll astonish your class by correctly identifying
More informationAn event is any set of outcomes of a random experiment; that is, any subset of the sample space of the experiment. The probability of a given event
An event is any set of outcomes of a random experiment; that is, any subset of the sample space of the experiment. The probability of a given event is the sum of the probabilities of the outcomes in the
More informationProbability. A random sample is selected in such a way that every different sample of size n has an equal chance of selection.
1 3.1 Sample Spaces and Tree Diagrams Probability This section introduces terminology and some techniques which will eventually lead us to the basic concept of the probability of an event. The Rare Event
More informationChingHan Hsu, BMES, National Tsing Hua University c 2014 by ChingHan Hsu, Ph.D., BMIR Lab
Lecture 2 Probability BMIR Lecture Series in Probability and Statistics ChingHan Hsu, BMES, National Tsing Hua University c 2014 by ChingHan Hsu, Ph.D., BMIR Lab 2.1 1 Sample Spaces and Events Random
More informationProbability: Terminology and Examples Class 2, 18.05, Spring 2014 Jeremy Orloff and Jonathan Bloom
Probability: Terminology and Examples Class 2, 18.05, Spring 2014 Jeremy Orloff and Jonathan Bloom 1 Learning Goals 1. Know the definitions of sample space, event and probability function. 2. Be able to
More informationProbability and the Idea of Chance
Probability and the Idea of Chance Instructions Activity 1. The Idea of Chance Consider a simple demonstration of the operation of chance (i.e., probability) in the tossing of coins. It is usually impossible
More informationEvaluating Statements About Probability
CONCEPT DEVELOPMENT Mathematics Assessment Project CLASSROOM CHALLENGES A Formative Assessment Lesson Evaluating Statements About Probability Mathematics Assessment Resource Service University of Nottingham
More informationMath 3C Homework 3 Solutions
Math 3C Homework 3 s Ilhwan Jo and Akemi Kashiwada ilhwanjo@math.ucla.edu, akashiwada@ucla.edu Assignment: Section 2.3 Problems 2, 7, 8, 9,, 3, 5, 8, 2, 22, 29, 3, 32 2. You draw three cards from a standard
More informationPart II  Random Processes
Part II  Random Processes Goals for this unit: Give overview of concepts from discrete probability Give analogous concepts from continuous probability See how the Monte Carlo method can be viewed as sampling
More informationExam 3 Review/WIR 9 These problems will be started in class on April 7 and continued on April 8 at the WIR.
Exam 3 Review/WIR 9 These problems will be started in class on April 7 and continued on April 8 at the WIR. 1. Urn A contains 6 white marbles and 4 red marbles. Urn B contains 3 red marbles and two white
More informationMTH 110 Chapter 6 Practice Test Problems
MTH 0 Chapter 6 Practice Test Problems Name ) Probability A) assigns realistic numbers to random events. is the branch of mathematics that studies longterm patterns of random events by repeated observations.
More information15 Chances, Probabilities, and Odds
15 Chances, Probabilities, and Odds 15.1 Random Experiments and Sample Spaces 15.2 Counting Outcomes in Sample Spaces 15.3 Permutations and Combinations 15.4 Probability Spaces 15.5 Equiprobable Spaces
More informationProbability: Foundations for Inference
Chapter Number and Title 325 P A R T III Probability: Foundations for Inference 6 7 8 9 Probability: The Study of Randomness Random Variables The Binomial and Geometric Distributions Sampling Distributions
More informationChapter 4 Probability
The Big Picture of Statistics Chapter 4 Probability Section 42: Fundamentals Section 43: Addition Rule Sections 44, 45: Multiplication Rule Section 47: Counting (next time) 2 What is probability?
More informationA (random) experiment is an activity with observable results. The sample space S of an experiment is the set of all outcomes.
Chapter 7 Probability 7.1 Experiments, Sample Spaces, and Events A (random) experiment is an activity with observable results. The sample space S of an experiment is the set of all outcomes. Each outcome
More informationCombinatorics. Chapter 1. 1.1 Factorials
Chapter 1 Combinatorics Copyright 2009 by David Morin, morin@physics.harvard.edu (Version 4, August 30, 2009) This file contains the first three chapters (plus some appendices) of a potential book on Probability
More informationMAT 1000. Mathematics in Today's World
MAT 1000 Mathematics in Today's World We talked about Cryptography Last Time We will talk about probability. Today There are four rules that govern probabilities. One good way to analyze simple probabilities
More information(b) You draw two balls from an urn and track the colors. When you start, it contains three blue balls and one red ball.
Examples for Chapter 3 Probability Math 10401 Section 3.1 1. Draw a tree diagram for each of the following situations. State the size of the sample space. (a) You flip a coin three times. (b) You draw
More information2. Three dice are tossed. Find the probability of a) a sum of 4; or b) a sum greater than 4 (may use complement)
Probability Homework Section P4 1. A twoperson committee is chosen at random from a group of four men and three women. Find the probability that the committee contains at least one man. 2. Three dice
More informationAlg2 Notes 7.4.notebook February 15, Two Way Tables
7 4 Two Way Tables Skills we've learned 1. Find the probability of rolling a number greater than 2 and then rolling a multiple of 3 when a number cube is rolled twice. 2. A drawer contains 8 blue socks,
More informationDiscrete and Continuous Random Variables. Summer 2003
Discrete and Continuous Random Variables Summer 003 Random Variables A random variable is a rule that assigns a numerical value to each possible outcome of a probabilistic experiment. We denote a random
More informationnumber of favorable outcomes total number of outcomes number of times event E occurred number of times the experiment was performed.
12 Probability 12.1 Basic Concepts Start with some Definitions: Experiment: Any observation of measurement of a random phenomenon is an experiment. Outcomes: Any result of an experiment is called an outcome.
More informationChapter 5  Probability
Chapter 5  Probability 5.1 Basic Ideas An experiment is a process that, when performed, results in exactly one of many observations. These observations are called the outcomes of the experiment. The set
More informationPattern matching probabilities and paradoxes A new variation on Penney s coin game
Osaka Keidai Ronshu, Vol. 63 No. 4 November 2012 Pattern matching probabilities and paradoxes A new variation on Penney s coin game Yutaka Nishiyama Abstract This paper gives an outline of an interesting
More informationMost of us would probably believe they are the same, it would not make a difference. But, in fact, they are different. Let s see how.
PROBABILITY If someone told you the odds of an event A occurring are 3 to 5 and the probability of another event B occurring was 3/5, which do you think is a better bet? Most of us would probably believe
More informationWhat Do You Expect?: Homework Examples from ACE
What Do You Expect?: Homework Examples from ACE Investigation 1: A First Look at Chance, ACE #3, #4, #9, #31 Investigation 2: Experimental and Theoretical Probability, ACE #6, #12, #9, #37 Investigation
More informationThis is Basic Concepts of Probability, chapter 3 from the book Beginning Statistics (index.html) (v. 1.0).
This is Basic Concepts of Probability, chapter 3 from the book Beginning Statistics (index.html) (v. 1.0). This book is licensed under a Creative Commons byncsa 3.0 (http://creativecommons.org/licenses/byncsa/
More informationTopic 6: Conditional Probability and Independence
Topic 6: September 1520, 2011 One of the most important concepts in the theory of probability is based on the question: How do we modify the probability of an event in light of the fact that something
More informationUsing Laws of Probability. Sloan Fellows/Management of Technology Summer 2003
Using Laws of Probability Sloan Fellows/Management of Technology Summer 2003 Uncertain events Outline The laws of probability Random variables (discrete and continuous) Probability distribution Histogram
More informationHoover High School Math League. Counting and Probability
Hoover High School Math League Counting and Probability Problems. At a sandwich shop there are 2 kinds of bread, 5 kinds of cold cuts, 3 kinds of cheese, and 2 kinds of dressing. How many different sandwiches
More informationConsider a system that consists of a finite number of equivalent states. The chance that a given state will occur is given by the equation.
Probability and the ChiSquare Test written by J. D. Hendrix Learning Objectives Upon completing the exercise, each student should be able: to determine the chance that a given state will occur in a system
More informationProbabilistic Strategies: Solutions
Probability Victor Xu Probabilistic Strategies: Solutions Western PA ARML Practice April 3, 2016 1 Problems 1. You roll two 6sided dice. What s the probability of rolling at least one 6? There is a 1
More informationhttps://assessment.casa.uh.edu/assessment/printtest.htm PRINTABLE VERSION Quiz 10
1 of 8 4/9/2013 8:17 AM PRINTABLE VERSION Quiz 10 Question 1 Let A and B be events in a sample space S such that P(A) = 0.34, P(B) = 0.39 and P(A B) = 0.19. Find P(A B). a) 0.4872 b) 0.5588 c) 0.0256 d)
More informationPROBABILITY 14.3. section. The Probability of an Event
4.3 Probability (43) 727 4.3 PROBABILITY In this section In the two preceding sections we were concerned with counting the number of different outcomes to an experiment. We now use those counting techniques
More informationProbability (Day 1 and 2) Blue Problems. Independent Events
Probability (Day 1 and ) Blue Problems Independent Events 1. There are blue chips and yellow chips in a bag. One chip is drawn from the bag. The chip is placed back into the bag. A second chips is then
More informationLecture 2: Probability
Lecture 2: Probability Assist. Prof. Dr. Emel YAVUZ DUMAN MCB1007 Introduction to Probability and Statistics İstanbul Kültür University Outline 1 Introduction 2 Sample Spaces 3 Event 4 The Probability
More informationGraduate Management Admission Test (GMAT) Quantitative Section
Graduate Management Admission Test (GMAT) Quantitative Section In the math section, you will have 75 minutes to answer 37 questions: A of these question are experimental and would not be counted toward
More informationAMC 8 Practice Questions Example
AMC 8 Practice Questions Example Each of the following four large congruent squares is subdivided into combinations of congruent triangles or rectangles and is partially shaded. What percent of the total
More informationBayesian Tutorial (Sheet Updated 20 March)
Bayesian Tutorial (Sheet Updated 20 March) Practice Questions (for discussing in Class) Week starting 21 March 2016 1. What is the probability that the total of two dice will be greater than 8, given that
More informationG r a d e 1 2 A p p l i e d M a t h e m a t i c s ( 4 0 S ) Midterm Practice Examination Answer Key
G r a d e 1 2 A p p l i e d M a t h e m a t i c s ( 4 0 S ) Midterm Practice Examination Answer Key G r a d e 1 2 A p p l i e d M a t h e m a t i c s Midterm Practice Examination Answer Key Name: Student
More informationFor 2 coins, it is 2 possible outcomes for the first coin AND 2 possible outcomes for the second coin
Problem Set 1. 1. If you have 10 coins, how many possible combinations of heads and tails are there for all 10 coins? Hint: how many combinations for one coin; two coins; three coins? Here there are 2
More informationSession 8 Probability
Key Terms for This Session Session 8 Probability Previously Introduced frequency New in This Session binomial experiment binomial probability model experimental probability mathematical probability outcome
More informationSHORT ANSWER. Write the word or phrase that best completes each statement or answers the question. Regular smoker
Exam Chapters 4&5 Review SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question. Provide an appropriate response. 1) A 28yearold man pays $181 for a oneyear
More informationAP Stats  Probability Review
AP Stats  Probability Review Multiple Choice Identify the choice that best completes the statement or answers the question. 1. I toss a penny and observe whether it lands heads up or tails up. Suppose
More informationEvents. Independence. Coin Tossing. Random Phenomena
Random Phenomena Events A random phenomenon is a situation in which we know what outcomes could happen, but we don t know which particular outcome did or will happen For any random phenomenon, each attempt,
More informationSAMPLING DISTRIBUTIONS
0009T_c07_308352.qd 06/03/03 20:44 Page 308 7Chapter SAMPLING DISTRIBUTIONS 7.1 Population and Sampling Distributions 7.2 Sampling and Nonsampling Errors 7.3 Mean and Standard Deviation of 7.4 Shape of
More information+ Section 6.2 and 6.3
Section 6.2 and 6.3 Learning Objectives After this section, you should be able to DEFINE and APPLY basic rules of probability CONSTRUCT Venn diagrams and DETERMINE probabilities DETERMINE probabilities
More informationV. RANDOM VARIABLES, PROBABILITY DISTRIBUTIONS, EXPECTED VALUE
V. RANDOM VARIABLES, PROBABILITY DISTRIBUTIONS, EXPETED VALUE A game of chance featured at an amusement park is played as follows: You pay $ to play. A penny and a nickel are flipped. You win $ if either
More informationMATH 10: Elementary Statistics and Probability Chapter 3: Probability Topics
MATH 10: Elementary Statistics and Probability Chapter 3: Probability Topics Tony Pourmohamad Department of Mathematics De Anza College Spring 2015 Objectives By the end of this set of slides, you should
More informationIntroduction to Probability
3 Introduction to Probability Given a fair coin, what can we expect to be the frequency of tails in a sequence of 10 coin tosses? Tossing a coin is an example of a chance experiment, namely a process which
More information8.1 Introduction to Probability
Math 12 8.1 Introduction to Probability Recall: If an experiment has n equally likely outcomes of which r outcomes are favourable to event A, then the probability of event A is: PA ( ) r n Example 1: A
More informationProbability and Statistics 5 th Grade
Probability and Statistics 5 th Grade Bubble in your answers on the answer sheet. Be sure to erase all mistakes completely. You do not need to bubble in leading zeros the answer of 7 does not need to be
More informationConditional Probability and General Multiplication Rule
Conditional Probability and General Multiplication Rule Objectives:  Identify Independent and dependent events  Find Probability of independent events  Find Probability of dependent events  Find Conditional
More informationProbability and Hypothesis Testing
B. Weaver (3Oct25) Probability & Hypothesis Testing. PROBABILITY AND INFERENCE Probability and Hypothesis Testing The area of descriptive statistics is concerned with meaningful and efficient ways of
More informationDefinition of Random Variable A random variable is a function from a sample space S into the real numbers.
.4 Random Variable Motivation example In an opinion poll, we might decide to ask 50 people whether they agree or disagree with a certain issue. If we record a for agree and 0 for disagree, the sample space
More informationChapter 4: Probability and Counting Rules
Chapter 4: Probability and Counting Rules Learning Objectives Upon successful completion of Chapter 4, you will be able to: Determine sample spaces and find the probability of an event using classical
More informationProbability and Statistics 5 th Grade
5 th Grade If your answer is a fraction like 3, bubble in 3. 1. 2 points: What is the probability of choosing either an ace or a two from a standard deck of cards? Express your answer 2. 2 points: If you
More informationFor two disjoint subsets A and B of Ω, say that A and B are disjoint events. For disjoint events A and B we take an axiom P(A B) = P(A) + P(B)
Basic probability A probability space or event space is a set Ω together with a probability measure P on it. This means that to each subset A Ω we associate the probability P(A) = probability of A with
More informationProbability experiment. Toss two coins Toss three coins Roll two dice
Probability experiment Toss two coins Toss three coins Roll two dice Activity 1: An Experiment with 2 coins WE TOSS TWO COINS When we toss two coins at the same time, the possible outcomes are: (two Heads)
More informationStudy Guide and Review
State whether each sentence is or false. If false, replace the underlined term to make a sentence. 1. A tree diagram uses line segments to display possible outcomes. 2. A permutation is an arrangement
More informationMCA SEMESTER  II PROBABILITY & STATISTICS
MCA SEMESTER  II PROBABILITY & STATISTICS mca5 230 PROBABILITY 1 INTRODUCTION TO PROBABILITY Managers need to cope with uncertainty in many decision making situations. For example, you as a manager may
More informationIntroduction to the Practice of Statistics Sixth Edition Moore, McCabe
Introduction to the Practice of Statistics Sixth Edition Moore, McCabe Section 5.1 Homework Answers 5.9 What is wrong? Explain what is wrong in each of the following scenarios. (a) If you toss a fair coin
More informationMULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.
Practice Test Chapter 9 Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Find the odds. ) Two dice are rolled. What are the odds against a sum
More informationQuestion: What is the probability that a fivecard poker hand contains a flush, that is, five cards of the same suit?
ECS20 Discrete Mathematics Quarter: Spring 2007 Instructor: John Steinberger Assistant: Sophie Engle (prepared by Sophie Engle) Homework 8 Hints Due Wednesday June 6 th 2007 Section 6.1 #16 What is the
More informationMath 118 Study Guide. This study guide is for practice only. The actual question on the final exam may be different.
Math 118 Study Guide This study guide is for practice only. The actual question on the final exam may be different. Convert the symbolic compound statement into words. 1) p represents the statement "It's
More informationPlease circle A or B or I in the third column to indicate your chosen option in this table.
The choice of A means that the payoff to you will be 80 rupees if heads lands up from the coin toss and 130 rupees if tails lands up from the coin toss if this table is randomly chosen The choice of B
More informationSample Space, Events, and PROBABILITY
Sample Space, Events, and PROBABILITY In this chapter, we will study the topic of probability which is used in many different areas including insurance, science, marketing, government and many other areas.
More informationProbability. Sample space: all the possible outcomes of a probability experiment, i.e., the population of outcomes
Probability Basic Concepts: Probability experiment: process that leads to welldefined results, called outcomes Outcome: result of a single trial of a probability experiment (a datum) Sample space: all
More information