# RINGS OF ZERO-DIVISORS

Size: px
Start display at page:

## Transcription

1 RINGS OF ZERO-DIVISORS P. M. COHN 1. Introduction. A well known theorem of algebra states that any integral domain can be embedded in a field. More generally [2, p. 39 ff. ], any commutative ring R with unit-element can be embedded in a ring 5 with the same unit-element as 7?, such that any element of S is either invertible or the product of an invertible element by a zero-divisor of 7?. The following statement can, in a very rough sense, be regarded as a "dual": Any commutative ring R with unit-element can be embedded in a ring S with the same unit-element as 7? such that every element of S is either a zero-divsor or an invertible element of 7?. This statement will be proved in 2 (Theorem 1) and as in the theorem quoted we have the corollary that any commutative ring with a unit-element 1, which has no invertible elements other than 1, can be embedded in a ring in which every element ^1 is a zerodivisor. We are thus led to consider commutative rings with unitelement 1, in which every element 9*1 is a zero-divisor. Such rings will be called O-rings for short. It is clear that every Boolean ring with a unit-element is an O-ring, and Theorem 1 shows without difficulty that G-rings exist which are not Boolean; this answers a question raised by Kaplansky.1 An O-ring may be regarded as an algebra over the field of two elements and thus is a special case of an O-algebra, viz. an algebra with unit-element over a field F in which every element not in F is a zero-divisor. Again any algebra with no invertible elements other than those of F can be embedded in an O-algebra, and some theorems on the structure of these algebras are proved in 3. In particular, any O-algebra R over a field F is a subdirect product of extension fields of F; the number of components is infinite unless 7? = F or R is Boolean. Moreover, in any representation of 7? as such a subdirect product, and for any element a of 7? and any equation (in one indeterminate) over F, there are infinitely many components of a satisfying this equation, unless a is a scalar or F is the field of two elements and a is idempotent. Nevertheless, (non-boolean) O-rings exist which are countable. It is also noted that any O-algebra, which is regular in the sense of von Neumann, is of dimension 1 or Boolean. Received by the editors March 14, Communicated to the writer by M. P. Drazin. It was this question which gave rise to the present note. 909

2 910 P. M. COHN [December 2. The embedding theorem. Throughout this note, we take "ring" to mean "commutative ring with unit-element"; further, to say "P is a subring of R" is understood to mean "subring with the same unitelement," and similarly, to embed R in a ring 5 means to embed as a subring, i.e. with the same unit-element.2 The common unit-element will always be denoted by 1. These conventions apply in particular when R is an algebra over a field F, so that in this case F may be considered as a subalgebra of R. The result to be proved may now be stated as follows: Theorem I. Any ring R may be embedded in a ring S such that any element s of S is a zero-divisor unless ser and s has an inverse in R. If R is an algebra over a field F then S may also be taken to be an algebra over F. The essential step towards establishing this theorem is the proof of Lemma 1. Let R be any ring and a any element of R which has no inverse in R. Then there exists a ring R' containing R as a subring such that (i) R' contains an element a'7^0 satisfying aa' =0, (ii) any invertible element of R' belongs to R and is already invertible in R. Proof. Let R[x] be the ring of polynomials in an indeterminate x with coefficients in R. Since R has a 1, every proper ideal of R is contained in a maximal ideal. Now a has no inverse, therefore the principal ideal generated by a is proper and hence is contained in a maximal ideal, M say, of R. Let M' be the ideal of R[x] generated by the elements mx(mem). Then M' consists precisely of the elements mxu (mem, m 2c[x]), and it follows that (1) M' C\ R = 0, (2) x E M'. Equation (1) is clear, since an equation of the form b = mxu, b E R, m E M,uE R[x] implies b = 0, by a comparison of the terms of degree zero. To prove (2), let us suppose that xem', so that (3) x = mxu, where mem and u = uo+uxx+ +unxn (UiCR), say; by com- 2 This amounts to regarding the unit-element as 0-ary operator for the class of rings considered.

3 i958] RINGS OF ZERO-DIVISORS 911 paring the terms of degree 1 in (3) we obtain 1 =mu0, which contradicts the fact that M is proper. We now put R'=R[x]/M'. By (1), the natural homomorphism of R[x] onto R', when restricted to 7?, is one-one; we may therefore identify 7? with a subring of 7?'. If we write a' for the image of x under the natural homomorphism, then (2) shows that a' 9*0, while aa' = 0, because axem. It only remains to show that any invertible element of 7?' belongs to 7?. Let u' then be an element of 7?' with inverse v', so that u'v' = l. Going back to 7?[x], we find elements u, v mapping onto u', v' respectively, i.e. we have an equation of the form (4) uv = 1 + xmw w E R[x\. Let w= 52M»X*> v== y.fl.#'. w= y,w,:x\ where m,-, Vi, WiER- If u is of degree 0, then uer, and by comparing the terms independent of x in (4) we find that uvo = 1; thus u belongs to 7? and is invertible in 7?, and hence the same is true for u'. In what follows we may therefore suppose that u is of positive degree, r say. By symmetry, v may also be taken to have positive degree, s say. Now urxrem' whenever urem, and since we are only interested in the residue class of m (mod M'), we may assume utem. Similarly svs ik7 and since M is maximal, urv,em. Equating coefficients of xr+" in (4) we find UrVs = WWr+»-l M, a contradiction. This shows that all the invertible elements of 7?' belong to 7? and have their inverses in 7?, and the lemma is established. It is now easy to prove Theorem 1, using a Steinitz tower construction. Given any ring 7? and any aer which has no inverse we can by Lemma 1, embed 7? in a ring in which a becomes a zero-divisor, without increasing the set of invertible elements. By transfinite induction we can embed 7? in a ring 7?' without increasing the set of invertible elements, and such that every element of 7? which is not invertible becomes a zero-divisor in 7?'. Starting with Ra = R, we now define Rn inductively by the equation i?n+i=7^. In this way we obtain an ascending sequence of rings RCRiCRtC" The union S of these rings is again a ring; this ring contains 7? and by construction, every invertible element of 5 belongs to 7? and is invertible in 7?. Further, any element of 5 which is not invertible belongs to Rn lor some n, and hence is a zero-divisor in Rn+i; a fortiori it is a zero-divisor in 5, and this completes the proof of the theorem

4 912 P. M. COHN [December in the case of rings. If R is an algebra over a field F, all the rings occurring become algebras over F and the proof goes through unchanged. From the proof of Theorem 1 it is clear that 5 has the same cardinal as R or ft0, whichever is the greater. In particular, if R is countable, then so is 5. If in Theorem 1 we replace elements by finite subsets, we obtain the following generalization: Theorem 1'. Any ring R may be embedded in a ring S such that (i) S has no invertible elements other than those of R, (ii) every proper ideal of R generates a proper ideal of S and (iii) every finitely generated proper ideal of S has a nontrivial annihilator. Clearly this includes Theorem 1, since an element a- of 5 either generates a proper ideal, in which case it is a zero-divisor, by (iii), or it is invertible and then both a and its inverse belong to R, by (i). As we shall not have occasion to use Theorem 1', we omit the proof which is very similar to that of Theorem Algebras without nontrivial units and O-algebras. Let 2? be a ring in which no element ^1 is invertible. Since 1 necessarily has an inverse, we have 1 = 1, whence 2x = 0 for all xer- Therefore R can be regarded as an algebra over F = GF(2), the field of two elements, and R has no "units" other than the nonzero elements of F. More generally, we shall say that an algebra R over a field F has no nontrivial units if the only invertible elements of R are the nonzero elements of F.3 If moreover, all the elements of R except those in F are zero-divisors, we call R an O-algebra. From Theorem 1 and the remark following it we now obtain Theorem 1. Any algebra R over F without nontrivial units may be embedded in an O-algebra 5. If R is countable, so is S. Taking the groundfield to be GF(2), we obtain the Corollary. Any ring with no invertible elements other than 1 may be embedded in an O-ring, which is countable if the given ring was countable. Returning to algebras without nontrivial units, we have the following structure theorem. * We recall that R contains 1 and hence all the elements of F. The observation that the arguments as originally presented for the case i7=gf(2) carry over to the general case is due to the referee.

5 1958] RINGS OF ZERO-DIVISORS 913 Theorem 3. Let R be an algebra over F without nontrivial units. Then R is a subdirect product* of extension fields of F, and every element x of R which is not in F is transcendental over F, unless F = GF(2) and x is idempotent.6 If, moreover, R has finite dimension over F, then either R = F or R is a Boolean algebra. Proof. We begin by showing that /, the Jacobson radical of 7?, is zero. Let aej, then 1 +a has an inverse and so belongs to F, whence aef; this shows that JQF. But l J, so that J is a proper ideal in 7? and therefore also in F, whence 7 = 0. It follows6 that 7? is a subdirect product of fields which in our case are algebras over F, i.e. extension fields of F. If 7? is of finite dimension then the number of factors is finite and 7? is in this case a direct product of extension fields of F.7 Since R has no nontrivial units, this is possible only if (i) R F or (ii) F = GF(2) and 7? is the direct sum of a finite number of copies of F, i.e. if 7? is a Boolean algebra. This proves the last part; to complete the proof, we consider an element x of 7? which is algebraic over F. Then the subalgebra F[x] generated by x is finite-dimensional and has no nontrivial units, whence by the part just proved, either F[x] = F, i.e. xef, or F[x] is Boolean, in which case F = GF(2) and x2 = x, which is what we wished to show. It is clear that a Boolean algebra is an O-ring, since each x satisfies x(l x) =0. To obtain an O-ring which is not Boolean, we take a non- Boolean algebra over GF(2) without nontrivial units, e.g. the algebra of polynomials in a single variable over GF(2). By Theorem 2, Corollary, this algebra may be embedded in an G-ring, which is not Boolean since it contains elements which are not idempotent. Moreover it is countable. In a similar way we obtain for a general field F an O-algebra different from F and of cardinal max(ts0, card F). We note that an algebra R over F without nontrivial units which is regular8 either coincides with F or is Boolean. For by the regularity there exists for each a 7? an element x 7? such that xa^ = a. Hence (l+a(l-x))(l-xa(l-x))=l, so that l+a(l-x)=yef. Now a=y+ax 1, and multiplying by a we find that a2 =ya+ xa2 a =ya, which shows that a is algebraic over F; the result stated now follows from Theorem 3. 4 The term "product" is used here in the sense of Bourbaki. 6 I am indebted to the referee for the assertion about elements of R, which allows some of the later proofs to be shortened. «McCoy [1, p. 135]. 7 This follows from Theorem 32 of McCoy [l, p. 125]. 8 I.e., to every a i? there corresponds an xer satisfying axa a. M. P. Drazin has proved, somewhat more generally, that in any (not necessarily commutative) ring with 1 and no other invertible elements, every regular element is idempotent.

6 914 P. M. COHN From the proof of the last assertion of Theorem 3 we see that for an algebra over F without nontrivial units which is not equal to F itself or Boolean, any representation as a subdirect product must contain infinitely many factors. In the case of O-algebras we can say rather more. Theorem 4. Let R be any O-algebra over F, and a an element of R which is transcendental over F. Then in any representation of R as a subdirect product of fields and for any equation (5) /( = 0 of positive degree over F, there are infinitely many components of a satisfying (5). An O-algebra has no nontrivial units, so that R can be written as a subdirect product of fields, by Theorem 3. This shows that the assertion is never vacuous. To prove it, we consider first the special case /( ) =, i.e. we show that infinitely many components of a are zero. For if there is a transcendental element of R with only finitely many components equal to zero, let a (at) (iei) be such an element, with components a,-, where9 ax = a2 = = ak = 0, at f^ 0 (i^l, 2,, k). We may suppose a chosen so that k has its least value (k^o). Since a ( 2*", there exists ber, b^o, such that ab=0. This equation shows that for each iei either o, = 0 or >; = 0. In particular bi = 0 except possibly ior i = l,, k, and since b^o, some bi must be different from zero, which shows that k>0. Now the element a+b has fewer than k components equal to 0, since at+bi = 0 only if O; = &, = 0. By the hypothesis on k, a+b is algebraic over F; therefore either a+b=yef and ab=a2 ya = 0, or P = GF(2) and a+b is idempotent. But then each at (and each &,-) is either 0 or 1, so that we have a2 = a. In either case we have found an equation satisfied by a, which contradicts the fact that a was chosen transcendental. To complete the proof, suppose that a has only finitely many components satisfying (5). This means that f(a) has only finitely many components equal to zero, and by what has been proved,/(a) is algebraic over F, i.e. either/(a) =yef or f(a)2=f(a). In either case a is algebraic over F, and this establishes the theorem. References 1. N. H. McCoy, Rings and ideals, New York, D. G. Northcott, Ideal theory, Cambridge, The University, Manchester, England 9 To save notation we suppose that the appropriate factors in the product have been indexed by the integers from 1 to k.

### I. GROUPS: BASIC DEFINITIONS AND EXAMPLES

I GROUPS: BASIC DEFINITIONS AND EXAMPLES Definition 1: An operation on a set G is a function : G G G Definition 2: A group is a set G which is equipped with an operation and a special element e G, called

### Cancelling an a on the left and a b on the right, we get b + a = a + b, which is what we want. Note the following identity.

15. Basic Properties of Rings We first prove some standard results about rings. Lemma 15.1. Let R be a ring and let a and b be elements of R. Then (1) a0 = 0a = 0. (2) a( b) = ( a)b = (ab). Proof. Let

### GROUPS SUBGROUPS. Definition 1: An operation on a set G is a function : G G G.

Definition 1: GROUPS An operation on a set G is a function : G G G. Definition 2: A group is a set G which is equipped with an operation and a special element e G, called the identity, such that (i) the

### UNIT 2 MATRICES - I 2.0 INTRODUCTION. Structure

UNIT 2 MATRICES - I Matrices - I Structure 2.0 Introduction 2.1 Objectives 2.2 Matrices 2.3 Operation on Matrices 2.4 Invertible Matrices 2.5 Systems of Linear Equations 2.6 Answers to Check Your Progress

### Elementary Number Theory We begin with a bit of elementary number theory, which is concerned

CONSTRUCTION OF THE FINITE FIELDS Z p S. R. DOTY Elementary Number Theory We begin with a bit of elementary number theory, which is concerned solely with questions about the set of integers Z = {0, ±1,

### Finite Sets. Theorem 5.1. Two non-empty finite sets have the same cardinality if and only if they are equivalent.

MATH 337 Cardinality Dr. Neal, WKU We now shall prove that the rational numbers are a countable set while R is uncountable. This result shows that there are two different magnitudes of infinity. But we

### Diagonal, Symmetric and Triangular Matrices

Contents 1 Diagonal, Symmetric Triangular Matrices 2 Diagonal Matrices 2.1 Products, Powers Inverses of Diagonal Matrices 2.1.1 Theorem (Powers of Matrices) 2.2 Multiplying Matrices on the Left Right by

### 3. Prime and maximal ideals. 3.1. Definitions and Examples.

COMMUTATIVE ALGEBRA 5 3.1. Definitions and Examples. 3. Prime and maximal ideals Definition. An ideal P in a ring A is called prime if P A and if for every pair x, y of elements in A\P we have xy P. Equivalently,

### ZERO-DIVISOR GRAPHS OF POLYNOMIALS AND POWER SERIES OVER COMMUTATIVE RINGS

ZERO-DIVISOR GRAPHS OF POLYNOMIALS AND POWER SERIES OVER COMMUTATIVE RINGS M. AXTELL, J. COYKENDALL, AND J. STICKLES Abstract. We recall several results of zero divisor graphs of commutative rings. We

### a 11 x 1 + a 12 x 2 + + a 1n x n = b 1 a 21 x 1 + a 22 x 2 + + a 2n x n = b 2.

Chapter 1 LINEAR EQUATIONS 1.1 Introduction to linear equations A linear equation in n unknowns x 1, x,, x n is an equation of the form a 1 x 1 + a x + + a n x n = b, where a 1, a,..., a n, b are given

### Continued Fractions and the Euclidean Algorithm

Continued Fractions and the Euclidean Algorithm Lecture notes prepared for MATH 326, Spring 997 Department of Mathematics and Statistics University at Albany William F Hammond Table of Contents Introduction

### 5.1 Commutative rings; Integral Domains

5.1 J.A.Beachy 1 5.1 Commutative rings; Integral Domains from A Study Guide for Beginner s by J.A.Beachy, a supplement to Abstract Algebra by Beachy / Blair 23. Let R be a commutative ring. Prove the following

### Computer Algebra for Computer Engineers

p.1/14 Computer Algebra for Computer Engineers Preliminaries Priyank Kalla Department of Electrical and Computer Engineering University of Utah, Salt Lake City p.2/14 Notation R: Real Numbers Q: Fractions

### Chapter 4, Arithmetic in F [x] Polynomial arithmetic and the division algorithm.

Chapter 4, Arithmetic in F [x] Polynomial arithmetic and the division algorithm. We begin by defining the ring of polynomials with coefficients in a ring R. After some preliminary results, we specialize

### RINGS WITH A POLYNOMIAL IDENTITY

RINGS WITH A POLYNOMIAL IDENTITY IRVING KAPLANSKY 1. Introduction. In connection with his investigation of projective planes, M. Hall [2, Theorem 6.2]* proved the following theorem: a division ring D in

### POLYNOMIAL RINGS AND UNIQUE FACTORIZATION DOMAINS

POLYNOMIAL RINGS AND UNIQUE FACTORIZATION DOMAINS RUSS WOODROOFE 1. Unique Factorization Domains Throughout the following, we think of R as sitting inside R[x] as the constant polynomials (of degree 0).

### Mathematics Course 111: Algebra I Part IV: Vector Spaces

Mathematics Course 111: Algebra I Part IV: Vector Spaces D. R. Wilkins Academic Year 1996-7 9 Vector Spaces A vector space over some field K is an algebraic structure consisting of a set V on which are

### T ( a i x i ) = a i T (x i ).

Chapter 2 Defn 1. (p. 65) Let V and W be vector spaces (over F ). We call a function T : V W a linear transformation form V to W if, for all x, y V and c F, we have (a) T (x + y) = T (x) + T (y) and (b)

### Appendix A. Appendix. A.1 Algebra. Fields and Rings

Appendix A Appendix A.1 Algebra Algebra is the foundation of algebraic geometry; here we collect some of the basic algebra on which we rely. We develop some algebraic background that is needed in the text.

### THE DIMENSION OF A VECTOR SPACE

THE DIMENSION OF A VECTOR SPACE KEITH CONRAD This handout is a supplementary discussion leading up to the definition of dimension and some of its basic properties. Let V be a vector space over a field

### COMMUTATIVE RINGS. Definition: A domain is a commutative ring R that satisfies the cancellation law for multiplication:

COMMUTATIVE RINGS Definition: A commutative ring R is a set with two operations, addition and multiplication, such that: (i) R is an abelian group under addition; (ii) ab = ba for all a, b R (commutative

### 11 Ideals. 11.1 Revisiting Z

11 Ideals The presentation here is somewhat different than the text. In particular, the sections do not match up. We have seen issues with the failure of unique factorization already, e.g., Z[ 5] = O Q(

### Solutions A ring A is called a Boolean ring if x 2 = x for all x A.

1. A ring A is called a Boolean ring if x 2 = x for all x A. (a) Let E be a set and 2 E its power set. Show that a Boolean ring structure is defined on 2 E by setting AB = A B, and A + B = (A B c ) (B

### Non-unique factorization of polynomials over residue class rings of the integers

Comm. Algebra 39(4) 2011, pp 1482 1490 Non-unique factorization of polynomials over residue class rings of the integers Christopher Frei and Sophie Frisch Abstract. We investigate non-unique factorization

### it is easy to see that α = a

21. Polynomial rings Let us now turn out attention to determining the prime elements of a polynomial ring, where the coefficient ring is a field. We already know that such a polynomial ring is a UF. Therefore

### Factorization in Polynomial Rings

Factorization in Polynomial Rings These notes are a summary of some of the important points on divisibility in polynomial rings from 17 and 18 of Gallian s Contemporary Abstract Algebra. Most of the important

### SMALL SKEW FIELDS CÉDRIC MILLIET

SMALL SKEW FIELDS CÉDRIC MILLIET Abstract A division ring of positive characteristic with countably many pure types is a field Wedderburn showed in 1905 that finite fields are commutative As for infinite

### Some Remarks About Elementary Divisor Rings

Claremont Colleges Scholarship @ Claremont All HMC Faculty Publications and Research HMC Faculty Scholarship 1-1-1956 Some Remarks About Elementary Divisor Rings Leonard Gillman University of Texas at

### NOTES ON LINEAR TRANSFORMATIONS

NOTES ON LINEAR TRANSFORMATIONS Definition 1. Let V and W be vector spaces. A function T : V W is a linear transformation from V to W if the following two properties hold. i T v + v = T v + T v for all

### Unique Factorization

Unique Factorization Waffle Mathcamp 2010 Throughout these notes, all rings will be assumed to be commutative. 1 Factorization in domains: definitions and examples In this class, we will study the phenomenon

### MATH10212 Linear Algebra. Systems of Linear Equations. Definition. An n-dimensional vector is a row or a column of n numbers (or letters): a 1.

MATH10212 Linear Algebra Textbook: D. Poole, Linear Algebra: A Modern Introduction. Thompson, 2006. ISBN 0-534-40596-7. Systems of Linear Equations Definition. An n-dimensional vector is a row or a column

### Revision of ring theory

CHAPTER 1 Revision of ring theory 1.1. Basic definitions and examples In this chapter we will revise and extend some of the results on rings that you have studied on previous courses. A ring is an algebraic

### 3.7 Complex Zeros; Fundamental Theorem of Algebra

SECTION.7 Complex Zeros; Fundamental Theorem of Algebra 2.7 Complex Zeros; Fundamental Theorem of Algebra PREPARING FOR THIS SECTION Before getting started, review the following: Complex Numbers (Appendix,

### Quotient Rings and Field Extensions

Chapter 5 Quotient Rings and Field Extensions In this chapter we describe a method for producing field extension of a given field. If F is a field, then a field extension is a field K that contains F.

### CARDINALITY, COUNTABLE AND UNCOUNTABLE SETS PART ONE

CARDINALITY, COUNTABLE AND UNCOUNTABLE SETS PART ONE With the notion of bijection at hand, it is easy to formalize the idea that two finite sets have the same number of elements: we just need to verify

### Integral Domains. As always in this course, a ring R is understood to be a commutative ring with unity.

Integral Domains As always in this course, a ring R is understood to be a commutative ring with unity. 1 First definitions and properties Definition 1.1. Let R be a ring. A divisor of zero or zero divisor

### Basic Properties of Rings

Basic Properties of Rings A ring is an algebraic structure with an addition operation and a multiplication operation. These operations are required to satisfy many (but not all!) familiar properties. Some

### MODULAR ARITHMETIC. a smallest member. It is equivalent to the Principle of Mathematical Induction.

MODULAR ARITHMETIC 1 Working With Integers The usual arithmetic operations of addition, subtraction and multiplication can be performed on integers, and the result is always another integer Division, on

### H/wk 13, Solutions to selected problems

H/wk 13, Solutions to selected problems Ch. 4.1, Problem 5 (a) Find the number of roots of x x in Z 4, Z Z, any integral domain, Z 6. (b) Find a commutative ring in which x x has infinitely many roots.

### Matrix Representations of Linear Transformations and Changes of Coordinates

Matrix Representations of Linear Transformations and Changes of Coordinates 01 Subspaces and Bases 011 Definitions A subspace V of R n is a subset of R n that contains the zero element and is closed under

### (a) Write each of p and q as a polynomial in x with coefficients in Z[y, z]. deg(p) = 7 deg(q) = 9

Homework #01, due 1/20/10 = 9.1.2, 9.1.4, 9.1.6, 9.1.8, 9.2.3 Additional problems for study: 9.1.1, 9.1.3, 9.1.5, 9.1.13, 9.2.1, 9.2.2, 9.2.4, 9.2.5, 9.2.6, 9.3.2, 9.3.3 9.1.1 (This problem was not assigned

### 1 = (a 0 + b 0 α) 2 + + (a m 1 + b m 1 α) 2. for certain elements a 0,..., a m 1, b 0,..., b m 1 of F. Multiplying out, we obtain

Notes on real-closed fields These notes develop the algebraic background needed to understand the model theory of real-closed fields. To understand these notes, a standard graduate course in algebra is

### Commutative Algebra Notes Introduction to Commutative Algebra Atiyah & Macdonald

Commutative Algebra Notes Introduction to Commutative Algebra Atiyah & Macdonald Adam Boocher 1 Rings and Ideals 1.1 Rings and Ring Homomorphisms A commutative ring A with identity is a set with two binary

### Sets and Subsets. Countable and Uncountable

Sets and Subsets Countable and Uncountable Reading Appendix A Section A.6.8 Pages 788-792 BIG IDEAS Themes 1. There exist functions that cannot be computed in Java or any other computer language. 2. There

### Fundamentals of Mathematics Lecture 6: Propositional Logic

Fundamentals of Mathematics Lecture 6: Propositional Logic Guan-Shieng Huang National Chi Nan University, Taiwan Spring, 2008 1 / 39 Connectives Propositional Connectives I 1 Negation: (not A) A A T F

### Subsets of Euclidean domains possessing a unique division algorithm

Subsets of Euclidean domains possessing a unique division algorithm Andrew D. Lewis 2009/03/16 Abstract Subsets of a Euclidean domain are characterised with the following objectives: (1) ensuring uniqueness

### 1. LINEAR EQUATIONS. A linear equation in n unknowns x 1, x 2,, x n is an equation of the form

1. LINEAR EQUATIONS A linear equation in n unknowns x 1, x 2,, x n is an equation of the form a 1 x 1 + a 2 x 2 + + a n x n = b, where a 1, a 2,..., a n, b are given real numbers. For example, with x and

### Sets and Cardinality Notes for C. F. Miller

Sets and Cardinality Notes for 620-111 C. F. Miller Semester 1, 2000 Abstract These lecture notes were compiled in the Department of Mathematics and Statistics in the University of Melbourne for the use

### MOP 2007 Black Group Integer Polynomials Yufei Zhao. Integer Polynomials. June 29, 2007 Yufei Zhao yufeiz@mit.edu

Integer Polynomials June 9, 007 Yufei Zhao yufeiz@mit.edu We will use Z[x] to denote the ring of polynomials with integer coefficients. We begin by summarizing some of the common approaches used in dealing

### 1. Prove that the empty set is a subset of every set.

1. Prove that the empty set is a subset of every set. Basic Topology Written by Men-Gen Tsai email: b89902089@ntu.edu.tw Proof: For any element x of the empty set, x is also an element of every set since

### Linear Algebra. A vector space (over R) is an ordered quadruple. such that V is a set; 0 V ; and the following eight axioms hold:

Linear Algebra A vector space (over R) is an ordered quadruple (V, 0, α, µ) such that V is a set; 0 V ; and the following eight axioms hold: α : V V V and µ : R V V ; (i) α(α(u, v), w) = α(u, α(v, w)),

### FOUNDATIONS OF ALGEBRAIC GEOMETRY CLASS 22

FOUNDATIONS OF ALGEBRAIC GEOMETRY CLASS 22 RAVI VAKIL CONTENTS 1. Discrete valuation rings: Dimension 1 Noetherian regular local rings 1 Last day, we discussed the Zariski tangent space, and saw that it

### 3. Applications of Number Theory

3. APPLICATIONS OF NUMBER THEORY 163 3. Applications of Number Theory 3.1. Representation of Integers. Theorem 3.1.1. Given an integer b > 1, every positive integer n can be expresses uniquely as n = a

### GRAPHS AND ZERO-DIVISORS. In an algebra class, one uses the zero-factor property to solve polynomial equations.

GRAPHS AND ZERO-DIVISORS M. AXTELL AND J. STICKLES In an algebra class, one uses the zero-factor property to solve polynomial equations. For example, consider the equation x 2 = x. Rewriting it as x (x

### Notes on Algebraic Structures. Peter J. Cameron

Notes on Algebraic Structures Peter J. Cameron ii Preface These are the notes of the second-year course Algebraic Structures I at Queen Mary, University of London, as I taught it in the second semester

### 1 Sets and Set Notation.

LINEAR ALGEBRA MATH 27.6 SPRING 23 (COHEN) LECTURE NOTES Sets and Set Notation. Definition (Naive Definition of a Set). A set is any collection of objects, called the elements of that set. We will most

### Sec 4.1 Vector Spaces and Subspaces

Sec 4. Vector Spaces and Subspaces Motivation Let S be the set of all solutions to the differential equation y + y =. Let T be the set of all 2 3 matrices with real entries. These two sets share many common

### by the matrix A results in a vector which is a reflection of the given

Eigenvalues & Eigenvectors Example Suppose Then So, geometrically, multiplying a vector in by the matrix A results in a vector which is a reflection of the given vector about the y-axis We observe that

### LEARNING OBJECTIVES FOR THIS CHAPTER

CHAPTER 2 American mathematician Paul Halmos (1916 2006), who in 1942 published the first modern linear algebra book. The title of Halmos s book was the same as the title of this chapter. Finite-Dimensional

### Factoring Polynomials

Factoring Polynomials Sue Geller June 19, 2006 Factoring polynomials over the rational numbers, real numbers, and complex numbers has long been a standard topic of high school algebra. With the advent

### THE FUNDAMENTAL THEOREM OF ALGEBRA VIA PROPER MAPS

THE FUNDAMENTAL THEOREM OF ALGEBRA VIA PROPER MAPS KEITH CONRAD 1. Introduction The Fundamental Theorem of Algebra says every nonconstant polynomial with complex coefficients can be factored into linear

### 1 Homework 1. [p 0 q i+j +... + p i 1 q j+1 ] + [p i q j ] + [p i+1 q j 1 +... + p i+j q 0 ]

1 Homework 1 (1) Prove the ideal (3,x) is a maximal ideal in Z[x]. SOLUTION: Suppose we expand this ideal by including another generator polynomial, P / (3, x). Write P = n + x Q with n an integer not

### Strongly Principal Ideals of Rings with Involution

International Journal of Algebra, Vol. 2, 2008, no. 14, 685-700 Strongly Principal Ideals of Rings with Involution Usama A. Aburawash and Wafaa M. Fakieh Department of Mathematics, Faculty of Science Alexandria

### Systems of Linear Equations

Systems of Linear Equations Beifang Chen Systems of linear equations Linear systems A linear equation in variables x, x,, x n is an equation of the form a x + a x + + a n x n = b, where a, a,, a n and

### IRREDUCIBLE OPERATOR SEMIGROUPS SUCH THAT AB AND BA ARE PROPORTIONAL. 1. Introduction

IRREDUCIBLE OPERATOR SEMIGROUPS SUCH THAT AB AND BA ARE PROPORTIONAL R. DRNOVŠEK, T. KOŠIR Dedicated to Prof. Heydar Radjavi on the occasion of his seventieth birthday. Abstract. Let S be an irreducible

### Lecture 2: Abhyankar s Results on the Newton Polygon

Lecture 2: Abhyankar s Results on the Newton Polygon Definition. Let P(X, Y ) = p ij X i Y j C[X, Y ]. The support of P, S(P), is the set {(i, j) N N f ij 0}. The Newton polygon of P, N(P), is the convex

### Matrix Algebra. Some Basic Matrix Laws. Before reading the text or the following notes glance at the following list of basic matrix algebra laws.

Matrix Algebra A. Doerr Before reading the text or the following notes glance at the following list of basic matrix algebra laws. Some Basic Matrix Laws Assume the orders of the matrices are such that

### MATH 304 Linear Algebra Lecture 4: Matrix multiplication. Diagonal matrices. Inverse matrix.

MATH 304 Linear Algebra Lecture 4: Matrix multiplication. Diagonal matrices. Inverse matrix. Matrices Definition. An m-by-n matrix is a rectangular array of numbers that has m rows and n columns: a 11

### some algebra prelim solutions

some algebra prelim solutions David Morawski August 19, 2012 Problem (Spring 2008, #5). Show that f(x) = x p x + a is irreducible over F p whenever a F p is not zero. Proof. First, note that f(x) has no

### Linear Maps. Isaiah Lankham, Bruno Nachtergaele, Anne Schilling (February 5, 2007)

MAT067 University of California, Davis Winter 2007 Linear Maps Isaiah Lankham, Bruno Nachtergaele, Anne Schilling (February 5, 2007) As we have discussed in the lecture on What is Linear Algebra? one of

### The determinant of a skew-symmetric matrix is a square. This can be seen in small cases by direct calculation: 0 a. 12 a. a 13 a 24 a 14 a 23 a 14

4 Symplectic groups In this and the next two sections, we begin the study of the groups preserving reflexive sesquilinear forms or quadratic forms. We begin with the symplectic groups, associated with

### So let us begin our quest to find the holy grail of real analysis.

1 Section 5.2 The Complete Ordered Field: Purpose of Section We present an axiomatic description of the real numbers as a complete ordered field. The axioms which describe the arithmetic of the real numbers

### The Dirichlet Unit Theorem

Chapter 6 The Dirichlet Unit Theorem As usual, we will be working in the ring B of algebraic integers of a number field L. Two factorizations of an element of B are regarded as essentially the same if

### Factoring of Prime Ideals in Extensions

Chapter 4 Factoring of Prime Ideals in Extensions 4. Lifting of Prime Ideals Recall the basic AKLB setup: A is a Dedekind domain with fraction field K, L is a finite, separable extension of K of degree

### 26 Ideals and Quotient Rings

Arkansas Tech University MATH 4033: Elementary Modern Algebra Dr. Marcel B. Finan 26 Ideals and Quotient Rings In this section we develop some theory of rings that parallels the theory of groups discussed

### 8 Divisibility and prime numbers

8 Divisibility and prime numbers 8.1 Divisibility In this short section we extend the concept of a multiple from the natural numbers to the integers. We also summarize several other terms that express

### FACTORING POLYNOMIALS IN THE RING OF FORMAL POWER SERIES OVER Z

FACTORING POLYNOMIALS IN THE RING OF FORMAL POWER SERIES OVER Z DANIEL BIRMAJER, JUAN B GIL, AND MICHAEL WEINER Abstract We consider polynomials with integer coefficients and discuss their factorization

### 4.6 Null Space, Column Space, Row Space

NULL SPACE, COLUMN SPACE, ROW SPACE Null Space, Column Space, Row Space In applications of linear algebra, subspaces of R n typically arise in one of two situations: ) as the set of solutions of a linear

### MATH10040 Chapter 2: Prime and relatively prime numbers

MATH10040 Chapter 2: Prime and relatively prime numbers Recall the basic definition: 1. Prime numbers Definition 1.1. Recall that a positive integer is said to be prime if it has precisely two positive

### Kevin James. MTHSC 412 Section 2.4 Prime Factors and Greatest Comm

MTHSC 412 Section 2.4 Prime Factors and Greatest Common Divisor Greatest Common Divisor Definition Suppose that a, b Z. Then we say that d Z is a greatest common divisor (gcd) of a and b if the following

### Prime Numbers and Irreducible Polynomials

Prime Numbers and Irreducible Polynomials M. Ram Murty The similarity between prime numbers and irreducible polynomials has been a dominant theme in the development of number theory and algebraic geometry.

### 3. Equivalence Relations. Discussion

3. EQUIVALENCE RELATIONS 33 3. Equivalence Relations 3.1. Definition of an Equivalence Relations. Definition 3.1.1. A relation R on a set A is an equivalence relation if and only if R is reflexive, symmetric,

### (x + a) n = x n + a Z n [x]. Proof. If n is prime then the map

22. A quick primality test Prime numbers are one of the most basic objects in mathematics and one of the most basic questions is to decide which numbers are prime (a clearly related problem is to find

### Modern Algebra Lecture Notes: Rings and fields set 4 (Revision 2)

Modern Algebra Lecture Notes: Rings and fields set 4 (Revision 2) Kevin Broughan University of Waikato, Hamilton, New Zealand May 13, 2010 Remainder and Factor Theorem 15 Definition of factor If f (x)

### ZORN S LEMMA AND SOME APPLICATIONS

ZORN S LEMMA AND SOME APPLICATIONS KEITH CONRAD 1. Introduction Zorn s lemma is a result in set theory that appears in proofs of some non-constructive existence theorems throughout mathematics. We will

### 4. Matrix inverses. left and right inverse. linear independence. nonsingular matrices. matrices with linearly independent columns

L. Vandenberghe EE133A (Spring 2016) 4. Matrix inverses left and right inverse linear independence nonsingular matrices matrices with linearly independent columns matrices with linearly independent rows

### Introducing Functions

Functions 1 Introducing Functions A function f from a set A to a set B, written f : A B, is a relation f A B such that every element of A is related to one element of B; in logical notation 1. (a, b 1

### Ideal Class Group and Units

Chapter 4 Ideal Class Group and Units We are now interested in understanding two aspects of ring of integers of number fields: how principal they are (that is, what is the proportion of principal ideals

### 1 if 1 x 0 1 if 0 x 1

Chapter 3 Continuity In this chapter we begin by defining the fundamental notion of continuity for real valued functions of a single real variable. When trying to decide whether a given function is or

PYTHAGOREAN TRIPLES KEITH CONRAD 1. Introduction A Pythagorean triple is a triple of positive integers (a, b, c) where a + b = c. Examples include (3, 4, 5), (5, 1, 13), and (8, 15, 17). Below is an ancient

### 10. Graph Matrices Incidence Matrix

10 Graph Matrices Since a graph is completely determined by specifying either its adjacency structure or its incidence structure, these specifications provide far more efficient ways of representing a

### DETERMINANTS. b 2. x 2

DETERMINANTS 1 Systems of two equations in two unknowns A system of two equations in two unknowns has the form a 11 x 1 + a 12 x 2 = b 1 a 21 x 1 + a 22 x 2 = b 2 This can be written more concisely in

### Problem Set 7 - Fall 2008 Due Tuesday, Oct. 28 at 1:00

18.781 Problem Set 7 - Fall 2008 Due Tuesday, Oct. 28 at 1:00 Throughout this assignment, f(x) always denotes a polynomial with integer coefficients. 1. (a) Show that e 32 (3) = 8, and write down a list

### Chapter 13: Basic ring theory

Chapter 3: Basic ring theory Matthew Macauley Department of Mathematical Sciences Clemson University http://www.math.clemson.edu/~macaule/ Math 42, Spring 24 M. Macauley (Clemson) Chapter 3: Basic ring

### TOPIC 3: CONTINUITY OF FUNCTIONS

TOPIC 3: CONTINUITY OF FUNCTIONS. Absolute value We work in the field of real numbers, R. For the study of the properties of functions we need the concept of absolute value of a number. Definition.. Let

### 6. Fields I. 1. Adjoining things

6. Fields I 6.1 Adjoining things 6.2 Fields of fractions, fields of rational functions 6.3 Characteristics, finite fields 6.4 Algebraic field extensions 6.5 Algebraic closures 1. Adjoining things The general

### GROUPS ACTING ON A SET

GROUPS ACTING ON A SET MATH 435 SPRING 2012 NOTES FROM FEBRUARY 27TH, 2012 1. Left group actions Definition 1.1. Suppose that G is a group and S is a set. A left (group) action of G on S is a rule for

### Finite Fields and Error-Correcting Codes

Lecture Notes in Mathematics Finite Fields and Error-Correcting Codes Karl-Gustav Andersson (Lund University) (version 1.013-16 September 2015) Translated from Swedish by Sigmundur Gudmundsson Contents