Group Theory. Contents

Size: px
Start display at page:

Download "Group Theory. Contents"

Transcription

1 Group Theory Contents Chapter 1: Review... 2 Chapter 2: Permutation Groups and Group Actions... 3 Orbits and Transitivity... 6 Specific Actions The Right regular and coset actions... 8 The Conjugation Action... 8 Chapter 3: Sylow s Theorems Direct Products Group Presentations (From Algebra II) Semi Direct Products Groups of Small Order Classification of Groups with Chapter 4: Nilpotent and Soluble (Solvable) Groups Commutators and Commutator Subgroup Characteristic Subgroups Soluble Groups and Derived Series Composition Series and the Jordan-Holder Theorem Chapter 5: Permutation Groups and Simplicity s rmal Subgroups of Permutation Groups The Finite Simple Groups (Classified ~1981/2004) Properties of Finite Fields A Closer Study of for small Chapter 6: The Transfer Homomorphism Chapter 7: Classification of Simple Groups of order

2 Chapter 1: Review tations or means that is a subset of (not necessarily subgroup), while or means that is a subgroup of. If and, { } is a right coset while { } is a left coset. We know from Algebra II that and if is finite, and the distinct right cosets partition. Theorem 1.1 (Lagrange s Theorem) If is finite and then. Index of a subgroup The value is called the index of in and is denoted rmal Subgroup is called a normal subgroup of and is denoted if Quotient Group for all for all. If we can define the quotient group { } the set of cosets with group operations and All groups have normal subgroups { } and. A group is called simple if { } and and are the only normal subgroups (this is equivalent to having exactly two normal subgroups). Abelian finite simple groups are exactly those groups which are cyclic of prime order. The classification of finite simple groups was completed in The aim of this module is to classify all finite non-abelian simple groups of order up to 500 with proofs. It turns out there are only three such examples which have orders 60, 168 and 360. First we recall some more statements proved in Algebra II. Proposition 1.2 If then subgroups of are of the form with and. Homomorphism A map is a homomorphism if for all. In addition: is a monomorphism if is an epimorphism if is an isomorphism if it is both a monomorphism and an epimorphism is an automorphism if is an isomorphism with

3 Kernel If is a homomorphism then the kernel of denoted { }. te that. Claim is a monomorphism iff Claim For, the quotient map given by is an epimorphism. Theorem 1.3 (First Isomorphism Theorem) Let be a homomorphism and denote i. ii. (not necessarily normal) iii. The map defines an isomorphism. Hence Order of an element For, the order of denoted is the least such that or if there is no such. For, the set { } is the cyclic subgroup generated by. Remark If, finite then { } while if then More generally for { }, is the subgroup generated by and is defined to be the intersection of all subgroups containing which is equivalent to the set of all products of any length of and Cyclic Group A group is called cyclic if it is generated by one element for example { } { Chapter 2: Permutation Groups and Group Actions Let be a set. Permutation A permutation of is a bijection. Define be the group of all permutations and where tation If and write the image of under as not, so we get so means first apply then.

4 Example Take { } and denote as follows: In cyclic notation So and have a cycle of length 2 and a cycle of length 3 hence and have the same cycle type? Why? is a conjugate of : For denote o len ths o is oint y les. Therefore in the example above, Transposition A permutation of the form is a transposition. Lemma 2.1 If is a finite set, any permutation of is a composition of transpositions. I.e. is generated by transpositions. Take and express it as a product of cycles, so it is enough to express cycles as a composition of transpositions: Even and Odd Permutations is called even or odd if is a product of an even or odd number of transpositions respectively. Theorem 2.2 permutation is both even and odd. t instructive, but in the lecture notes. Clearly, e en e en o o e en and o e en e en o o, so there is a homomorphism { } where if is even and if is odd. Observe that { is e en} is a subgroup of by the First Isomorphism Theorem. Also by the First Isomorphism Theorem if, hence so We will later prove that is simple for

5 Group Actions We did these in Algebra II, but will use right actions not left actions and use different notation: An Action of a Group on a set is a map mapping (not ). By definition of an action, we have and for all and for all. For the map is a permutation of (since, we have as inverse maps so every permutation is a bijection). Then is a homomorphism since. Denote by (the action of on ). By the First isomorphism, { } Faithful Action The action on is called faithful if or equivalently if and Dihedral Group Recall that is the dihedral group of order (which is often confusingly denoted by ). Example : Consider the regular hexagon below Define three actions of on subsets of : actions on erti es { } On e es { } On ia onals { } Observe that and are faithful but is not. It has kernel { } and in fact,

6 Equivalent Actions Actions of on sets are called equivalent if there is a bijection such that and. By examining the cycle type of the three actions on are inequivalent., we conclude that all actions of Orbits and Transitivity Let act on. Define for if there exists such that. This is clear to be an equivalence relation. The equivalence classes are called the orbits of on. The orbit of is written as. Example Let { } and take and where. The orbits of are { } { } { } { } while the orbits of are { } { } { } { } { }. The orbits of are { } { }. This is deduced because so also so hence. Similarly, because so are all in the same orbit but applying to all give results so { } is Transitive. Similar for { }. is called transitive if is an orbit; that is if for all. Equivalently, for all there exists so that. Observe that in the previous example is not transitive. -transitive For, is called -transitive if: Given, define pints and distinct. Then there exists so that for. Observe that 1-transitive is the same as transitive and ( )-transitive implies -transitive. Examples 1. is -transitive on { } 2., the alternating group is -transitive on { } Take distinct and. Then { } where and are the other two points. Also { }. Certainly there exists a unique with for. If then we are done. Otherwise let be the transposition then and so and for Stabiliser Let act on and. Define the stabiliser of in as { }

7 and is a subgroup of : Let then so so is a subgroup. te that the kernel of the action is { } so is the kernel of the action. Theorem 2.3 (Orbit-Stabiliser Theorem) If acts on with finite and then or equivalently. Suppose so there exists with. may not be unique so for which is? So is in the same right coset of as. So this defines a bijection between and the right cosets of in. So as claimed. tation For, denote the two point stabiliser. Similarly, If denote { } pointwise sta iliser { } setwise sta iliser Example Take { } and and { } then and, but if { } then but. In general, it is true that Corollary 2.4 If acts on, then i. is constant for in an orbit. ii. is transitive implies iii. If is -transitive and then for any i. This follows immediately from the Orbit-Stabiliser Theorem ii. This follows immediately from part i. iii. We use induction on. When, from part ii. Assume true for ; that is is -transitive implies that { } is - transitive straight from the definition since { }. So by induction

8 also by part ii. So the result follows. Specific Actions The Right regular and coset actions Right Regular Action Let be any group. Take. For and we define. This is clearly an action. Given, so it is transitive. The stabiliser { } { } so it is faithful. Coset Action A generalisation is a coset action. Let and take { }. Define so { } gives the right regular action. te that so it is transitive. Then { } { } { } As the stabiliser is a subgroup, this particular subgroup is called a conjugate of. In general, this action is not faithful: Example Take { } i. { }. We have two cosets { }. Then and so { } kernel of the action so it is not faithful. Observe that so kernel so ii. { }. We have three cosets { } then is a 3-cycle on. tice that so. Then. Therefore so the action is faithful. Theorem 2.5 Any transitive action of on is equivalent to some coset action. (That is, a bijection between, so that the group action is preserved. Let act transitively on. Let and. Let { } we have a coset action on. Define by for. We claim that is a bijection: First we check that is well defined: i.e.. w is clearly surjective because is transitive. is injective because. For equivalence of actions; ( ). The Conjugation Action acts on by. This is clearly an action..

9 Remark The default meaning of for is. is a conjugate of in. The orbits are called the conjugacy classes of and denoted. te that { } so the action is not transitive if. { } { } otherwise known as the Centraliser of. te that { } As a generalisation we can take { } the subgroups of and define an action by Then { } called the normaliser of in. Also is the centraliser of in is the set { } Remark It can be proved that and. Summary of tation: Take then: is the conjugacy class of which is { } is the centraliser of which is { } finite implies that is the centre of which is { } Conjugacy of permutations Let suppose and. Then ; that is so if a cyclic decomposition of is then is. Example Let and then. In particular note that conjugate permutations have the same cycle type. Theorem 2.7 Two permutations are conjugate in if and only if they have the same cycle types. From the above, we conclude that is true. Conversely, take of the same cycle type: that is and. Then simply choose so that for all. This is possible because all and all appear exactly once in the cyclic decomposition of and. It then follows that.

10 Example Let { } and and As and have the same cycle type take then satisfies. te that is not unique. -groups: For prime, a finite group is called a -group if for (for infinite is a - group if all elements have order a power of ). te for that but for { } { } Observe that is a -group. We will show soon that -groups have non-trivial centre. Lemma 2.8 If then is a union of conjugacy classes of As and for all. Therefore. Theorem 2.9 Let be a finite -group where is prime and with then. In particular if take to conclude that. By Lemma 2.8, for some. This is a disjoint union because conjugacy classes are either equal or disjoint. Choose so { }. We have by the Orbit-Stabiliser Theorem. w observe that for some. Since, mo y La ran e s Theorem. There ore in or er to a oi a ontra i tion some with since otherwise we get mo. That is for some hence so and so.

11 Chapter 3: Sylow s Theorems Product of subsets: If then { } Lemma 3.1 Let i. If or then ii. If and then i. Suppose. Take and. Then and since is normal, so so. Similarly since by normality. Therefore. ii. Let and. Then because and by normality of and. Hence is normal. Remark: te that if then so. Theorem 3.2 (Second Isomorphism Theorem) If and then Let be the canonical epimorphism. Then consider the restriction to. Then { }. Moreover, so applying the First Isomorphism Theorem, we yield the result The on erse to La ran e s Theorem says: i en finite and and, does there exist a subgroup so that. In eneral this statement is not true: has no subgroup of order 6 but. However the answer is yes if is a prime power. Sylow -subgroup Let, prime and for. A subgroup of order is called a Sylow - subgroup of. Denote { } Theorem 3.3 (Sylow s Theorem) For a finite group let, prime and for. i.

12 ii. (containment) Any -subgroup of is contained in some Sylow -subgroup of. iii. (conjugacy) If then there exists with iv. (number) mo We will pro e Sylow s Theorem in two separate Theorems. The irst one implies. Proposition 3.4 Let be a finite group and. Then the number of subgroups of of order. Let { }. Let where. Then using elementary combinatorics,. If and then { } so we can define an action of on by right multiplication. That is. This is clearly an action. Let be an orbit of. If and then there exists. (I.e. there exists an element with ). If then by definition so that is. w we consider two cases: Case 1:. Then is a subgroup since and the orbit { } is the set of right cosets of. Then by the orbit-stabiliser theorem. In particular, is the only subgroup in the orbit. So if is a subgroup of order then the orbit of has size. Case 2: Suppose. Then subgroups of. As then because, so by Case 1 contains no Let { } then we have shown that equals the number of orbits of size and the remaining orbits in have. Then for some, therefore As is prime there exists a unique inverse { } with mod. Therefore It then can be proved using elementary number theory that. we can avoid this by using the following argument due to G. Higmann The number is a function of and so it must be the same for all groups of order, in particular mod is the same for the cyclic group of order. Cyclic Groups

13 have a unique subgroup of order for all so for a cyclic group so mod for all groups of order. Proposition 3.5 Let, a -subgroup of that is is a power of. Then for some. Take with. Let {ri ht osets o in }. acts on by right multiplication that is. This is clearly an action. Consider the restriction of the action to. Orbits of on have size where. This is a power of, possibly. Suppose the orbit of has size 1. That is therefore. of Theorem 3.3 Follow immediately from the conclusion of Proposition 3.4 Since is a subgroup of order we have If then so we must have by Proposition 3.5 and thus. Corollary 3.6 (Cauchy s Theorem) If is a finite group and for prime then has an element of order. Choose. Take { }. Then for some. Then and Then so hence for and so so. Then as we must have. That is. Corollary 3.7 Let. Then where { } In particular. Let and let act on by conjugation. By definition,. By Theorem 3.3, part iii, this action is transitive. By the orbit stabiliser theorem we have In particular as by definition we have and so Corollary 3.8 iff

14 By Corollary 3.7, iff iff iff for all iff Corollary 3.9 For, Corollary 3.10 (Frattini Lemma) If and then Direct Products Let be groups. Then define { }. Then. In particular Proposition 3.11 Let. Let { }. Then: i. Easy ii. If and with then iii. Every can be written uniquely as where Theorem 3.12 Let where and and. Then. We first prove that for all,. Consider (called the commutator of ). Observe and because is normal so. Similarly, and because is normal so. So and so that is. Define by. First () hypothesis. () (). Therefore is a homomorphism. is surjective by If () then so therefore and so hence and thus. Therefore is injective and so is an isomorphism.

15 te {} as in the definition is an external product of and whereas in Theorem 3.12 is called the internal direct product of and. As a consequence of Theorem 3.12, we usually just call them direct products. Corollary 3.13 Suppose with. For each, let (the product of all except ). Assume for all. Then. This is a straightforward induction on, following from Theorem Remark It is insufficient to assume for all. Group Presentations (From Algebra II) equations in the For example, for some es ri es the lar est roup that is generated by the elements which satisfy the equations on the right. This is an informal definition. We will only use it when is finite or can be shown to be inite, so lar est makes sense. We woul also nee to pro e that any two su h lar est groups are isomorphic. We need group presentations here because they are so useful for defining small finite groups. The example above is the dihedral group where is the rotation, a reflection. However for is isomorphic to, the direct product of cyclic groups. In specific examples like the ones above, it is not hard to show that there is a unique largest such group. Semi Direct Products We have seen actions of on correspond to homomorphisms and is the action of on. If are groups we can define a group action of on in which. That is is a bijective homomorphism from to itself. We still write for the action of on. Equivalently we define it by the axioms: is a homomorphism Semi-Direct Product Suppose is a group which and and and (as in Theorem 3.12 but not assuming ) We call an (internal) semi-direct product of.

16 te that conjugation of elements of by elements of defines a group action of on. (easy to check it satisfies the three axioms above) so multiplication in is completely determined by the action. We write or denotes the semi-direct product with action. Conversely, given groups and an action of on we can define the external semidirect product as follows: Given an action on, define { } with multiplication defined by where is determined by the action. Claim is a group. Closure is clear, the identity is and (. Associativity is also easy to check. Examples: Take. Then where. Then and and so. [In general for prime] Define mapping then then, then, then [In general, is the trivial map so for all ] Groups of Small Order We will now classify (up to group isomorphism) all groups with (except 16). Claim If prime then. Easy. Proposition 3.14 If with an odd prime then either or Let, an odd prime. Choose and then so and. Observe because. is a subgroup of by Lemma 3.1 and so we must have. Clearly

17 . So for some ; therefore is determined by. so if then so mo. So assuming we have or. The two possibilities give and. Proposition 3.15 If for some prime then is abelian and or is abelian by Sheet 2 Q1. Then let { }. Then so or. If then. Assume for all { }. Then choose { }, define and choose and let. Observe. Then or. But which is a contradiction. Therefore and so (because is abelian so and we use Lemma 3.1) but so y La ran e s Theorem so. By theorem 3.12, we have. Classification of Groups with Quickly observe that if, for prime or for an odd prime then we are done by the previous two Propositions. It remains to classify. I start off with another quick Lemma: Lemma If is any group and for all { } then is abelian. Take { }. Then. Moreover so. Take as we must have Case 1: Assume for all { }. Then by the Lemma, is abelian, so is a direct sum of cyclic groups; that is either or or. As for every { } the only possibility is that. [In General if is abelian and for all { } for prime then writing with the operation addition, can be made into a vector space over a finite field with elements. So if finite, then. Groups of this property are called elementary abelian. Case 2: If not, there exists with. Let so hence. Choose

18 so. has order so so. Also implies that. Claim Given and is defined uniquely. { } { },, { }, { } { } { } so the Claim is true. The possibilities are that. If or then and so. We now consider the possibilities that or. Observe that so or. Case 2a If then is abelian. If since has no element of order 8. If then. Take since was arbitrary in we can replace by and get. Case 2b In this case and is non-abelian. If we have If then we can construct as a group of complex 2x2 matrices. This proves the existence of and is necessary to show the relations above are not inconsistent. Observer that has or order 2 and the other 6 elements are of order 4 so Summarising, or By Sylow s Theorem. Also by Corollary 3.7, so or. Case 1 If then { } by Corollary 3.8. Since we may take Let. so or by Proposition Case 1a Take. Then ; the group automorphism is determined by Either or. More formally, with and. Can have or both define a homomorphism so we get two possible semi-direct products:

19 non a elian ( need to prove the existence of these groups; their existence is guaranteed by the Semi- Direct Product.) Case 1b Take again we want. There are four possibilities: If then The other three cases give isomorphic groups: The groups obtained by the cases are clearly the same as the case since you can simply interchange and. If then. Since we can simply replace by so this choice is isomorphic to the two above. So we have a single group (this is in fact isomorphic to as ) Case 2 In this case we take. Let { }. By Sylow s Theorem they are all conjugate; that is acts transitively on by conjugation. That is there is a homomorphism. Let. By Corollary 3.7, for any so ; (as ) hence for and so for. Then o we can assume and ; that is and fixes. If then or so if necessary replace by to get so which has order 12.. so so must be an automorphism and Summarising, we get 5 groups in total; 4 in Case 1, 1 in Case 2. By Sylow s Theorem, and by Corollary 3.7 so then Similarly, and divides 5 so. Therefore, so, implies that. (This same argument works with any with prime amd and ). There are 14 isomorphism types. This was proved by Burnside in approximately The proof is omitted because it is rather long.

20 mo and so. Therefore and. Take,. So is a semi-direct product. Case 1 cyclic. As then the usual argument involving the automorphism group shows or each giving the cases or respectively. Case 2 with Claim For a suitable choice of and we can assume or and similarly or. Sketch In general, if then as we have and so (since is abelian). Moreover, so we can replace by and by. So we can assume or. w suppose or : { so we must ha e or { In this ase repla e y an et so Therefore the claim is true. There are four possibilities but two are isomorphic by interchanging get three groups: and. Therefore we w observe that in the element has order 6 but no element of has order 6 because for all and so. Summarising we get five groups of order 18; 2 in case 1 and 3 in case 2, two of which are abelian.

21 By Sylow s Theorem and so and so and. Take, then. Where. There are two possibilities for ; either or. Case 1 Assume. Then and the elements of are the maps. For the possible can be any element of so we get 4 possibilities: If then If then. As we have and so So by replacing by we get the same semi-direct product as the previous case. The final case is that. Then Observe that in, so centralises ; in fact and has order 10. But in, and and has no element of order 10 so. Case 2 Suppose as usual we get and similar to case 1b. This leads to two possible groups and Therefore we get 5 groups of order 20: three in case 1 and two in case 2. and divides 3 so hence and denote. Let. Then. Need action and so for some with. Then so. If so and give isomorphic groups (swap ). So we get two groups corresponding to the cases and respectively: Observe that the second group is non-abelian so we get two isomorphism classes. te that in all our cases, all our groups were constructed from cyclic groups as direct or semi-direct products, apart from which we had to construct as a matrix group.

22 Chapter 4: Nilpotent and Soluble (Solvable) Groups Theorem 4.1 (Third Isomorphism Theorem) Let be a group, and with (hence ). Then an [te that and does not automatically imply that ]. Define by. Because, is well defined and. { } { }. So and so by the first isomorphism theorem Theorem 4.2 Let be a finite group. The following are equivalent: 1. for all prime. 2. for all for all prime. 3. where where are the primes dividing 1 2 by Corollary by Proposition 3.11 i. To prove 2 3: Let be the primes dividing so by hypothesis. Let (excluding ). Then where. Then by Lemma 3.1. In particular for we have so and thus since it is divisible by all. In addition, since orders of all the elements are coprime. Then by Corollary Nilpotent Group A finite group satisfying the three properties of Theorem 4.2 is called nilpotent. The definition for infinite groups is different; see sheet 5. Theorem 4.3 Let be a finite nilpotent group. Then: 1. If, then (nontrivial centre) 2. If then is nilpotent 3. If then is nilpotent

23 1. Assume. As for and, so by Theorem 2.9. Take { } then we have. 2. Let for some hence because nilpotent and so. By the second isomorphism theorem which has order coprime to, so so the Sylow -subgroups of are normal in and so is nilpotent. 3. Let for some and so. Then for any by Lemma 3.1 therefore and so by the third isomorphism theorem which has order coprime to so. Hence the Sylow p-subgroups of are normal in and so is nilpotent. Examples: Abelian Groups are nilpotent All groups of order for prime are nilpotent. Direct products of nilpotent groups are nilpotent. (Condition 3 of 4.2). is not nilpotent since it has 3 Sylow 2-subgroups so they cannot be normal subgroups. Maximal Subgroup A subgroup of a group is maximal if but implies or. te that if is finite and with then for some maximal. t all infinite groups have maximal subgroups. Theorem 4.4 The following are equivalent for finite groups: 1. is nilpotent 2. and implies that 3. All maximal subgroups are normal. Let so. As is nilpotent by Theorem 4.3, We proceed by induction on. If there is nothing to prove. Case 1: so. By induction nilpotent so ( ) for some. So implies that so. Case 2: but and also so and so. Let be maximal in. implies so.

24 Assume. If is not nilpotent, then for some so so for some maximal in. By condition iii, but by Corollary 3.9. Contradiction. Commutators and Commutator Subgroup Commutator Let. Define the commutator to be [ ] tice that [ ] and [ ] [ ]. Commutator Subgroup The Commutator subgroup of, denoted [ ] is by definition [ ] [ ] In general, the set {[ ] } is not a subgroup. The smallest counterexample is of order 32. Theorem [ ] 2. [ ] is abelian. 3. If and abelian, then [ ] that is [ ] is the lar est a elian quotient group of. 1. It follows from Theorem 4.7 (i) and (iv). 2. For all, [ ] therefore [ ] [ ] [ ] [ ] [ ] [ ] so [ ] is abelian. 3. abelian implies for all therefore so [ ]. Remark It should be clear that [ ] is abelian. is called perfect if [ ]. It follows that non abelian simple groups are perfect. Examples: is done in the notes, and [ ] on Sheet 5. Take then [ ] [ ] so similarly [ ] and [ ]. Therefore { } [ ] In fact because it is a union of conjugacy classes. Moreover so is abelian so [ ] by Theorem 4.5 part 3.

25 Characteristic Subgroups Characteristic A subgroup is called characteristic in if for all. We abbreviate this to. For any group and any the map (conjugation by ) mapping is an automorphism and so. Inner Automorphisms The group of inner automorphisms is denoted { } Observe that this truly is a group because and so In fact it is a normal subgroup: Let. Then so and thus. Outer Automorphisms and the Outer Automorphism Group is called an outer automorphism and Automorphism Group. is the Outer Lemma 4.6 All Characteristic Subgroups are normal. Let. Then for all. In particular, for all so this means for all and so. Theorem 4.7 Let be a group. Then: and 3. and 4. [ ] 5. 6., and finite 1. This is Lemma This follows from 3 and 1 3. Let. Then Claim The restriction of implies. injective and a homomomorphism immediately imply that is injective and a homomorphism. We only need to check surjectivity. Take then so because. Then

26 so so is surjective. Therefore since so. 4. Let so [ ] [ ] so permutes the Commutators then [ ] [ ] so [ ] [ ] that is [ ] char. 5. Take and let then [ ] for all implies [ ] for all so [ ] for all. As is a bijection from to we have [ ] for all so. Hence that is 6. Take. If then there exists a unique. Then so that is. Soluble Groups and Derived Series Let be a group and suppose is a series of length. Subnormal series, rmal Series The above is called a subnormal series if for all (in this case is called a subnormal subgroup of ). It is called a normal series if for all. Soluble For a group, we say it is Soluble if it has a subnormal series with each quotient abelian. Examples: Define Observe that Abelian Groups are Soluble. Let be the set { } then has series and as [ ], and because it is a union of conjugacy classes. Moreover, are abelian and is abelian so this proves is Soluble. { } { } implies is soluble. te that this series is a subnormal series but not a normal series. All groups up to order 23 are soluble. In fact, of order 60 is the smallest group which is not soluble. Moreover is simple for so this implies that are not soluble for. and [ ] and [ ] for all. Then the series is called the derived series for. Moreover by Theorem 4.7 hence this series is a normal series. for all ( The series may stabilise ) for some. (this is always true if is finite) but for infinite groups this may not be the case e.g. free groups. Theorem is soluble if and only if for some. 2. is soluble if and only if has a normal series with abelian factors

27 1. [ ] is clear since hence is soluble. implies that the derived series for is a normal series [ ] Let be a subnormal series with abelian. We prove by induction that for all. Take then. Assume true for then by induction and using the fact that Because abelian so [ ] [ ] is abelian, 2. [ ] by definition [ ] If is soluble then for some normal series with abelian quotients. by 1. But then the derived series is a Lemma Let. Then [ ] [ ] [ ] [ ] Corollary for all We apply induction. The Lemma gives us the induction step. Theorem If is soluble and then is soluble 2. If and is soluble then is soluble 3. If and and are both soluble then is soluble 4. All nilpotent groups are soluble 1. is soluble iff Then so for some. so is soluble. 2. soluble implies so { } then by Corollary 4.8.2, { } so is soluble. 3. If is soluble then for some so. If is soluble then for some and so soluble. 4. Let be a nilpotent group. We now apply induction on. When we get the desired result. so is

28 For then by Theorem So by induction and are soluble so is soluble by part 3. w observe we have an ascending chain of sets: elian roups ilpotent roups Solu le roups roups Composition Series and the Jordan-Holder Theorem Maximal rmal Subgroup is a maximal normal subgroup of if and implies or. Simple Group A Group is simple if and implies or. So is a maximal normal subgroup is simple. A subnormal series is a composition series of if each is simple. t all groups have them for example. Example: Take What are the maximal normal subgroups of? is simple, hence cyclic of prime order so or. Since, since implies abelian. So so So so there is a unique subgroup,. Then has three subgroups of order 2; so there are three possible so that : We consider these in turn: There is no normal subgroup of order 2 so so the composition series is of. Similarly, with composition series Since which has two normal subgroups and so we have two composition series Therefore has four composition series altogether. Equivalent Series Let and be two composition series of. Then we say those series are equivalent if and there is a permutation of { } such that for all.

G = G 0 > G 1 > > G k = {e}

G = G 0 > G 1 > > G k = {e} Proposition 49. 1. A group G is nilpotent if and only if G appears as an element of its upper central series. 2. If G is nilpotent, then the upper central series and the lower central series have the same

More information

Mathematics Course 111: Algebra I Part IV: Vector Spaces

Mathematics Course 111: Algebra I Part IV: Vector Spaces Mathematics Course 111: Algebra I Part IV: Vector Spaces D. R. Wilkins Academic Year 1996-7 9 Vector Spaces A vector space over some field K is an algebraic structure consisting of a set V on which are

More information

GROUPS ACTING ON A SET

GROUPS ACTING ON A SET GROUPS ACTING ON A SET MATH 435 SPRING 2012 NOTES FROM FEBRUARY 27TH, 2012 1. Left group actions Definition 1.1. Suppose that G is a group and S is a set. A left (group) action of G on S is a rule for

More information

I. GROUPS: BASIC DEFINITIONS AND EXAMPLES

I. GROUPS: BASIC DEFINITIONS AND EXAMPLES I GROUPS: BASIC DEFINITIONS AND EXAMPLES Definition 1: An operation on a set G is a function : G G G Definition 2: A group is a set G which is equipped with an operation and a special element e G, called

More information

Chapter 7. Permutation Groups

Chapter 7. Permutation Groups Chapter 7 Permutation Groups () We started the study of groups by considering planar isometries In the previous chapter, we learnt that finite groups of planar isometries can only be cyclic or dihedral

More information

CONSEQUENCES OF THE SYLOW THEOREMS

CONSEQUENCES OF THE SYLOW THEOREMS CONSEQUENCES OF THE SYLOW THEOREMS KEITH CONRAD For a group theorist, Sylow s Theorem is such a basic tool, and so fundamental, that it is used almost without thinking, like breathing. Geoff Robinson 1.

More information

Notes on finite group theory. Peter J. Cameron

Notes on finite group theory. Peter J. Cameron Notes on finite group theory Peter J. Cameron October 2013 2 Preface Group theory is a central part of modern mathematics. Its origins lie in geometry (where groups describe in a very detailed way the

More information

The Dirichlet Unit Theorem

The Dirichlet Unit Theorem Chapter 6 The Dirichlet Unit Theorem As usual, we will be working in the ring B of algebraic integers of a number field L. Two factorizations of an element of B are regarded as essentially the same if

More information

GROUP ALGEBRAS. ANDREI YAFAEV

GROUP ALGEBRAS. ANDREI YAFAEV GROUP ALGEBRAS. ANDREI YAFAEV We will associate a certain algebra to a finite group and prove that it is semisimple. Then we will apply Wedderburn s theory to its study. Definition 0.1. Let G be a finite

More information

EXERCISES FOR THE COURSE MATH 570, FALL 2010

EXERCISES FOR THE COURSE MATH 570, FALL 2010 EXERCISES FOR THE COURSE MATH 570, FALL 2010 EYAL Z. GOREN (1) Let G be a group and H Z(G) a subgroup such that G/H is cyclic. Prove that G is abelian. Conclude that every group of order p 2 (p a prime

More information

ON GALOIS REALIZATIONS OF THE 2-COVERABLE SYMMETRIC AND ALTERNATING GROUPS

ON GALOIS REALIZATIONS OF THE 2-COVERABLE SYMMETRIC AND ALTERNATING GROUPS ON GALOIS REALIZATIONS OF THE 2-COVERABLE SYMMETRIC AND ALTERNATING GROUPS DANIEL RABAYEV AND JACK SONN Abstract. Let f(x) be a monic polynomial in Z[x] with no rational roots but with roots in Q p for

More information

Galois representations with open image

Galois representations with open image Galois representations with open image Ralph Greenberg University of Washington Seattle, Washington, USA May 7th, 2011 Introduction This talk will be about representations of the absolute Galois group

More information

GENERATING SETS KEITH CONRAD

GENERATING SETS KEITH CONRAD GENERATING SETS KEITH CONRAD 1 Introduction In R n, every vector can be written as a unique linear combination of the standard basis e 1,, e n A notion weaker than a basis is a spanning set: a set of vectors

More information

Group Fundamentals. Chapter 1. 1.1 Groups and Subgroups. 1.1.1 Definition

Group Fundamentals. Chapter 1. 1.1 Groups and Subgroups. 1.1.1 Definition Chapter 1 Group Fundamentals 1.1 Groups and Subgroups 1.1.1 Definition A group is a nonempty set G on which there is defined a binary operation (a, b) ab satisfying the following properties. Closure: If

More information

Introduction to Modern Algebra

Introduction to Modern Algebra Introduction to Modern Algebra David Joyce Clark University Version 0.0.6, 3 Oct 2008 1 1 Copyright (C) 2008. ii I dedicate this book to my friend and colleague Arthur Chou. Arthur encouraged me to write

More information

FUNCTIONAL ANALYSIS LECTURE NOTES: QUOTIENT SPACES

FUNCTIONAL ANALYSIS LECTURE NOTES: QUOTIENT SPACES FUNCTIONAL ANALYSIS LECTURE NOTES: QUOTIENT SPACES CHRISTOPHER HEIL 1. Cosets and the Quotient Space Any vector space is an abelian group under the operation of vector addition. So, if you are have studied

More information

THE AVERAGE DEGREE OF AN IRREDUCIBLE CHARACTER OF A FINITE GROUP

THE AVERAGE DEGREE OF AN IRREDUCIBLE CHARACTER OF A FINITE GROUP THE AVERAGE DEGREE OF AN IRREDUCIBLE CHARACTER OF A FINITE GROUP by I. M. Isaacs Mathematics Department University of Wisconsin 480 Lincoln Dr. Madison, WI 53706 USA E-Mail: isaacs@math.wisc.edu Maria

More information

ABSTRACT ALGEBRA. Romyar Sharifi

ABSTRACT ALGEBRA. Romyar Sharifi ABSTRACT ALGEBRA Romyar Sharifi Contents Introduction 7 Part 1. A First Course 11 Chapter 1. Set theory 13 1.1. Sets and functions 13 1.2. Relations 15 1.3. Binary operations 19 Chapter 2. Group theory

More information

COMMUTATIVITY DEGREES OF WREATH PRODUCTS OF FINITE ABELIAN GROUPS

COMMUTATIVITY DEGREES OF WREATH PRODUCTS OF FINITE ABELIAN GROUPS COMMUTATIVITY DEGREES OF WREATH PRODUCTS OF FINITE ABELIAN GROUPS IGOR V. EROVENKO AND B. SURY ABSTRACT. We compute commutativity degrees of wreath products A B of finite abelian groups A and B. When B

More information

GROUP ACTIONS KEITH CONRAD

GROUP ACTIONS KEITH CONRAD GROUP ACTIONS KEITH CONRAD 1. Introduction The symmetric groups S n, alternating groups A n, and (for n 3) dihedral groups D n behave, by their very definition, as permutations on certain sets. The groups

More information

ON GENERALIZED RELATIVE COMMUTATIVITY DEGREE OF A FINITE GROUP. A. K. Das and R. K. Nath

ON GENERALIZED RELATIVE COMMUTATIVITY DEGREE OF A FINITE GROUP. A. K. Das and R. K. Nath International Electronic Journal of Algebra Volume 7 (2010) 140-151 ON GENERALIZED RELATIVE COMMUTATIVITY DEGREE OF A FINITE GROUP A. K. Das and R. K. Nath Received: 12 October 2009; Revised: 15 December

More information

some algebra prelim solutions

some algebra prelim solutions some algebra prelim solutions David Morawski August 19, 2012 Problem (Spring 2008, #5). Show that f(x) = x p x + a is irreducible over F p whenever a F p is not zero. Proof. First, note that f(x) has no

More information

4. FIRST STEPS IN THE THEORY 4.1. A

4. FIRST STEPS IN THE THEORY 4.1. A 4. FIRST STEPS IN THE THEORY 4.1. A Catalogue of All Groups: The Impossible Dream The fundamental problem of group theory is to systematically explore the landscape and to chart what lies out there. We

More information

Classification of Cartan matrices

Classification of Cartan matrices Chapter 7 Classification of Cartan matrices In this chapter we describe a classification of generalised Cartan matrices This classification can be compared as the rough classification of varieties in terms

More information

Linear Maps. Isaiah Lankham, Bruno Nachtergaele, Anne Schilling (February 5, 2007)

Linear Maps. Isaiah Lankham, Bruno Nachtergaele, Anne Schilling (February 5, 2007) MAT067 University of California, Davis Winter 2007 Linear Maps Isaiah Lankham, Bruno Nachtergaele, Anne Schilling (February 5, 2007) As we have discussed in the lecture on What is Linear Algebra? one of

More information

Abstract Algebra Cheat Sheet

Abstract Algebra Cheat Sheet Abstract Algebra Cheat Sheet 16 December 2002 By Brendan Kidwell, based on Dr. Ward Heilman s notes for his Abstract Algebra class. Notes: Where applicable, page numbers are listed in parentheses at the

More information

Linear Algebra. A vector space (over R) is an ordered quadruple. such that V is a set; 0 V ; and the following eight axioms hold:

Linear Algebra. A vector space (over R) is an ordered quadruple. such that V is a set; 0 V ; and the following eight axioms hold: Linear Algebra A vector space (over R) is an ordered quadruple (V, 0, α, µ) such that V is a set; 0 V ; and the following eight axioms hold: α : V V V and µ : R V V ; (i) α(α(u, v), w) = α(u, α(v, w)),

More information

Alexander Hulpke Department of Mathematics Colorado State University Fort Collins, CO, 80523, USA http://www.math.colostate.

Alexander Hulpke Department of Mathematics Colorado State University Fort Collins, CO, 80523, USA http://www.math.colostate. Finding Subgroups Alexander Hulpke Department of Mathematics Colorado State University Fort Collins, CO, 80523, USA http://www.math.colostate.edu/~hulpke I A Popular Problem Given a finite (permutation,

More information

Elements of Abstract Group Theory

Elements of Abstract Group Theory Chapter 2 Elements of Abstract Group Theory Mathematics is a game played according to certain simple rules with meaningless marks on paper. David Hilbert The importance of symmetry in physics, and for

More information

11 Ideals. 11.1 Revisiting Z

11 Ideals. 11.1 Revisiting Z 11 Ideals The presentation here is somewhat different than the text. In particular, the sections do not match up. We have seen issues with the failure of unique factorization already, e.g., Z[ 5] = O Q(

More information

COMMUTATIVITY DEGREES OF WREATH PRODUCTS OF FINITE ABELIAN GROUPS

COMMUTATIVITY DEGREES OF WREATH PRODUCTS OF FINITE ABELIAN GROUPS Bull Austral Math Soc 77 (2008), 31 36 doi: 101017/S0004972708000038 COMMUTATIVITY DEGREES OF WREATH PRODUCTS OF FINITE ABELIAN GROUPS IGOR V EROVENKO and B SURY (Received 12 April 2007) Abstract We compute

More information

Factoring of Prime Ideals in Extensions

Factoring of Prime Ideals in Extensions Chapter 4 Factoring of Prime Ideals in Extensions 4. Lifting of Prime Ideals Recall the basic AKLB setup: A is a Dedekind domain with fraction field K, L is a finite, separable extension of K of degree

More information

Notes on Group Theory

Notes on Group Theory Notes on Group Theory Mark Reeder March 7, 2014 Contents 1 Notation for sets and functions 4 2 Basic group theory 4 2.1 The definition of a group................................. 4 2.2 Group homomorphisms..................................

More information

MATRIX ALGEBRA AND SYSTEMS OF EQUATIONS. + + x 2. x n. a 11 a 12 a 1n b 1 a 21 a 22 a 2n b 2 a 31 a 32 a 3n b 3. a m1 a m2 a mn b m

MATRIX ALGEBRA AND SYSTEMS OF EQUATIONS. + + x 2. x n. a 11 a 12 a 1n b 1 a 21 a 22 a 2n b 2 a 31 a 32 a 3n b 3. a m1 a m2 a mn b m MATRIX ALGEBRA AND SYSTEMS OF EQUATIONS 1. SYSTEMS OF EQUATIONS AND MATRICES 1.1. Representation of a linear system. The general system of m equations in n unknowns can be written a 11 x 1 + a 12 x 2 +

More information

Some Basic Techniques of Group Theory

Some Basic Techniques of Group Theory Chapter 5 Some Basic Techniques of Group Theory 5.1 Groups Acting on Sets In this chapter we are going to analyze and classify groups, and, if possible, break down complicated groups into simpler components.

More information

Algebra of the 2x2x2 Rubik s Cube

Algebra of the 2x2x2 Rubik s Cube Algebra of the 2x2x2 Rubik s Cube Under the direction of Dr. John S. Caughman William Brad Benjamin. Introduction As children, many of us spent countless hours playing with Rubiks Cube. At the time it

More information

Chapter 7: Products and quotients

Chapter 7: Products and quotients Chapter 7: Products and quotients Matthew Macauley Department of Mathematical Sciences Clemson University http://www.math.clemson.edu/~macaule/ Math 42, Spring 24 M. Macauley (Clemson) Chapter 7: Products

More information

U.C. Berkeley CS276: Cryptography Handout 0.1 Luca Trevisan January, 2009. Notes on Algebra

U.C. Berkeley CS276: Cryptography Handout 0.1 Luca Trevisan January, 2009. Notes on Algebra U.C. Berkeley CS276: Cryptography Handout 0.1 Luca Trevisan January, 2009 Notes on Algebra These notes contain as little theory as possible, and most results are stated without proof. Any introductory

More information

Assignment 8: Selected Solutions

Assignment 8: Selected Solutions Section 4.1 Assignment 8: Selected Solutions 1. and 2. Express each permutation as a product of disjoint cycles, and identify their parity. (1) (1,9,2,3)(1,9,6,5)(1,4,8,7)=(1,4,8,7,2,3)(5,9,6), odd; (2)

More information

Chapter 13: Basic ring theory

Chapter 13: Basic ring theory Chapter 3: Basic ring theory Matthew Macauley Department of Mathematical Sciences Clemson University http://www.math.clemson.edu/~macaule/ Math 42, Spring 24 M. Macauley (Clemson) Chapter 3: Basic ring

More information

MATH10212 Linear Algebra. Systems of Linear Equations. Definition. An n-dimensional vector is a row or a column of n numbers (or letters): a 1.

MATH10212 Linear Algebra. Systems of Linear Equations. Definition. An n-dimensional vector is a row or a column of n numbers (or letters): a 1. MATH10212 Linear Algebra Textbook: D. Poole, Linear Algebra: A Modern Introduction. Thompson, 2006. ISBN 0-534-40596-7. Systems of Linear Equations Definition. An n-dimensional vector is a row or a column

More information

COMBINATORIAL PROPERTIES OF THE HIGMAN-SIMS GRAPH. 1. Introduction

COMBINATORIAL PROPERTIES OF THE HIGMAN-SIMS GRAPH. 1. Introduction COMBINATORIAL PROPERTIES OF THE HIGMAN-SIMS GRAPH ZACHARY ABEL 1. Introduction In this survey we discuss properties of the Higman-Sims graph, which has 100 vertices, 1100 edges, and is 22 regular. In fact

More information

ISOMETRIES OF R n KEITH CONRAD

ISOMETRIES OF R n KEITH CONRAD ISOMETRIES OF R n KEITH CONRAD 1. Introduction An isometry of R n is a function h: R n R n that preserves the distance between vectors: h(v) h(w) = v w for all v and w in R n, where (x 1,..., x n ) = x

More information

Continued Fractions and the Euclidean Algorithm

Continued Fractions and the Euclidean Algorithm Continued Fractions and the Euclidean Algorithm Lecture notes prepared for MATH 326, Spring 997 Department of Mathematics and Statistics University at Albany William F Hammond Table of Contents Introduction

More information

1 VECTOR SPACES AND SUBSPACES

1 VECTOR SPACES AND SUBSPACES 1 VECTOR SPACES AND SUBSPACES What is a vector? Many are familiar with the concept of a vector as: Something which has magnitude and direction. an ordered pair or triple. a description for quantities such

More information

α = u v. In other words, Orthogonal Projection

α = u v. In other words, Orthogonal Projection Orthogonal Projection Given any nonzero vector v, it is possible to decompose an arbitrary vector u into a component that points in the direction of v and one that points in a direction orthogonal to v

More information

NOTES ON LINEAR TRANSFORMATIONS

NOTES ON LINEAR TRANSFORMATIONS NOTES ON LINEAR TRANSFORMATIONS Definition 1. Let V and W be vector spaces. A function T : V W is a linear transformation from V to W if the following two properties hold. i T v + v = T v + T v for all

More information

GROUPS WITH TWO EXTREME CHARACTER DEGREES AND THEIR NORMAL SUBGROUPS

GROUPS WITH TWO EXTREME CHARACTER DEGREES AND THEIR NORMAL SUBGROUPS GROUPS WITH TWO EXTREME CHARACTER DEGREES AND THEIR NORMAL SUBGROUPS GUSTAVO A. FERNÁNDEZ-ALCOBER AND ALEXANDER MORETÓ Abstract. We study the finite groups G for which the set cd(g) of irreducible complex

More information

Solutions to TOPICS IN ALGEBRA I.N. HERSTEIN. Part II: Group Theory

Solutions to TOPICS IN ALGEBRA I.N. HERSTEIN. Part II: Group Theory Solutions to TOPICS IN ALGEBRA I.N. HERSTEIN Part II: Group Theory No rights reserved. Any part of this work can be reproduced or transmitted in any form or by any means. Version: 1.1 Release: Jan 2013

More information

Math 231b Lecture 35. G. Quick

Math 231b Lecture 35. G. Quick Math 231b Lecture 35 G. Quick 35. Lecture 35: Sphere bundles and the Adams conjecture 35.1. Sphere bundles. Let X be a connected finite cell complex. We saw that the J-homomorphism could be defined by

More information

FINITE GROUP THEORY. FOR COMBINATORISTS Volume one. Jin Ho Kwak. Department of Mathematics POSTECH Pohang, 790 784 Korea jinkwak@postech.ac.

FINITE GROUP THEORY. FOR COMBINATORISTS Volume one. Jin Ho Kwak. Department of Mathematics POSTECH Pohang, 790 784 Korea jinkwak@postech.ac. FINITE GROUP THEORY FOR COMBINATORISTS Volume one Jin Ho Kwak Department of Mathematics POSTECH Pohang, 790 784 Korea jinkwak@postech.ac.kr Ming Yao Xu Department of Mathematics Peking University Beijing

More information

IRREDUCIBLE OPERATOR SEMIGROUPS SUCH THAT AB AND BA ARE PROPORTIONAL. 1. Introduction

IRREDUCIBLE OPERATOR SEMIGROUPS SUCH THAT AB AND BA ARE PROPORTIONAL. 1. Introduction IRREDUCIBLE OPERATOR SEMIGROUPS SUCH THAT AB AND BA ARE PROPORTIONAL R. DRNOVŠEK, T. KOŠIR Dedicated to Prof. Heydar Radjavi on the occasion of his seventieth birthday. Abstract. Let S be an irreducible

More information

MATRIX ALGEBRA AND SYSTEMS OF EQUATIONS

MATRIX ALGEBRA AND SYSTEMS OF EQUATIONS MATRIX ALGEBRA AND SYSTEMS OF EQUATIONS Systems of Equations and Matrices Representation of a linear system The general system of m equations in n unknowns can be written a x + a 2 x 2 + + a n x n b a

More information

Lemma 5.2. Let S be a set. (1) Let f and g be two permutations of S. Then the composition of f and g is a permutation of S.

Lemma 5.2. Let S be a set. (1) Let f and g be two permutations of S. Then the composition of f and g is a permutation of S. Definition 51 Let S be a set bijection f : S S 5 Permutation groups A permutation of S is simply a Lemma 52 Let S be a set (1) Let f and g be two permutations of S Then the composition of f and g is a

More information

4. CLASSES OF RINGS 4.1. Classes of Rings class operator A-closed Example 1: product Example 2:

4. CLASSES OF RINGS 4.1. Classes of Rings class operator A-closed Example 1: product Example 2: 4. CLASSES OF RINGS 4.1. Classes of Rings Normally we associate, with any property, a set of objects that satisfy that property. But problems can arise when we allow sets to be elements of larger sets

More information

Elementary Number Theory We begin with a bit of elementary number theory, which is concerned

Elementary Number Theory We begin with a bit of elementary number theory, which is concerned CONSTRUCTION OF THE FINITE FIELDS Z p S. R. DOTY Elementary Number Theory We begin with a bit of elementary number theory, which is concerned solely with questions about the set of integers Z = {0, ±1,

More information

(0, 0) : order 1; (0, 1) : order 4; (0, 2) : order 2; (0, 3) : order 4; (1, 0) : order 2; (1, 1) : order 4; (1, 2) : order 2; (1, 3) : order 4.

(0, 0) : order 1; (0, 1) : order 4; (0, 2) : order 2; (0, 3) : order 4; (1, 0) : order 2; (1, 1) : order 4; (1, 2) : order 2; (1, 3) : order 4. 11.01 List the elements of Z 2 Z 4. Find the order of each of the elements is this group cyclic? Solution: The elements of Z 2 Z 4 are: (0, 0) : order 1; (0, 1) : order 4; (0, 2) : order 2; (0, 3) : order

More information

NOTES ON GROUP THEORY

NOTES ON GROUP THEORY NOTES ON GROUP THEORY Abstract. These are the notes prepared for the course MTH 751 to be offered to the PhD students at IIT Kanpur. Contents 1. Binary Structure 2 2. Group Structure 5 3. Group Actions

More information

LINEAR ALGEBRA W W L CHEN

LINEAR ALGEBRA W W L CHEN LINEAR ALGEBRA W W L CHEN c W W L Chen, 1997, 2008 This chapter is available free to all individuals, on understanding that it is not to be used for financial gain, and may be downloaded and/or photocopied,

More information

NOTES ON CATEGORIES AND FUNCTORS

NOTES ON CATEGORIES AND FUNCTORS NOTES ON CATEGORIES AND FUNCTORS These notes collect basic definitions and facts about categories and functors that have been mentioned in the Homological Algebra course. For further reading about category

More information

MATH 131 SOLUTION SET, WEEK 12

MATH 131 SOLUTION SET, WEEK 12 MATH 131 SOLUTION SET, WEEK 12 ARPON RAKSIT AND ALEKSANDAR MAKELOV 1. Normalisers We first claim H N G (H). Let h H. Since H is a subgroup, for all k H we have hkh 1 H and h 1 kh H. Since h(h 1 kh)h 1

More information

3. Prime and maximal ideals. 3.1. Definitions and Examples.

3. Prime and maximal ideals. 3.1. Definitions and Examples. COMMUTATIVE ALGEBRA 5 3.1. Definitions and Examples. 3. Prime and maximal ideals Definition. An ideal P in a ring A is called prime if P A and if for every pair x, y of elements in A\P we have xy P. Equivalently,

More information

*.I Zolotareff s Proof of Quadratic Reciprocity

*.I Zolotareff s Proof of Quadratic Reciprocity *.I. ZOLOTAREFF S PROOF OF QUADRATIC RECIPROCITY 1 *.I Zolotareff s Proof of Quadratic Reciprocity This proof requires a fair amount of preparations on permutations and their signs. Most of the material

More information

Group Theory: Basic Concepts

Group Theory: Basic Concepts Group Theory: Basic Concepts Robert B. Griffiths Version of 9 Feb. 2009 References: EDM = Encyclopedic Dictionary of Mathematics, 2d English edition (MIT, 1987) HNG = T. W. Hungerford: Algebra (Springer-Verlag,

More information

Notes on Determinant

Notes on Determinant ENGG2012B Advanced Engineering Mathematics Notes on Determinant Lecturer: Kenneth Shum Lecture 9-18/02/2013 The determinant of a system of linear equations determines whether the solution is unique, without

More information

Group Theory. Chapter 1

Group Theory. Chapter 1 Chapter 1 Group Theory Most lectures on group theory actually start with the definition of what is a group. It may be worth though spending a few lines to mention how mathematicians came up with such a

More information

1 Sets and Set Notation.

1 Sets and Set Notation. LINEAR ALGEBRA MATH 27.6 SPRING 23 (COHEN) LECTURE NOTES Sets and Set Notation. Definition (Naive Definition of a Set). A set is any collection of objects, called the elements of that set. We will most

More information

Galois Theory III. 3.1. Splitting fields.

Galois Theory III. 3.1. Splitting fields. Galois Theory III. 3.1. Splitting fields. We know how to construct a field extension L of a given field K where a given irreducible polynomial P (X) K[X] has a root. We need a field extension of K where

More information

Recall that two vectors in are perpendicular or orthogonal provided that their dot

Recall that two vectors in are perpendicular or orthogonal provided that their dot Orthogonal Complements and Projections Recall that two vectors in are perpendicular or orthogonal provided that their dot product vanishes That is, if and only if Example 1 The vectors in are orthogonal

More information

Introduction to finite fields

Introduction to finite fields Introduction to finite fields Topics in Finite Fields (Fall 2013) Rutgers University Swastik Kopparty Last modified: Monday 16 th September, 2013 Welcome to the course on finite fields! This is aimed at

More information

( ) which must be a vector

( ) which must be a vector MATH 37 Linear Transformations from Rn to Rm Dr. Neal, WKU Let T : R n R m be a function which maps vectors from R n to R m. Then T is called a linear transformation if the following two properties are

More information

ADDITIVE GROUPS OF RINGS WITH IDENTITY

ADDITIVE GROUPS OF RINGS WITH IDENTITY ADDITIVE GROUPS OF RINGS WITH IDENTITY SIMION BREAZ AND GRIGORE CĂLUGĂREANU Abstract. A ring with identity exists on a torsion Abelian group exactly when the group is bounded. The additive groups of torsion-free

More information

ABSTRACT ALGEBRA: A STUDY GUIDE FOR BEGINNERS

ABSTRACT ALGEBRA: A STUDY GUIDE FOR BEGINNERS ABSTRACT ALGEBRA: A STUDY GUIDE FOR BEGINNERS John A. Beachy Northern Illinois University 2014 ii J.A.Beachy This is a supplement to Abstract Algebra, Third Edition by John A. Beachy and William D. Blair

More information

Introduction to Finite Fields (cont.)

Introduction to Finite Fields (cont.) Chapter 6 Introduction to Finite Fields (cont.) 6.1 Recall Theorem. Z m is a field m is a prime number. Theorem (Subfield Isomorphic to Z p ). Every finite field has the order of a power of a prime number

More information

Similarity and Diagonalization. Similar Matrices

Similarity and Diagonalization. Similar Matrices MATH022 Linear Algebra Brief lecture notes 48 Similarity and Diagonalization Similar Matrices Let A and B be n n matrices. We say that A is similar to B if there is an invertible n n matrix P such that

More information

Orthogonal Projections

Orthogonal Projections Orthogonal Projections and Reflections (with exercises) by D. Klain Version.. Corrections and comments are welcome! Orthogonal Projections Let X,..., X k be a family of linearly independent (column) vectors

More information

4.1 Modules, Homomorphisms, and Exact Sequences

4.1 Modules, Homomorphisms, and Exact Sequences Chapter 4 Modules We always assume that R is a ring with unity 1 R. 4.1 Modules, Homomorphisms, and Exact Sequences A fundamental example of groups is the symmetric group S Ω on a set Ω. By Cayley s Theorem,

More information

Ideal Class Group and Units

Ideal Class Group and Units Chapter 4 Ideal Class Group and Units We are now interested in understanding two aspects of ring of integers of number fields: how principal they are (that is, what is the proportion of principal ideals

More information

Matrix Representations of Linear Transformations and Changes of Coordinates

Matrix Representations of Linear Transformations and Changes of Coordinates Matrix Representations of Linear Transformations and Changes of Coordinates 01 Subspaces and Bases 011 Definitions A subspace V of R n is a subset of R n that contains the zero element and is closed under

More information

A REMARK ON ALMOST MOORE DIGRAPHS OF DEGREE THREE. 1. Introduction and Preliminaries

A REMARK ON ALMOST MOORE DIGRAPHS OF DEGREE THREE. 1. Introduction and Preliminaries Acta Math. Univ. Comenianae Vol. LXVI, 2(1997), pp. 285 291 285 A REMARK ON ALMOST MOORE DIGRAPHS OF DEGREE THREE E. T. BASKORO, M. MILLER and J. ŠIRÁŇ Abstract. It is well known that Moore digraphs do

More information

FOUNDATIONS OF ALGEBRAIC GEOMETRY CLASS 22

FOUNDATIONS OF ALGEBRAIC GEOMETRY CLASS 22 FOUNDATIONS OF ALGEBRAIC GEOMETRY CLASS 22 RAVI VAKIL CONTENTS 1. Discrete valuation rings: Dimension 1 Noetherian regular local rings 1 Last day, we discussed the Zariski tangent space, and saw that it

More information

Applications of Methods of Proof

Applications of Methods of Proof CHAPTER 4 Applications of Methods of Proof 1. Set Operations 1.1. Set Operations. The set-theoretic operations, intersection, union, and complementation, defined in Chapter 1.1 Introduction to Sets are

More information

5.1 Commutative rings; Integral Domains

5.1 Commutative rings; Integral Domains 5.1 J.A.Beachy 1 5.1 Commutative rings; Integral Domains from A Study Guide for Beginner s by J.A.Beachy, a supplement to Abstract Algebra by Beachy / Blair 23. Let R be a commutative ring. Prove the following

More information

Linear Algebra I. Ronald van Luijk, 2012

Linear Algebra I. Ronald van Luijk, 2012 Linear Algebra I Ronald van Luijk, 2012 With many parts from Linear Algebra I by Michael Stoll, 2007 Contents 1. Vector spaces 3 1.1. Examples 3 1.2. Fields 4 1.3. The field of complex numbers. 6 1.4.

More information

Cryptography and Network Security. Prof. D. Mukhopadhyay. Department of Computer Science and Engineering. Indian Institute of Technology, Kharagpur

Cryptography and Network Security. Prof. D. Mukhopadhyay. Department of Computer Science and Engineering. Indian Institute of Technology, Kharagpur Cryptography and Network Security Prof. D. Mukhopadhyay Department of Computer Science and Engineering Indian Institute of Technology, Kharagpur Module No. # 01 Lecture No. # 12 Block Cipher Standards

More information

= 2 + 1 2 2 = 3 4, Now assume that P (k) is true for some fixed k 2. This means that

= 2 + 1 2 2 = 3 4, Now assume that P (k) is true for some fixed k 2. This means that Instructions. Answer each of the questions on your own paper, and be sure to show your work so that partial credit can be adequately assessed. Credit will not be given for answers (even correct ones) without

More information

SUBGROUPS OF CYCLIC GROUPS. 1. Introduction In a group G, we denote the (cyclic) group of powers of some g G by

SUBGROUPS OF CYCLIC GROUPS. 1. Introduction In a group G, we denote the (cyclic) group of powers of some g G by SUBGROUPS OF CYCLIC GROUPS KEITH CONRAD 1. Introduction In a group G, we denote the (cyclic) group of powers of some g G by g = {g k : k Z}. If G = g, then G itself is cyclic, with g as a generator. Examples

More information

University of Lille I PC first year list of exercises n 7. Review

University of Lille I PC first year list of exercises n 7. Review University of Lille I PC first year list of exercises n 7 Review Exercise Solve the following systems in 4 different ways (by substitution, by the Gauss method, by inverting the matrix of coefficients

More information

THE DIMENSION OF A VECTOR SPACE

THE DIMENSION OF A VECTOR SPACE THE DIMENSION OF A VECTOR SPACE KEITH CONRAD This handout is a supplementary discussion leading up to the definition of dimension and some of its basic properties. Let V be a vector space over a field

More information

SMALL SKEW FIELDS CÉDRIC MILLIET

SMALL SKEW FIELDS CÉDRIC MILLIET SMALL SKEW FIELDS CÉDRIC MILLIET Abstract A division ring of positive characteristic with countably many pure types is a field Wedderburn showed in 1905 that finite fields are commutative As for infinite

More information

Notes on Factoring. MA 206 Kurt Bryan

Notes on Factoring. MA 206 Kurt Bryan The General Approach Notes on Factoring MA 26 Kurt Bryan Suppose I hand you n, a 2 digit integer and tell you that n is composite, with smallest prime factor around 5 digits. Finding a nontrivial factor

More information

Mathematics for Computer Science/Software Engineering. Notes for the course MSM1F3 Dr. R. A. Wilson

Mathematics for Computer Science/Software Engineering. Notes for the course MSM1F3 Dr. R. A. Wilson Mathematics for Computer Science/Software Engineering Notes for the course MSM1F3 Dr. R. A. Wilson October 1996 Chapter 1 Logic Lecture no. 1. We introduce the concept of a proposition, which is a statement

More information

ZORN S LEMMA AND SOME APPLICATIONS

ZORN S LEMMA AND SOME APPLICATIONS ZORN S LEMMA AND SOME APPLICATIONS KEITH CONRAD 1. Introduction Zorn s lemma is a result in set theory that appears in proofs of some non-constructive existence theorems throughout mathematics. We will

More information

3. Equivalence Relations. Discussion

3. Equivalence Relations. Discussion 3. EQUIVALENCE RELATIONS 33 3. Equivalence Relations 3.1. Definition of an Equivalence Relations. Definition 3.1.1. A relation R on a set A is an equivalence relation if and only if R is reflexive, symmetric,

More information

Examples and Exercises

Examples and Exercises Examples and Exercises Guerino Mazzola January 6, 00 Example of A Rigorous Proof Claim: Let a, b, c be sets. Then we have c (a b) = (c a) (c b). Proof. By definition of equality of sets, we have to prove

More information

6 Commutators and the derived series. [x,y] = xyx 1 y 1.

6 Commutators and the derived series. [x,y] = xyx 1 y 1. 6 Commutators and the derived series Definition. Let G be a group, and let x,y G. The commutator of x and y is [x,y] = xyx 1 y 1. Note that [x,y] = e if and only if xy = yx (since x 1 y 1 = (yx) 1 ). Proposition

More information

Field Fundamentals. Chapter 3. 3.1 Field Extensions. 3.1.1 Definitions. 3.1.2 Lemma

Field Fundamentals. Chapter 3. 3.1 Field Extensions. 3.1.1 Definitions. 3.1.2 Lemma Chapter 3 Field Fundamentals 3.1 Field Extensions If F is a field and F [X] is the set of all polynomials over F, that is, polynomials with coefficients in F, we know that F [X] is a Euclidean domain,

More information

r + s = i + j (q + t)n; 2 rs = ij (qj + ti)n + qtn.

r + s = i + j (q + t)n; 2 rs = ij (qj + ti)n + qtn. Chapter 7 Introduction to finite fields This chapter provides an introduction to several kinds of abstract algebraic structures, particularly groups, fields, and polynomials. Our primary interest is in

More information

MA651 Topology. Lecture 6. Separation Axioms.

MA651 Topology. Lecture 6. Separation Axioms. MA651 Topology. Lecture 6. Separation Axioms. This text is based on the following books: Fundamental concepts of topology by Peter O Neil Elements of Mathematics: General Topology by Nicolas Bourbaki Counterexamples

More information

6.2 Permutations continued

6.2 Permutations continued 6.2 Permutations continued Theorem A permutation on a finite set A is either a cycle or can be expressed as a product (composition of disjoint cycles. Proof is by (strong induction on the number, r, of

More information