# Galois Theory III Splitting fields.

Save this PDF as:

Size: px
Start display at page:

Download "Galois Theory III. 3.1. Splitting fields."

## Transcription

1 Galois Theory III Splitting fields. We know how to construct a field extension L of a given field K where a given irreducible polynomial P (X) K[X] has a root. We need a field extension of K where P (X) has all its roots. Definition. Let E be a field and f(x) E[X]. A field extension F E is called a splitting field for f(x) over E if F = E(α 1,..., α n ) with f(x) = c(x α 1 )... (X α n ), where c K is the (non-zero) leading coefficient of F (X). Notice that F must contain all roots of f(x) and it is a minimal field with this property. Examples: (1) C is a spliting field for X over R; (2) C is a splitting field for X over R; (3) C is not a splitting field for X over Q (C is too large); (4) Q(i) is a splitting field for X over Q; (5) Q is a splitting field for X 2 4 over Q; (6) Q( 3 2, 3) is a splitting field for X 3 2 over Q. Theorem (Existence of splitting fields). For any field E and any polynomial f(x) E(X) there is a splitting field F E for f(x) over E and [F : E] n!, where deg f(x) = n. Proof. Use induction on n = deg f(x). If n = 1 then f(x) is linear and F = E. Let n > 1 and assume our theorem is proved for polynomials of degree < n. Choose an irreducible factor m(x) for f(x) in E[X]. Consider the field extension E 1 = E(α 1 ) E, where α 1 is a root of m(x). Notice that [E(α 1 ) : E] = deg m(x) and f(x) = (X α 1 )f 1 (X), where f 1 (X) E 1 [X] and deg f 1 (X) = n 1 < n. By inductive assumption, there is a splitting field for f 1 (X) over E 1. In other words, there is a field extension F E 1 such that f 1 (X) = c(x α 2 )... (X α n ) and F = E 1 (α 2,..., α n ). But E 1 = E(α 1 ) implies that F = E(α 1, α 2,..., α n ) and f(x) = (X α 1 )f 1 (X) = c(x α 1 )(X α 2 )... (X α n ). So, F is a splitting field for f(x) over E. It remains to notice that [F : E] = [F : E 1 ][E 1 : E] (n 1)! deg m(x) (n 1)!n = n!. 1

2 Theorem (Uniqueness of splitting fields). Let E and Ẽ be fields and let σ : E Ẽ be a field isomorphism. Let f(x) E[X] and σ(f(x)) = f(x) Ẽ[X]. Let K be a splitting field for f(x) over E. Let K be a splitting field for f(x) over Ẽ. Then there is a field isomorphism τ : K K such that τ E = σ : E Ẽ. Proof. Use induction on n = deg f(x) = deg f(x). If n = 1 then K = E and K = Ẽ and we can take τ = σ. Suppose n > 1 and choose an irreducible factor m(x) of f(x) in E[X]. Then m(x) = σ(m(x)) is an irreducible factor of f(x). Choose a root α K of m(x) and a root α K of m(x). Because the polynomial m(x) is obtained from m(x) via the field isomorphism σ there is a field isomorphism τ 1 : E(α) Ẽ( α) such that τ 1 E coincides with σ and τ 1 (α) = α. (Use the uniqueness of a minimal field extension where a given polynomial has a root.) But then notice that K became a splitting field of f 1 (X) over E(α), where f(x) = (X α)f 1 (X). Similarly, K is a splitting field of f 1 (X) over E( α), where f(x) = (X α) f 1 (X). It remains to notice that the degree of f 1 (X) is n 1 < n and f 1 (X) is obtained from f 1 (X) via the field isomorphism τ 1 : E(α) Ẽ( α). Therefore, by inductive assumption τ 1 can be extended to required field isomorphism τ from K to K Normal extensions. Definition. Let F/E be a field extension. It is normal if the following condition is satisfied: whenever P (X) E[X] is irreducible and has a root in F then P (X) splits completely in F [X]. In other words, a field F is normal over its subfield E if any irreducible polynomial P (X) from E[X] with a root in F has all its roots in F. Examples; a) If [F : E] = 1 then F is normal over E; b) Prove that any quadratic extension F/E is normal. Indeed, suppose P (X) E[X] is irreducible and let θ F is such that P (θ) = 0. Then E E(θ) F and because [F : e] = 2 we have [E(θ) : E] = deg P (X) is either 1, or 2. If deg P (X) = 1 there is nothing to prove. If deg P (X) = 2, then P (X) = c(x θ)(x θ ) in F [X]. This implies that c(θ + θ ) F and, therefore, θ F. So, P (X) splits completely in F [X]. c) Not every cubic extension is normal. Indeed, take E = Q and F = Q(θ), where θ is a root of X 3 2 Q[X]. Then two remaining roots of X 3 2 are θζ 3 and θζ3, 2 where ζ 3 = ( 1 + 3)/2. If θζ 3 Q(θ) then ζ 3 Q(θ). Therefore, Q Q(ζ 3 ) Q(θ). This is impossible because this would imply that 2 = [Q(ζ 3 ) : Q] divides 3 = [Q(θ) : Q]. d) Give an example of cubic normal extension of Q. Let f(x) = X 3 3X 1 Q[X]. It is irreducible and if θ 1 C is its root then F = Q(θ 1 ) is cubic extension of Q. Apply Cardano formulas to find explicitly all roots of f(x) in C. Any root of f(x) appears in the form u + v, where uv = 1 and u 3 + v 3 = 1. Therefore, u 3 and v 3 are roots exp(±iπ/3) = cos(π/3) ± i sin(π/3) of the quadratic polynomial 2

3 T 2 T + 1 = 0. This gives the following three pairs of solutions (u, v): (exp(iπ/9), exp( iπ/9), (exp(7iπ/9), exp( 7iπ/9)) and (exp(13iπ/9), exp( 13iπ/9)). Therefore, the roots of our cubic polynomial f(x) are θ 1 = 2 cos(π/9), θ 2 = cos(7π/9) and θ 3 = cos(13π/9). This implies that θ 2 = 2 cos(2π/9) = 2(1 2θ 2 1) Q(θ 1 ). And θ 3 Q(θ 1 ) because θ 1 + θ 2 + θ 3 = 0. Theorem (Criterion of normality). A finite field extension F/E is normal if and only if there is a polynomial G(X) E[X] such that F is a splitting field for G(X) over E. Proof. Suppose, first, that F is normal over E. Choose a finite number of elements α 1,..., α r F such that F = E(α 1,..., α r ). (Explain, why such finite set of elements exists.) For 1 i r, let P i (X) E[X] be the minimal polynomial for α i over E. Each polynomial P i (X) is irreducible and has a root α i in F, therefore, P i (X) splits completely in F [X]. (Use that F/E is normal.) Let G(X) be the product P 1 (X)... P r (X). Then G(X) splits completely in F [X], therefore, F contains the splitting field E G for G(X) over E. On the other side, F = E(α 1,..., α r ) contains E G because all α i are roots of G(X) and E G is generated over E by all roots of G(X). So, F = E G. Prove our theorem in the opposite direction. Suppose F = E G is the splitting field for some polynomial G(X) E[X]. Take any irreducible P (X) E[X] such that P (a) = 0 for some a F. We must prove that P (X) splits completely over F. Let q(x) be an irreducible factor of P (X) in F [X]. Consider the minimal field extension F (b) of F, where b is a root of q(x). WE must prove that b F, i.e. F = F (b). Step 1. a and b are roots of the same irreducible polynomial P (X) E[X]. Therefore, there is a field isomorphism σ : E(a) E(b) such that σ(a) = b and σ E = id. Notice that [E(a) : E] = [E(b) : E] = deg P (X). Step 2. We know that F is generated by all roots of G(X) E[X] over E. This iomplies that the roots of G(X) generate the field extensions F (a)/e(a) and F (b)/e(b). In particular, F (a) is the splitting field for G(X) over E(a) and F (b) is the splitting field for F (b) over E(b). Step 3. By the uniqueness property of splitting fields, the field isomorphism σ from step 1 can be extended to a field isomorphism τ : F (a) F (b). In particular, [F (a) : E(a)] = [F (b) : E(b). Remind that a F and, therefore, F = F (a). It remains to count the degrees: [F : E] = [F (a) : E] = [F (a) : E(a)][E(a) : E] = [F (b) : E(b)][E(b) : E] = [F (b) : E] = [F (b) : F ][F : E]. Therefore, [F (b) : F ] = 1, i.e. F = F (b) and b F. Our Theorem is completely proved. Examples. 1) Q( 2, 3, 5, 7) is normal over Q. (It is a splitting field of (X 2 2)(X 2 3)(X 2 5)(X 2 7) Q[X].); 2) Q( 3 2, 3) is the splitting field of X 3 2 Q[X] and is, therefore, normal over Q; 3) Q( 3 2) is not normal over Q. (Consider X 3 2 Q[X] and prove that it has only one root in Q( 3 2).); 3

4 4) Q( 4 2) is not normal but Q( 4 2, i) is normal over Q. 5) If α is a root of X 3 + X + 1 F 2 [X] then F 2 (α) is a normal extension of F 2 of degree 3; (Later we shall prove that any finite field extension of F p, where p is a prime number, is automatically normal.) 6) Let K = F p (T ) = Frac F p [T ] be a field of rational functions in one variable T over prime field F p. Then the polynomial F (X) = X p T K[X] is irreducible and L = K(θ), where θ is a root of P (X), is normal over K Why normal extensiona are good but not good enough? Consider a finite field extension. The Galois Theory deals with symmetries of L over K. These symmetries are field automorphisms σ : L L such that σ K = id. For a given field extension L/K we shall denote the set of such symmetries by Aut K L. Examples: a) Aut R C contains (at least) two elements: the identity map id : C C and the complex conjugation σ : C C given by the correspondence a + bi a bi; b) Aut Q Q( 2) again contains (at least) two elements a + b 2 a ± b 2. The above examples give as a matter of fact precise information about the corresponding sets of symmetries due to the following result. Proposition. Suppose L = K(θ), where θ is a root of an irreducible polynomial P (X) K[X]. Then Aut K L deg P (X). Proof. We know that any element of α L can be written (uniquely) as a linear combination α = b 0 + b 1 θ + + b n 1 θ n 1, where n = deg P (X) and all coefficients b i K. If σ Aut K L then σ(α) = b 0 + b 1 σ(θ) + + b n 1 σ(θ) n 1 (Use that σ is compatible with addition and multiplication and σ K = id.) In other words, the knowledge of the whole map σ is equivalent to the knowledge of just the image σ(θ) of θ. But σ(θ) must be again a root of our polynomial P (X). Indeed, if P (X) = X n + b 1 X n b n 1 X + b n, then P (σ(θ))σ(θ) n + b 1 σ(θ) n b n 1 σ(θ) + b n = σ(p (θ)) = 0 (use again that σ is compatible with operations and acts as identity on K.) This implies our proposition because the number of distinct roots of P (X) is n. Taking into account results of section 2 we obtain Corollary. Aut K L = n is maximal if and only if P (X) splits completely in L[X] (i.e. L is normal over K) and all roots of P (X) are different (i.e. each root of P (X) appears with multiplicity 1). The above properties can be generalized as follows: 4

5 Theorem. For any finite field extension L/K, Aut K L [L : K] and this inequality becomes equality if and only if L/K is normal and the minimal polynomials of all elements of L over K have no multiple roots Separable extensions. Definition. Let F E be an algebraic field extension. An element θ F is separable over E if its minimal polynomial over E has no multiple roots (in its splitting field). Definition. F/E is separable if any element of F is separable over E. So, the last theorem of n.3.3 states that if L/K is a finite field extension then it has a maximal possible number of field automorphisms if and only if it is normal and separable. Inseparable extensions do not appear very often. More precisely, we have the following theorem. Theorem. A finite field extension F/E is separable if it satisfies to one of the following conditions (where p is a prime number): a) char E = 0; b) char E = p and [F : E] is not divisible by p; c) char E = p and E = E p (i.e. any element of E is p-th power of element of E) Proof. We must prove that under one of above conditions a)-c) the minimal polynomial P (X) of any element θ F has no multiple roots. Let F be a splitting field of P (X) over E. Then P (X) = c 1 i n (X θ i ), with c E and θ 1 = θ. Notice, for any i, P (X) is the minimal polynomial for θ i over E. Indeed, P (θ i ) = 0 and deg P (X) = [E(θ 1 ) : E] = [E(θ i ) : E]. For any polynomial f(x) = a n X n + a n 1 X n a 1 X + a 0 F [X] we can introduce its formal derivative by explicit formula f (X) = a n nx n 1 + a n 1 (n 1)X n a 1. For any polynomials f(x), g(x) F [X] and a F, one can verify the usual rules: (f(x) ± g(x)) = f (X) ± g (X) (af(x)) = af (X) (f(x)g(x)) = f (X)g(X) + f(x)g (X). 5

6 Suppose P (X) has multiple roots, i.e. for some different indices i j, θ i = θ j, i.e. P (X) = (X θ i ) 2 P 1 (X) in F [X]. Then P (X) = 2(X θ i )P 1 (X) + (X θ i ) 2 P 1(X) and, therefore, P (θ i ) = 0. But P (X) is the minimal polynomial for θ i and P (X) E[X] has degree < deg P (X). Therefore, P (X) = 0 is the zero polynomial, i.e. the polynomial with zero coefficients. So, if P (X) = X n + a n 1 X n a 1 X + a 0 then n = 0, a n 1 (n 1) = 0,..., a 1 = 0. If char E = 0 then it is impossible. This proves the case a) of our theorem. If char E = p then n 0 mod p. This proves the case b) of our theorem. Even more, P (X) can have non-zero coefficients a i only if i is divisible by p. In other words, P (X) = X mp + b m 1 X (m 1)p + + b 1 X p + b 0. (Verify that P (X) = 0!) Under assumption c) there are c 0, c 1,..., c m 1 E such that b 0 = c p 0, b 1 = c p 1,..., b m 1 = c p m 1. Therefore, P (X) = X mp + c p m 1 X(m 1)p + + c p 0 = (Xm + c m 1 X m c 0 ) p (Use that char E = p.) This means that P (X) is not irreducible in E[X]. Contradiction. The theorem is completely proved. The above theorem explains why it is not easy to construct an example of inseparable field extension. In the case of fields of characteristic 0 any algebraic field extension is separable. The simplest field extensions in characteristic p are extensions of the finite field F p, but any element of a F p satisfies tha condition a p = a and, therefore any finite field extension of F p is separable. (This also implies that any algebraic extension of any finite field is automatically separable.) So, the first chance to get an example of inseparable extension is to take an infinite field of characteristic p. Example of inseparable extension. Suppose E = F 2 (t) = Frac F 2 [t] is the field of rational functions in one variable t with coefficients in F 2. Let P (X) = X 2 t E[X]. Then P (X) is irreducible (use that E[X] is a unique factorisation domain). Let F = E(θ), where θ is a root of P (X). Then in F [X] we have that P (X) = (X θ) 2 (use that F is a field of characteristic 2). So, P (X) has θ as a root with multiplicity 2. Therefore, F is an inseparable extension of E of degree 2. Notice that replacing everywhere 2 by a prime number p we shall obtain an example of an inseparable extension of degree p. There is also the following general criterion. Theorem. A finite field extension F = E(α), where α is a root of an irreducible polynomial f(x) E[X], is separable if and only if f(x) has no multiple roots (in its splitting field over E). Proof. The only if part is easy: f(x) is the minimal polynomial for α over E and, therefore, if our extension is separable then f(x) can t have multiple roots. Prove the if part of the theorem. (It is very far from to be straightforward!) 6

7 Suppose θ F and P (X) has multiple roots. As earlier, this implies that for some prime number p, char E = p and P (X) = Q(X p ) for some polynomial Q(X) E(X). Let K = E(θ) and K 1 = E(θ p ). Then K and K 1 are subfields in F, K K 1, [K : E] = deg P (X), [K 1 : E] = deg Q(X) and, therefore, [K : K 1 ] = p. Notice that K p K 1, i.e. p-th power of any element of K is an element of the smaller field K 1. Now take our α F and consider its minimal polynomials f K (X) over K and f K1 (X) over K 1. Then both f K (X) and f K1 (X) are factors of f(x) and, therefore, have no multiple roots. In addition, f K1 (X) is divisible by f K (X), deg f K (X) = [F : K] and deg f K (X) = [F : K 1 ] = p[f : K]. Finally, consider the p-th power g(x) = f K (X) p of f K (X). Then g(x) has coefficients in K p K 1, it has α as a root and its degree is p[f : K] = [F : K 1 ]. Therefore, g(x) satisfies all conditions for the minimal polynomial for α over K 1. Therefore, g(x) = f K1 (X). But this is impossible because then f K1 (X) is a p-th power of f K (X) and, therefore, has multiple roots. The theorem is completely proved. Finally notice that above methods allow to prove the following general property: Suppose K L F are finite field extensions. Then F/K is separable if and only if both F/L and L/K are separable Galois extensions and their Galois groups. Definition. A finite field extension E/K is Galois if Aut K E = [E : K]. Theorem. A finite field extension is Galois if and only if it is normal and separable. We do not prove this theorem, but notice that it was completely proved in the previous section in the case of simple extensions E/K, i.e. such that E = K(θ) for some θ E. Let E be any field. Consider the set Aut E of all field automorphismsm of the field E. By definition, Aut E consists of all injective and surjective maps ψ : E E such that for any α, β E, it holds ψ(α + β) = ψ(α) + ψ(β) and ψ(αβ) = ψ(α)ψ(β). Notice that automatically, ψ(0) = 0, ψ(1) = 1, ψ( α) = ψ(α) and for α 0, ψ(α 1 ) = ψ(α) 1. One can prove that: a) Aut Q = {id}; b) Aut Q( 2) = {id, σ}, where for any a, b Q, σ(a + b 2) = a b 2; c) Aut R = {id}. Remark. The properties a) and b) can be easily proved. In order to prove c), prove that for any ψ Aut R, if x, y R and x < y then ψ(x) < ψ(y). Proposition. Aut E is a group, where the operation is the composition of automorphisms. Proof. Suppose ψ, ϕ Aut E. Then for any a E, (ψϕ)(a) = ϕ(ψ(a)). Then standard set-theoretic arguments prove that ψϕ is injective and surjective. In addition, for any α, β E, (ψϕ)(α + β) = ψ(ϕ(α + β)) = ψ(ϕ(α)) + ψ(ϕ(β)) = (ψϕ)(α) + (ψϕ)(β) 7

8 and, similarly, (ψϕ)(αβ) = (ψϕ)(α)(ψϕ)(β). This proves that the set Aut E is closed under operation given by the composition of morphisms. Then we must verify group axioms: associativity Indeed, if ψ, ϕ, χ Aut E then for any a E, ((ψϕ)χ)(a) = χ(ϕ(ψ(a)) = (ψ(ϕχ))(a) ; existence of identity element Indeed, the identity map id E Aut E and for any a E, (ψ id E )(a) = ψ(a) = (id E ψ)(a). existence of inverse map One can easily see (do this!) that for any ψ Aut E, one can define the map ψ : E E by the following rule: if α, β E and ψ(α) = β then ψ (β) = α. Also then (check it!) ψ Aut E and ψψ = ψ ψ = id E. The proposition is proved. Examples: a) Aut Q and Aut R are trivial groups, i.e. groups which consist of only one (identity!) element; b) Aut Q( 2) is the cyclic group of order 2, i.e. it equals {id, σ} where σ 2 = id. Suppose now that K is a subfield of E. Then (as earlier) Aut K E is the subset of all ψ Aut E such that ψ K = id, i.e. for any a K, ψ(a) = a. Clearly (prove this!), Aut K E is a subgroup in Aut E. Definition. If E is a finite Galois extension of K then Aut K E is the Galois group of the extension E/K which will be denoted by Gal(E/K). Example. Gal(K/K) is the trivial group, Gal(Q( 2)/Q) is the cyclic group of order Basic results of Galois theory. Suppose E/K is a finite Galois extension and G = Gal(E/K) is its Galois group. Let E G = {a E σ G, σ(a) = a}. In other words, E G is the subset of all invariant elements of E with respect to the action of G on E. Clearly, E G K. Example. If E = C and K = R then C/R is Galois, Gal(C/R) = G = {id, σ}, where σ is the complex conjugation and C G = R. 8

9 Lemma. E G is a subfield in E. Proof. Suppose α, β E G. Then for any σ G, σ(α) = α and σ(β) = β. Because σ is a field automorphism of E, σ(α ± β) = σ(α) ± σ(β) = α ± β and σ(αβ) = σ(α)σ(β) = αβ. Therefore, α ± β and αβ belong to E G. In other words, E G is closed with respect to operations on E and, therefore, is a subfield in E. Notice that the subfield E G of E contains K, i.e. K E G E. The following statement is he first basic result of Galois theory. (We are not going to prove it.) Theorem A. With above notation, E G = K. Suppose H is any subgroup in G. Consider E H = {a E σ H, σ(a) = a}. As earlier, E H is a subfield in E and E H K. Therefore, the correspondence H E H gives a map {subgroups in G} {fields L such that K L E}. This map is a very important component of Galois Theory, it is called the Galois correspondence. Theorem B. The Galois correspondence is a one-one correspondence between the sets of all subgroups of G = Gal(E/K) and all subfields of E which contain K. Notice that if a subgroup is bigger then the corresponding subfield is smaller : for subgroups {e} H 1 H 2 G we have E = E {e} E H 2 E H 1 E G = K. Proposition. If E/K is Galois and H is a subgroup in Gal(E/K) then E is Galois over E H and Gal(E/E H ) = H. Example. If H = {e} then E H = E and Gal(E/E) = {e}. Proof of the proposition. Let E H = L, then K L E and: E/K is normal implies that E/L is normal; E/K is separable impolies that E/L is separable. So, E/L is Galois and we can introduce H 1 = Gal(E/L). Then by theorem A, E H 1 = L = E H and by theorem B, H = H 1, i.e. Gal(E/E H ) = H. The proposition is proved. Corollary. The correspondence L Gal(E/L) gives the inverse to the Galois correspondence and, therefore, defines a one-one map from the set of all fields between K and E to the set of all subgroups of G = Gal(E/K). Corollary. If, as earlier, E/K is finite Galois, G = Gal(E/K) and H G is a subgroup then [E : E H ] = H and [E H [E : K] : K] = [E : E H ] = G = (G : H) the H index of H in G. Problem. If H is a subgroup of Gal(E/K) then E/E H is Galois but, generally, E H /K is not Galois. (Give an example!) How we can characterize the subgroups H such that E H /K is Galois? What will be then Gal(E H /K)? The answer to this question is given by third main result of Galois theory. 9

10 Theorem C. In the above notation, E H /K is Galois if and only if H is a normal subgroup of G. In this case, Gal(E H /K) is the quotient group G/H. Reminder. A subgroup H of G is normal if for any g G, g 1 Hg = H. Equivalently, for any g G, the left coset gh must coincide with the right coset Hg. (In particular, if G is abelian group then any its subgroup is automatically normal.) Then the quotient group G/H appears as a set of all cosets gh with group operation induced by the group operation on G. This means that the natural projection from G to G/H given by the correspondence g gh is a group epimorphism. Remark. There is a natural map p H from G = Gal(E/K) to Gal(E H /K). It is given by the restriction g g E H of any g G to E H. (One can verify that if H is a normal subgroup in G then g(e H ) = E H.) Finally, with respect to the identification Gal(E H /K) = G/H from above Theorem C, the map p H is just the natural projection from G to G/H. 10

### ALGEBRA HW 5 CLAY SHONKWILER

ALGEBRA HW 5 CLAY SHONKWILER 510.5 Let F = Q(i). Prove that x 3 and x 3 3 are irreducible over F. Proof. If x 3 is reducible over F then, since it is a polynomial of degree 3, it must reduce into a product

### Cyclotomic Extensions

Chapter 7 Cyclotomic Extensions A cyclotomic extension Q(ζ n ) of the rationals is formed by adjoining a primitive n th root of unity ζ n. In this chapter, we will find an integral basis and calculate

### 7. Some irreducible polynomials

7. Some irreducible polynomials 7.1 Irreducibles over a finite field 7.2 Worked examples Linear factors x α of a polynomial P (x) with coefficients in a field k correspond precisely to roots α k [1] of

### minimal polyonomial Example

Minimal Polynomials Definition Let α be an element in GF(p e ). We call the monic polynomial of smallest degree which has coefficients in GF(p) and α as a root, the minimal polyonomial of α. Example: We

### it is easy to see that α = a

21. Polynomial rings Let us now turn out attention to determining the prime elements of a polynomial ring, where the coefficient ring is a field. We already know that such a polynomial ring is a UF. Therefore

### 10 Splitting Fields. 2. The splitting field for x 3 2 over Q is Q( 3 2,ω), where ω is a primitive third root of 1 in C. Thus, since ω = 1+ 3

10 Splitting Fields We have seen how to construct a field K F such that K contains a root α of a given (irreducible) polynomial p(x) F [x], namely K = F [x]/(p(x)). We can extendthe procedure to build

### Introduction to finite fields

Introduction to finite fields Topics in Finite Fields (Fall 2013) Rutgers University Swastik Kopparty Last modified: Monday 16 th September, 2013 Welcome to the course on finite fields! This is aimed at

### some algebra prelim solutions

some algebra prelim solutions David Morawski August 19, 2012 Problem (Spring 2008, #5). Show that f(x) = x p x + a is irreducible over F p whenever a F p is not zero. Proof. First, note that f(x) has no

### A NOTE ON FINITE FIELDS

A NOTE ON FINITE FIELDS FATEMEH Y. MOKARI The main goal of this note is to study finite fields and their Galois groups. Since I define finite fields as subfields of algebraic closure of prime fields of

### 1 = (a 0 + b 0 α) 2 + + (a m 1 + b m 1 α) 2. for certain elements a 0,..., a m 1, b 0,..., b m 1 of F. Multiplying out, we obtain

Notes on real-closed fields These notes develop the algebraic background needed to understand the model theory of real-closed fields. To understand these notes, a standard graduate course in algebra is

### I. GROUPS: BASIC DEFINITIONS AND EXAMPLES

I GROUPS: BASIC DEFINITIONS AND EXAMPLES Definition 1: An operation on a set G is a function : G G G Definition 2: A group is a set G which is equipped with an operation and a special element e G, called

### Math 504, Fall 2013 HW 3

Math 504, Fall 013 HW 3 1. Let F = F (x) be the field of rational functions over the field of order. Show that the extension K = F(x 1/6 ) of F is equal to F( x, x 1/3 ). Show that F(x 1/3 ) is separable

### Modern Algebra Lecture Notes: Rings and fields set 4 (Revision 2)

Modern Algebra Lecture Notes: Rings and fields set 4 (Revision 2) Kevin Broughan University of Waikato, Hamilton, New Zealand May 13, 2010 Remainder and Factor Theorem 15 Definition of factor If f (x)

### Module MA3411: Abstract Algebra Galois Theory Appendix Michaelmas Term 2013

Module MA3411: Abstract Algebra Galois Theory Appendix Michaelmas Term 2013 D. R. Wilkins Copyright c David R. Wilkins 1997 2013 Contents A Cyclotomic Polynomials 79 A.1 Minimum Polynomials of Roots of

### ON GALOIS REALIZATIONS OF THE 2-COVERABLE SYMMETRIC AND ALTERNATING GROUPS

ON GALOIS REALIZATIONS OF THE 2-COVERABLE SYMMETRIC AND ALTERNATING GROUPS DANIEL RABAYEV AND JACK SONN Abstract. Let f(x) be a monic polynomial in Z[x] with no rational roots but with roots in Q p for

### SOLUTIONS TO PROBLEM SET 3

SOLUTIONS TO PROBLEM SET 3 MATTI ÅSTRAND The General Cubic Extension Denote L = k(α 1, α 2, α 3 ), F = k(a 1, a 2, a 3 ) and K = F (α 1 ). The polynomial f(x) = x 3 a 1 x 2 + a 2 x a 3 = (x α 1 )(x α 2

### Introduction to Algebraic Geometry. Bézout s Theorem and Inflection Points

Introduction to Algebraic Geometry Bézout s Theorem and Inflection Points 1. The resultant. Let K be a field. Then the polynomial ring K[x] is a unique factorisation domain (UFD). Another example of a

### Chapter 4, Arithmetic in F [x] Polynomial arithmetic and the division algorithm.

Chapter 4, Arithmetic in F [x] Polynomial arithmetic and the division algorithm. We begin by defining the ring of polynomials with coefficients in a ring R. After some preliminary results, we specialize

### Introduction to Finite Fields (cont.)

Chapter 6 Introduction to Finite Fields (cont.) 6.1 Recall Theorem. Z m is a field m is a prime number. Theorem (Subfield Isomorphic to Z p ). Every finite field has the order of a power of a prime number

### GROUPS ACTING ON A SET

GROUPS ACTING ON A SET MATH 435 SPRING 2012 NOTES FROM FEBRUARY 27TH, 2012 1. Left group actions Definition 1.1. Suppose that G is a group and S is a set. A left (group) action of G on S is a rule for

### 13 Solutions for Section 6

13 Solutions for Section 6 Exercise 6.2 Draw up the group table for S 3. List, giving each as a product of disjoint cycles, all the permutations in S 4. Determine the order of each element of S 4. Solution

### H/wk 13, Solutions to selected problems

H/wk 13, Solutions to selected problems Ch. 4.1, Problem 5 (a) Find the number of roots of x x in Z 4, Z Z, any integral domain, Z 6. (b) Find a commutative ring in which x x has infinitely many roots.

### GALOIS THEORY AT WORK: CONCRETE EXAMPLES

GALOIS THEORY AT WORK: CONCRETE EXAMPLES KEITH CONRAD 1. Examples Example 1.1. The field extension Q(, 3)/Q is Galois of degree 4, so its Galois group has order 4. The elements of the Galois group are

### INTRODUCTION TO ARITHMETIC GEOMETRY (NOTES FROM 18.782, FALL 2009)

INTRODUCTION TO ARITHMETIC GEOMETRY (NOTES FROM 18.782, FALL 2009) BJORN POONEN (Please clear your browser s cache before reloading to make sure that you are always getting the current version.) 1. What

### Algebra 2. Rings and fields. Finite fields. A.M. Cohen, H. Cuypers, H. Sterk. Algebra Interactive

2 Rings and fields A.M. Cohen, H. Cuypers, H. Sterk A.M. Cohen, H. Cuypers, H. Sterk 2 September 25, 2006 1 / 20 For p a prime number and f an irreducible polynomial of degree n in (Z/pZ)[X ], the quotient

### FINITE FIELDS KEITH CONRAD

FINITE FIELDS KEITH CONRAD This handout discusses finite fields: how to construct them, properties of elements in a finite field, and relations between different finite fields. We write Z/(p) and F p interchangeably

### Since [L : K(α)] < [L : K] we know from the inductive assumption that [L : K(α)] s < [L : K(α)]. It follows now from Lemma 6.

Theorem 7.1. Let L K be a finite extension. Then a)[l : K] [L : K] s b) the extension L K is separable iff [L : K] = [L : K] s. Proof. Let M be a normal closure of L : K. Consider first the case when L

### Quotient Rings of Polynomial Rings

Quotient Rings of Polynomial Rings 8-7-009 Let F be a field. is a field if and only if p(x) is irreducible. In this section, I ll look at quotient rings of polynomial rings. Let F be a field, and suppose

### 50. Splitting Fields. 50. Splitting Fields 165

50. Splitting Fields 165 1. We should note that Q(x) is an algebraic closure of Q(x). We know that is transcendental over Q. Therefore, p must be transcendental over Q, for if it were algebraic, then (

### Finite dimensional C -algebras

Finite dimensional C -algebras S. Sundar September 14, 2012 Throughout H, K stand for finite dimensional Hilbert spaces. 1 Spectral theorem for self-adjoint opertors Let A B(H) and let {ξ 1, ξ 2,, ξ n

### 3. Prime and maximal ideals. 3.1. Definitions and Examples.

COMMUTATIVE ALGEBRA 5 3.1. Definitions and Examples. 3. Prime and maximal ideals Definition. An ideal P in a ring A is called prime if P A and if for every pair x, y of elements in A\P we have xy P. Equivalently,

### Factorization in Polynomial Rings

Factorization in Polynomial Rings These notes are a summary of some of the important points on divisibility in polynomial rings from 17 and 18 of Gallian s Contemporary Abstract Algebra. Most of the important

### POLYNOMIAL RINGS AND UNIQUE FACTORIZATION DOMAINS

POLYNOMIAL RINGS AND UNIQUE FACTORIZATION DOMAINS RUSS WOODROOFE 1. Unique Factorization Domains Throughout the following, we think of R as sitting inside R[x] as the constant polynomials (of degree 0).

### Unique Factorization

Unique Factorization Waffle Mathcamp 2010 Throughout these notes, all rings will be assumed to be commutative. 1 Factorization in domains: definitions and examples In this class, we will study the phenomenon

### Sets and functions. {x R : x > 0}.

Sets and functions 1 Sets The language of sets and functions pervades mathematics, and most of the important operations in mathematics turn out to be functions or to be expressible in terms of functions.

### Mathematics Course 111: Algebra I Part IV: Vector Spaces

Mathematics Course 111: Algebra I Part IV: Vector Spaces D. R. Wilkins Academic Year 1996-7 9 Vector Spaces A vector space over some field K is an algebraic structure consisting of a set V on which are

### Factoring of Prime Ideals in Extensions

Chapter 4 Factoring of Prime Ideals in Extensions 4. Lifting of Prime Ideals Recall the basic AKLB setup: A is a Dedekind domain with fraction field K, L is a finite, separable extension of K of degree

### Field Fundamentals. Chapter 3. 3.1 Field Extensions. 3.1.1 Definitions. 3.1.2 Lemma

Chapter 3 Field Fundamentals 3.1 Field Extensions If F is a field and F [X] is the set of all polynomials over F, that is, polynomials with coefficients in F, we know that F [X] is a Euclidean domain,

### Factoring Polynomials

Factoring Polynomials Sue Geller June 19, 2006 Factoring polynomials over the rational numbers, real numbers, and complex numbers has long been a standard topic of high school algebra. With the advent

### a 1 x + a 0 =0. (3) ax 2 + bx + c =0. (4)

ROOTS OF POLYNOMIAL EQUATIONS In this unit we discuss polynomial equations. A polynomial in x of degree n, where n 0 is an integer, is an expression of the form P n (x) =a n x n + a n 1 x n 1 + + a 1 x

### 3 1. Note that all cubes solve it; therefore, there are no more

Math 13 Problem set 5 Artin 11.4.7 Factor the following polynomials into irreducible factors in Q[x]: (a) x 3 3x (b) x 3 3x + (c) x 9 6x 6 + 9x 3 3 Solution: The first two polynomials are cubics, so if

### Quadratic Equations in Finite Fields of Characteristic 2

Quadratic Equations in Finite Fields of Characteristic 2 Klaus Pommerening May 2000 english version February 2012 Quadratic equations over fields of characteristic 2 are solved by the well known quadratic

### Revision of ring theory

CHAPTER 1 Revision of ring theory 1.1. Basic definitions and examples In this chapter we will revise and extend some of the results on rings that you have studied on previous courses. A ring is an algebraic

### The Notebook Series. The solution of cubic and quartic equations. R.S. Johnson. Professor of Applied Mathematics

The Notebook Series The solution of cubic and quartic equations by R.S. Johnson Professor of Applied Mathematics School of Mathematics & Statistics University of Newcastle upon Tyne R.S.Johnson 006 CONTENTS

### Proofs are short works of prose and need to be written in complete sentences, with mathematical symbols used where appropriate.

Advice for homework: Proofs are short works of prose and need to be written in complete sentences, with mathematical symbols used where appropriate. Even if a problem is a simple exercise that doesn t

### Quotient Rings and Field Extensions

Chapter 5 Quotient Rings and Field Extensions In this chapter we describe a method for producing field extension of a given field. If F is a field, then a field extension is a field K that contains F.

### MOP 2007 Black Group Integer Polynomials Yufei Zhao. Integer Polynomials. June 29, 2007 Yufei Zhao yufeiz@mit.edu

Integer Polynomials June 9, 007 Yufei Zhao yufeiz@mit.edu We will use Z[x] to denote the ring of polynomials with integer coefficients. We begin by summarizing some of the common approaches used in dealing

### MA3D5 Galois theory. Miles Reid. Jan Mar 2004 printed Jan 2014

MA3D5 Galois theory Miles Reid Jan Mar 2004 printed Jan 2014 Contents 1 The theory of equations 3 1.1 Primitive question........................ 3 1.2 Quadratic equations....................... 3 1.3 The

### Integral Domains. As always in this course, a ring R is understood to be a commutative ring with unity.

Integral Domains As always in this course, a ring R is understood to be a commutative ring with unity. 1 First definitions and properties Definition 1.1. Let R be a ring. A divisor of zero or zero divisor

### FACTORING POLYNOMIALS IN THE RING OF FORMAL POWER SERIES OVER Z

FACTORING POLYNOMIALS IN THE RING OF FORMAL POWER SERIES OVER Z DANIEL BIRMAJER, JUAN B GIL, AND MICHAEL WEINER Abstract We consider polynomials with integer coefficients and discuss their factorization

### Galois Theory. Richard Koch

Galois Theory Richard Koch April 2, 2015 Contents 1 Preliminaries 4 1.1 The Extension Problem; Simple Groups.................... 4 1.2 An Isomorphism Lemma............................. 5 1.3 Jordan Holder...................................

### Linear Algebra I. Ronald van Luijk, 2012

Linear Algebra I Ronald van Luijk, 2012 With many parts from Linear Algebra I by Michael Stoll, 2007 Contents 1. Vector spaces 3 1.1. Examples 3 1.2. Fields 4 1.3. The field of complex numbers. 6 1.4.

### Lemma 5.2. Let S be a set. (1) Let f and g be two permutations of S. Then the composition of f and g is a permutation of S.

Definition 51 Let S be a set bijection f : S S 5 Permutation groups A permutation of S is simply a Lemma 52 Let S be a set (1) Let f and g be two permutations of S Then the composition of f and g is a

### CHAPTER SIX IRREDUCIBILITY AND FACTORIZATION 1. BASIC DIVISIBILITY THEORY

January 10, 2010 CHAPTER SIX IRREDUCIBILITY AND FACTORIZATION 1. BASIC DIVISIBILITY THEORY The set of polynomials over a field F is a ring, whose structure shares with the ring of integers many characteristics.

### Galois theory. a draft of Lecture Notes of H.M. Khudaverdian. Manchester, Autumn 2006 (version 16 XII 2006)

Galois theory a draft of Lecture Notes of H.M. Khudaverdian. Manchester, Autumn 2006 (version 16 XII 2006) Contents 0.1................................... 2 0.2 Viète Theorem..........................

### EXERCISES FOR THE COURSE MATH 570, FALL 2010

EXERCISES FOR THE COURSE MATH 570, FALL 2010 EYAL Z. GOREN (1) Let G be a group and H Z(G) a subgroup such that G/H is cyclic. Prove that G is abelian. Conclude that every group of order p 2 (p a prime

### F1.3YE2/F1.3YK3 ALGEBRA AND ANALYSIS. Part 2: ALGEBRA. RINGS AND FIELDS

F1.3YE2/F1.3YK3 ALGEBRA AND ANALYSIS Part 2: ALGEBRA. RINGS AND FIELDS LECTURE NOTES AND EXERCISES Contents 1 Revision of Group Theory 3 1.1 Introduction................................. 3 1.2 Binary Operations.............................

### CONTINUED FRACTIONS AND PELL S EQUATION. Contents 1. Continued Fractions 1 2. Solution to Pell s Equation 9 References 12

CONTINUED FRACTIONS AND PELL S EQUATION SEUNG HYUN YANG Abstract. In this REU paper, I will use some important characteristics of continued fractions to give the complete set of solutions to Pell s equation.

### CHAPTER 5: MODULAR ARITHMETIC

CHAPTER 5: MODULAR ARITHMETIC LECTURE NOTES FOR MATH 378 (CSUSM, SPRING 2009). WAYNE AITKEN 1. Introduction In this chapter we will consider congruence modulo m, and explore the associated arithmetic called

### z = i ± 9 2 2 so z = 2i or z = i are the solutions. (c) z 4 + 2z 2 + 4 = 0. By the quadratic formula,

91 Homework 8 solutions Exercises.: 18. Show that Z[i] is an integral domain, describe its field of fractions and find the units. There are two ways to show it is an integral domain. The first is to observe:

### (a) Write each of p and q as a polynomial in x with coefficients in Z[y, z]. deg(p) = 7 deg(q) = 9

Homework #01, due 1/20/10 = 9.1.2, 9.1.4, 9.1.6, 9.1.8, 9.2.3 Additional problems for study: 9.1.1, 9.1.3, 9.1.5, 9.1.13, 9.2.1, 9.2.2, 9.2.4, 9.2.5, 9.2.6, 9.3.2, 9.3.3 9.1.1 (This problem was not assigned

### Chapter 13: Basic ring theory

Chapter 3: Basic ring theory Matthew Macauley Department of Mathematical Sciences Clemson University http://www.math.clemson.edu/~macaule/ Math 42, Spring 24 M. Macauley (Clemson) Chapter 3: Basic ring

### PROBLEM SET 6: POLYNOMIALS

PROBLEM SET 6: POLYNOMIALS 1. introduction In this problem set we will consider polynomials with coefficients in K, where K is the real numbers R, the complex numbers C, the rational numbers Q or any other

### Elementary Number Theory We begin with a bit of elementary number theory, which is concerned

CONSTRUCTION OF THE FINITE FIELDS Z p S. R. DOTY Elementary Number Theory We begin with a bit of elementary number theory, which is concerned solely with questions about the set of integers Z = {0, ±1,

### Algebraic and Transcendental Numbers

Pondicherry University July 2000 Algebraic and Transcendental Numbers Stéphane Fischler This text is meant to be an introduction to algebraic and transcendental numbers. For a detailed (though elementary)

### Zeros of a Polynomial Function

Zeros of a Polynomial Function An important consequence of the Factor Theorem is that finding the zeros of a polynomial is really the same thing as factoring it into linear factors. In this section we

### fg = f g. 3.1.1. Ideals. An ideal of R is a nonempty k-subspace I R closed under multiplication by elements of R:

30 3. RINGS, IDEALS, AND GRÖBNER BASES 3.1. Polynomial rings and ideals The main object of study in this section is a polynomial ring in a finite number of variables R = k[x 1,..., x n ], where k is an

### Math 345-60 Abstract Algebra I Questions for Section 23: Factoring Polynomials over a Field

Math 345-60 Abstract Algebra I Questions for Section 23: Factoring Polynomials over a Field 1. Throughout this section, F is a field and F [x] is the ring of polynomials with coefficients in F. We will

### 3 Factorisation into irreducibles

3 Factorisation into irreducibles Consider the factorisation of a non-zero, non-invertible integer n as a product of primes: n = p 1 p t. If you insist that primes should be positive then, since n could

### ABSTRACT ALGEBRA: A STUDY GUIDE FOR BEGINNERS

ABSTRACT ALGEBRA: A STUDY GUIDE FOR BEGINNERS John A. Beachy Northern Illinois University 2014 ii J.A.Beachy This is a supplement to Abstract Algebra, Third Edition by John A. Beachy and William D. Blair

### 1 Homework 1. [p 0 q i+j +... + p i 1 q j+1 ] + [p i q j ] + [p i+1 q j 1 +... + p i+j q 0 ]

1 Homework 1 (1) Prove the ideal (3,x) is a maximal ideal in Z[x]. SOLUTION: Suppose we expand this ideal by including another generator polynomial, P / (3, x). Write P = n + x Q with n an integer not

### Ideal Class Group and Units

Chapter 4 Ideal Class Group and Units We are now interested in understanding two aspects of ring of integers of number fields: how principal they are (that is, what is the proportion of principal ideals

### Finite dimensional topological vector spaces

Chapter 3 Finite dimensional topological vector spaces 3.1 Finite dimensional Hausdorff t.v.s. Let X be a vector space over the field K of real or complex numbers. We know from linear algebra that the

### a 11 x 1 + a 12 x 2 + + a 1n x n = b 1 a 21 x 1 + a 22 x 2 + + a 2n x n = b 2.

Chapter 1 LINEAR EQUATIONS 1.1 Introduction to linear equations A linear equation in n unknowns x 1, x,, x n is an equation of the form a 1 x 1 + a x + + a n x n = b, where a 1, a,..., a n, b are given

### Inner Product Spaces

Math 571 Inner Product Spaces 1. Preliminaries An inner product space is a vector space V along with a function, called an inner product which associates each pair of vectors u, v with a scalar u, v, and

### 2. Let H and K be subgroups of a group G. Show that H K G if and only if H K or K H.

Math 307 Abstract Algebra Sample final examination questions with solutions 1. Suppose that H is a proper subgroup of Z under addition and H contains 18, 30 and 40, Determine H. Solution. Since gcd(18,

### THE FUNDAMENTAL THEOREM OF ALGEBRA VIA PROPER MAPS

THE FUNDAMENTAL THEOREM OF ALGEBRA VIA PROPER MAPS KEITH CONRAD 1. Introduction The Fundamental Theorem of Algebra says every nonconstant polynomial with complex coefficients can be factored into linear

### Group Theory. Contents

Group Theory Contents Chapter 1: Review... 2 Chapter 2: Permutation Groups and Group Actions... 3 Orbits and Transitivity... 6 Specific Actions The Right regular and coset actions... 8 The Conjugation

### DEFINABLE TYPES IN PRESBURGER ARITHMETIC

DEFINABLE TYPES IN PRESBURGER ARITHMETIC GABRIEL CONANT Abstract. We consider the first order theory of (Z, +,

### Algebra 3: algorithms in algebra

Algebra 3: algorithms in algebra Hans Sterk 2003-2004 ii Contents 1 Polynomials, Gröbner bases and Buchberger s algorithm 1 1.1 Introduction............................ 1 1.2 Polynomial rings and systems

### Finite Fields and Error-Correcting Codes

Lecture Notes in Mathematics Finite Fields and Error-Correcting Codes Karl-Gustav Andersson (Lund University) (version 1.013-16 September 2015) Translated from Swedish by Sigmundur Gudmundsson Contents

### Zeros of Polynomial Functions

Review: Synthetic Division Find (x 2-5x - 5x 3 + x 4 ) (5 + x). Factor Theorem Solve 2x 3-5x 2 + x + 2 =0 given that 2 is a zero of f(x) = 2x 3-5x 2 + x + 2. Zeros of Polynomial Functions Introduction

### Proof. The map. G n i. where d is the degree of D.

7. Divisors Definition 7.1. We say that a scheme X is regular in codimension one if every local ring of dimension one is regular, that is, the quotient m/m 2 is one dimensional, where m is the unique maximal

### Module MA1S11 (Calculus) Michaelmas Term 2016 Section 3: Functions

Module MA1S11 (Calculus) Michaelmas Term 2016 Section 3: Functions D. R. Wilkins Copyright c David R. Wilkins 2016 Contents 3 Functions 43 3.1 Functions between Sets...................... 43 3.2 Injective

### Computer Algebra for Computer Engineers

p.1/14 Computer Algebra for Computer Engineers Preliminaries Priyank Kalla Department of Electrical and Computer Engineering University of Utah, Salt Lake City p.2/14 Notation R: Real Numbers Q: Fractions

### 6. Fields I. 1. Adjoining things

6. Fields I 6.1 Adjoining things 6.2 Fields of fractions, fields of rational functions 6.3 Characteristics, finite fields 6.4 Algebraic field extensions 6.5 Algebraic closures 1. Adjoining things The general

### JUST THE MATHS UNIT NUMBER 1.8. ALGEBRA 8 (Polynomials) A.J.Hobson

JUST THE MATHS UNIT NUMBER 1.8 ALGEBRA 8 (Polynomials) by A.J.Hobson 1.8.1 The factor theorem 1.8.2 Application to quadratic and cubic expressions 1.8.3 Cubic equations 1.8.4 Long division of polynomials

### GROUPS SUBGROUPS. Definition 1: An operation on a set G is a function : G G G.

Definition 1: GROUPS An operation on a set G is a function : G G G. Definition 2: A group is a set G which is equipped with an operation and a special element e G, called the identity, such that (i) the

### The Dirichlet Unit Theorem

Chapter 6 The Dirichlet Unit Theorem As usual, we will be working in the ring B of algebraic integers of a number field L. Two factorizations of an element of B are regarded as essentially the same if

### FACTORING IN QUADRATIC FIELDS. 1. Introduction. This is called a quadratic field and it has degree 2 over Q. Similarly, set

FACTORING IN QUADRATIC FIELDS KEITH CONRAD For a squarefree integer d other than 1, let 1. Introduction K = Q[ d] = {x + y d : x, y Q}. This is called a quadratic field and it has degree 2 over Q. Similarly,

### calculating the result modulo 3, as follows: p(0) = 0 3 + 0 + 1 = 1 0,

Homework #02, due 1/27/10 = 9.4.1, 9.4.2, 9.4.5, 9.4.6, 9.4.7. Additional problems recommended for study: (9.4.3), 9.4.4, 9.4.9, 9.4.11, 9.4.13, (9.4.14), 9.4.17 9.4.1 Determine whether the following polynomials

### Galois representations with open image

Galois representations with open image Ralph Greenberg University of Washington Seattle, Washington, USA May 7th, 2011 Introduction This talk will be about representations of the absolute Galois group

### PYTHAGOREAN TRIPLES KEITH CONRAD

PYTHAGOREAN TRIPLES KEITH CONRAD 1. Introduction A Pythagorean triple is a triple of positive integers (a, b, c) where a + b = c. Examples include (3, 4, 5), (5, 1, 13), and (8, 15, 17). Below is an ancient

### Math 4310 Handout - Quotient Vector Spaces

Math 4310 Handout - Quotient Vector Spaces Dan Collins The textbook defines a subspace of a vector space in Chapter 4, but it avoids ever discussing the notion of a quotient space. This is understandable

### The Chebotarev Density Theorem

The Chebotarev Density Theorem Hendrik Lenstra 1. Introduction Consider the polynomial f(x) = X 4 X 2 1 Z[X]. Suppose that we want to show that this polynomial is irreducible. We reduce f modulo a prime

### 1.3 Induction and Other Proof Techniques

4CHAPTER 1. INTRODUCTORY MATERIAL: SETS, FUNCTIONS AND MATHEMATICAL INDU 1.3 Induction and Other Proof Techniques The purpose of this section is to study the proof technique known as mathematical induction.

### Linear Algebra. A vector space (over R) is an ordered quadruple. such that V is a set; 0 V ; and the following eight axioms hold:

Linear Algebra A vector space (over R) is an ordered quadruple (V, 0, α, µ) such that V is a set; 0 V ; and the following eight axioms hold: α : V V V and µ : R V V ; (i) α(α(u, v), w) = α(u, α(v, w)),

### Basics of Polynomial Theory

3 Basics of Polynomial Theory 3.1 Polynomial Equations In geodesy and geoinformatics, most observations are related to unknowns parameters through equations of algebraic (polynomial) type. In cases where