Subsets of Euclidean domains possessing a unique division algorithm

Size: px
Start display at page:

Download "Subsets of Euclidean domains possessing a unique division algorithm"

Transcription

1 Subsets of Euclidean domains possessing a unique division algorithm Andrew D. Lewis 2009/03/16 Abstract Subsets of a Euclidean domain are characterised with the following objectives: (1) ensuring uniqueness of the quotient and remainder in the Division Algorithm; (2) permitting unique base expansion with respect to any nonzero nonunit in the ring; (3) allowing explicit solutions to Bézout s identity with norm constraints. The two most popular examples of Euclidean domains, the ring of integers Z and the ring F[ξ] of polynomials over a field F, possess slightly different properties. For example, in Z the quotient and remainder from the Division Algorithm are generally not unique (becoming so when one restricts to positive integers), while the quotient and remainder in F[ξ] are unique. Indeed, Jodeit Jr. [1967] shows that any Euclidean domain with a unique Division Algorithm is isomorphic to either a field or to the polynomial ring over a field. The differences in the two rings Z and F[ξ] also shows up in two other commonly presented results which derive from the Division Algorithm: (1) the expansion of elements of the ring in terms of a base (which is taken to be a nonzero nonunit); (2) the computation, using the Euclidean Algorithm, of solutions to Bézout s identity for coprime ring elements, and with constraints on the Euclidean norms of the solution. For the base expansion in Z, to ensure uniqueness one again needs to restrict to positive integers, whereas the base expansion is always unique in F[ξ]. Moreover, the proofs in the two cases are typically carried out separately, or the proof of one is (not entirely accurately) suggested to follow just like the proof of the other. This leads to the natural question, Is there a property of subsets of Euclidean domains which ensures, in these subsets: (1) uniqueness of the quotient and remainder; (2) uniqueness of base expansion; (3) norm bounds in the Euclidean Algorithm. We show that there is indeed such a property, and it is quite simple we call this property δ-positivity. Let us review the basic features of Euclidean domains, and provide the new definitions that will be used to prove some useful results for Euclidean domains having these properties. If A is a subset of B we write A B, using the notation A B to denote proper inclusion. We denote by Z >0 the set of positive integers and by Z 0 the set of nonnegative integers. For an integral domain R we let 1 R denote the unit element and 0 R denote the zero element. For a field F, F[ξ] denotes the polynomial ring with coefficients in F. By deg(a) we denote the degree of A F[ξ], with the convention that deg(0 F[ξ] ) =. Since there is not perfect agreement on what properties should be assigned to a Euclidean norm, let us first say exactly what we mean in this paper by a Euclidean domain. A Professor, Department of Mathematics and Statistics, Queen s University, Kingston, ON K7L 3N6, Canada URL: Research supported in part by a grant from the Natural Sciences and Engineering Research Council of Canada 1

2 2 A. D. Lewis Euclidean domain is a pair (R, δ), where R is an integral domain and where the map δ : R Z 0, called the norm, has the following properties: 1. if a, b R and if ab 0 R, then δ(ab) δ(a); 2. if a, b R with b 0 R, then there exists q, r R such that (a) a = qb + r and such that (b) δ(r) < δ(b). We shall make use of the following facts about Euclidean domains, without explicit mention: 1. δ(0 R ) < δ(1 R ); 2. if a R \ {0 R } then δ(a) δ(1 R ); 3. δ(a) = δ(0 R ) if and only if a = 0 R ; 4. for a R \ {0 R }, δ(ab) = δ(a) if and only if b is a unit; 5. a R is a unit if and only if δ(a) = δ(1 R ). Now let us give a few new definitions. 1 Definition: Let (R, δ) be a Euclidean domain. (i) A subset C R is trivial if C = {0 R }, and is nontrivial otherwise. (ii) A nonempty subset C R is δ-closed if, for each a, b C with b 0 R, there exists q, r C such that a = qb + r and such that δ(r) < δ(b). (iii) A subset C R admits a unique Division Algorithm if, for each a, b C with b 0 R, there exists unique q, r C such that a = qb + r and such that δ(r) < δ(b). (iv) A nonempty subset P R is δ-positive if, for each a, b P, we have δ(a b) max{δ(a), δ(b)}. In this paper we will be interested in nontrivial, δ-closed, and δ-positive subsemirings of Euclidean domains, recalling that a subsemiring S R has the property that if a, b S then ab S and a + b S. Let us give the two primary examples which illustrate the preceding concepts. 2 Examples: 1. For the ring Z we take the usual Euclidean norm: δ(k) = k. One can easily verify using elementary properties of integers that the subset Z 0 Z is a nontrivial, δ-closed, and δ-positive subsemiring. Note, however, that Z is not a δ-positive subset of itself since, for example, δ(1 ( 2)) = 3 > max{δ(1), δ(2)}. 2. Let F be a field and define δ : F[ξ] Z 0 by { 0, A = 0 δ(a) = F[ξ], deg(a) + 1, A 0 F[ξ].

3 Subsets of Euclidean domains possessing a unique division algorithm 3 The pair (F[ξ], δ) is then well known to be a Euclidean domain. We claim that F[ξ] is a δ-positive subset of itself. If either A or B is nonzero, then δ(a B) = deg(a B) + 1 max{deg(a), deg(b)} + 1 = max{deg(a) + 1, deg(b) + 1} = max{δ(a), δ(b)}, and, if A = B = 0 F[ξ], then δ(a B) = max{δ(a), δ(b)}. This shows that F[ξ] is indeed δ-positive. The following property of nontrivial δ-closed subsets is useful. 3 Lemma: If (R, δ) is a Euclidean domain and if S R is a nontrivial δ-closed subsemiring, then 0 R, 1 R S. Proof: Let b S {0 R }. Since S is δ-closed there exists q, r S such that b = qb + r with δ(r) < δ(b). We claim that this implies that q = 1 R and r = 0 R. Suppose that q 1 R. Then δ(b) δ((1 R q)b) = δ(r) < δ(b) which is a contradiction. Thus q = 1 R, and it then follows that r = 0 R. Let us first explore the relationship between δ-positivity and uniqueness in the Division Algorithm. Note that, for the Euclidean domain (Z, δ), we do not generally have such uniqueness since, for example, we can write 6 = = Proposition: If (R, δ) is a Euclidean domain and if S is a nontrivial, δ-closed, and δ- positive subsemiring of R, then S admits a unique Division Algorithm. Proof: Suppose that a = q 1 b + r 1 = q 2 b + r 2 for q 1, q 2, r 1, r 2 S with δ(r 1 ), δ(r 2 ) < δ(b). Then (q 1 q 2 )b = r 2 r 1, and so δ((q 1 q 2 )b) = δ(r 1 r 2 ) max{δ(r 1 ), δ(r 2 )} < δ(b), using δ-closedness of S. This implies that (q 1 q 2 )b = 0 R. Since b 0 R this implies that q 1 q 2 = 0 R and so q 1 = q 2. We then immediately have r 1 = r 2. The condition of δ-positivity is, in certain circumstances, also necessary for uniqueness in the Division Algorithm. 5 Proposition: Let (R, δ) be a Euclidean domain and let S R be a nontrivial, δ-closed subsemiring with the following properties: (i) S generates R as a ring; (ii) S admits a unique Division Algorithm. Then S is δ-positive. Proof: Note that since S is a subsemiring, S generates R as a ring if and only if, for every r R, it holds that either r S or r S. Suppose that S is not δ-positive so that δ(a b) > max{δ(a), δ(b)} for some a, b S. Suppose that b a S. Then b = 0 R (b a) + b, b = 1 R (b a) + a, δ(b) < δ(b a), δ(a) < δ(b a), which shows that S does not admit a unique Division Algorithm. argument gives the same conclusion when a b S. An entirely similar

4 4 A. D. Lewis Next we show that base expansion is valid in δ-positive subsets. Again, while base expansions exist for all integers, in order to ensure uniqueness of the coefficients in the expansion, one needs to restrict to positive integers to obtain uniqueness. Much of the proof we give is to be found in standard texts, but we give all of the details in order to illustrate exactly where our additional hypothesis of δ-positivity is used. 6 Proposition: Let (R, δ) be a Euclidean domain, let S R be a nontrivial, δ-closed, and δ-positive subsemiring, and let b S be a nonzero nonunit. Then, given a S \ {0 R }, there exists a unique k Z 0 and unique r 0, r 1,..., r k S such that (i) r k 0 R, (ii) δ(r 0 ), δ(r 1 ),..., δ(r k ) < δ(b) and (iii) a = r 0 + r 1 b + r 2 b r k b k. Proof: We prove the result by induction on δ(a). By Lemma 3 we have inf{δ(a) a S} = 0. Since we do not consider the case δ(a) = δ(0 R ), first consider a R such that δ(a) = δ(1 R ). Then a is a unit. Thus, since b is a nonzero nonunit, we have δ(a) < δ(b), and the existence part of the result follows by taking k = 0 and r 0 = a. Now suppose that the result holds for all a S such that δ(a) {δ(1 R,..., m}. Let a be such that δ(a) = inf{δ(r) r S, δ(r) > m}. If δ(a) < δ(b) then take k = 0 and r 0 = a to give existence in this case. Otherwise, apply the Division Algorithm to give a = qb + r with δ(r) < δ(b). Since S is δ-closed, we can moreover suppose that q, r S. Now, since b is a nonzero nonunit, since we are supposing that δ(a) δ(b) > δ(r), and since S is δ-positive, δ(q) < δ(qb) = δ(a r) max{δ(a), δ(r)} = δ(a). Therefore, we may apply the induction hypothesis to q to give q = r 0 + r 1b + r 2b r k bk for some k Z 0 and for r 0, r 1,..., r k S. Then a = (r 0 + r 1b + r 2b r k bk )b + r = r + r 0b + r 1b r k bk+1, showing that the existence part of the result holds for δ(a) = inf{δ(r) r S, δ(r) > m}. This proves the existence part of the result for all a S by induction. We also prove the uniqueness assertion by induction on δ(a). First we use a technical lemma concerning the general expansion of 0 R in the base b.

5 Subsets of Euclidean domains possessing a unique division algorithm 5 Lemma: Let (R, δ) be a Euclidean domain with b R a nonzero nonunit. If k Z 0 and r 0, r 1,..., r k R satisfy (i) r 0 + r 1 b + r 2 b r k b k = 0 R and (ii) δ(r 0 ), δ(r 1 ),..., δ(r k ) < δ(b), then r 0 = r 1 = = r k = 0 R. Proof: We prove this by induction on k. For k = 0 the result is trivial. For k = 1 we have r 0 + r 1 b = 0 R, and we claim that r 0 = r 1 = 0 R. Suppose that r 1 0 R. Then δ(b) δ(r 1 b) = δ( r 0 ) = δ(r 0 ) < δ(b), which is a contradiction. Thus r 1 = 0 R, and then also r 0 = 0 R. Now suppose the result holds for k {0, 1,..., m} and consider the expression 0 R = r 0 + r 1 b + r 2 b r m+1 b m+1 = (r 1 + r 2 b + + r m+1 b m )b + r 0. Since the result holds for k = 1, it follows that r 1 + r 2 b + + r m+1 b m = 0 R, r 0 = 0 R. By the induction hypothesis, r 1 = r 2 = = r m+1 = 0 R, and so the result follows. Now we carry on with the uniqueness part of the proof. First consider the case when δ(a) = δ(1 R ). Then, since b is a nonzero nonunit, δ(a) < δ(b). Suppose that a = r 0 + r 1 b + r 2 b r k b k = (r 1 + r 2 b + + r k b k 1 )b + r 0 (1) for r 0, r 1,..., r k S with δ(r 0 ), δ(r 1 ),..., δ(r k ) < δ(b). By Proposition 4 there is only one way to express a as qb + r with δ(r) < δ(b) and with q, r S, and from the existence part of the proof we know that this implies that r 1 + r 2 b + + r k b k 1 = 0 R, r 0 = a. By the lemma we can then assert that r 1 = = r k = 0 R, and so we must have k = 0 and r 0 = a as the unique solution to (1). Thus the result holds when δ(a) = δ(1 R ). Next suppose the result true for δ(a) {δ(1 R,..., m}, and suppose that a S satisfies Then suppose that δ(a) = inf{δ(r) r S, δ(r) > m}. a = r 0 + r 1 b + + r k b k = r 0 + r 1b + + r k bk for k, k Z 0, r 0, r 1,..., r k S, and r 0, r 1,..., r k S satisfying δ(r j ), δ(r j ) < δ(b) for j {0, 1,..., k} and j {0, 1,..., k }. Also suppose that r k, r k 0 R. Then (r 1 + r 2 b + + r k b k 1 ) b + r } {{ } 0 = (r 1 + r 2b + + r k 1 bk ) b + r } {{ } 0. q q

6 6 A. D. Lewis By Proposition 4 we have q = q and r 0 = r 0. First suppose that δ(a) < δ(b). Then, by Proposition 4, we have q = q = 0 R and r 0 = r 0 = a. By the lemma it follows that r 1 = = r k = 0 R and r 1 = = r k = 0 R, and so we have k = k = 0 and r 0 = r 0 = a. Next suppose that δ(a) δ(b). Then it follows that q, q 0 R, since otherwise we have a = r 0 = r 0, contradicting the fact that δ(r 0), δ(r 0 ) < δ(b). Then we have δ(q) < δ(qb) = δ(a r 0 ) max{δ(a), δ(r 0 )} = δ(a) since b is a nonzero nonunit and since δ(a) δ(b) > δ(r 0 ). Similarly, δ(q ) < δ(a). Therefore, the induction hypothesis applies to q and q and we conclude that k 1 = k 1 and r j = r j for j {1,..., k}, so proving the uniqueness part of the result by induction on δ(a). The preceding base expansion result has the following consequence which will be useful to us in our proof below of the norm bounds in the Euclidean Algorithm. 7 Proposition: Let (R, δ) be a Euclidean domain, let S R be a nontrivial, δ-closed, and δ-positive subsemiring of R, and let If U S and if x S satisfies U = {r S r is a unit} {0 R }. δ(x) = inf{δ(r) r S, δ(r) > δ(1 R )}, then, for a S \ {0 R }, there exists a unique k Z 0 and c 0, c 1,..., c k U such that (i) c k 0 R and (ii) a = c 0 + c 1 x + + c k x k. Moreover, if U S and if a, b S \ {0 R } are written as a = c 0 + c 1 x + + c k x k, b = d 0 + d 1 x + + d l x l for c 0, c 1,..., c k, d 0, d 1,..., d l U such that c k, d l 0 R, then δ(a) > δ(b) if and only if k > l. Proof: Since x is a nonzero nonunit, from Proposition 6 we can write a = c 0 +c 1 x+ +c k x k for unique c 0, c 1,..., c k S with c k 0 R and δ(c 0 ), δ(c 1 ),..., δ(c k ) < δ(x). The hypotheses on x immediately give c 0, c 1,..., c k U. Now let a and b be as stated in the second assertion and write a = qb + r for q, r S with δ(r) < δ(b), this being possible by δ-closedness of S. Let us assume that δ(a) > δ(b). We will show by induction on δ(b) that k > l. First suppose that δ(b) = δ(1 R ) so that b U. Since δ(a) > δ(b) it follows that a is a nonzero nonunit and so, by the first part of the result, k > 1, giving the result in this case. Assume the result holds for δ(b) {δ(1 R ),..., n} and suppose that δ(b) = inf{δ(r) r c, δ(r) > n}. We claim that the hypothesis that δ(a) > δ(b) implies that q is a nonzero nonunit. If q = 0 R then a = r and so δ(b) > δ(r) = δ(a), in contradiction with our assumption. If q is a unit then δ(b) = δ(qb) = δ(a r) = δ(a),

7 Subsets of Euclidean domains possessing a unique division algorithm 7 the last equality holding since δ(r) < δ(b) < δ(a) and since δ(a r) max{δ(a), δ(r)} by δ-positivity of S. Thus q being a unit leads to the contradiction δ(b) = δ(a). Since q is a nonzero nonunit, by the first conclusion of the proposition we have q = u 0 +u 1 x+ +u m x m for m Z >0 with u 0, u 1,..., u m U and u m 0 R. Since δ(r) < δ(b) the induction hypotheses imply that r = v 0 + v 1 x + + v p x p for p < l with v 0, v 1,..., v p U and v p 0 R. Therefore, a = c 0 + c 1 x + + c k x k = (u 0 + u 1 x + + u m x m )(d 0 + d 1 x + + d l x l ) + v 0 + v 1 x + + v p x p, from which we deduce that k > l since R is a domain and since p < m + l. Now assume that k > l. Let us write q = u 0 + u 1 x + + u m x m, r = v 0 + v 1 x + + v p x p with u 0, u 1,..., u m, v 0, v 1,..., v p U and u m, v p 0 R. Since δ(r) < δ(b) the previous part of the proof gives p < l. By the uniqueness part of Proposition 6 we must have m = k l > 0. Therefore, again by the uniqueness part of Proposition 6, we conclude that q is not a unit and so δ(q) > δ(1 R ). Therefore, δ(b) < δ(qb) = δ(a r) max{δ(a), δ(r)} = δ(a), the last equality holding since δ(r) < δ(b). This gives the result. Note that as a consequence of this, the characterisation of Jodeit Jr. [1967] of Euclidean rings admitting a unique division algorithm follows straightforwardly. 8 Corollary: If (R, δ) is a Euclidean domain that admits a unique Division Algorithm, then (i) the set of units in R forms a field which we denote by F R and (ii) if F R R then R is isomorphic to F R [ξ]. Proof: We claim that R admits a unique Division Algorithm if and only if δ(a + b) max{δ(a), δ(b)} for every a, b R. Certainly, if δ(a+b) max{δ(a), δ(b)} for every a, b R, then R is a δ-closed and δ-positive subsemiring of itself, and then uniqueness of quotient and remainder follows from Proposition 4. Conversely, suppose that a, b R \ {0 R } satisfy δ(a + b) > max{δ(a), δ(b)}. Then we can write a = 0 R (a + b) + a with δ(a) < δ(a + b) and also a = 1 R (a + b) + ( b) with δ( b) < δ(a + b). Thus R does not admit a unique Division Algorithm. That the units in R form a field will follow if we can show that, if units a, b R satisfy a + b 0 R, then a + b is a unit. This, however, follows since δ(1 R ) δ(a + b) max{δ(a), δ(b)} = δ(1 R ), and so δ(a + b) = δ(1 R ), implying that a + b is a unit. The final assertion of the corollary follows from Proposition 7 since every r R can be written as r = a 0 + a 1 x + + a k x k

8 8 A. D. Lewis for unique a 0, a 1,..., a k F R with a k 0 R and with x as defined in the statement of Proposition 7. We then easily see that the map R a 0 + a 1 x + + a k x k a 0 + a 1 ξ + + a k ξ k F R [ξ] is the desired isomorphism. The final theorem we state concerns solutions to Bézout s identity, which states that, if a, b R are elements of a principal ideal domain, then a and b are coprime if and only if there exists r, s R such that ra + bs = 1 R. One way to compute r and s for Euclidean domains involves the Euclidean Algorithm. To establish notation, let us recall that the Euclidean Algorithm states that, if (R, δ) is a Euclidean domain and if a, b R with b 0 R, then there exists k Z 0, q 0, q 1,..., q k R, and r 0 = b, r 1,..., r k R \ {0 R } such that a = q 0 r 0 + r 1, δ(r 1 ) < δ(r 0 ), r 0 = q 1 r 1 + r 2, δ(r 2 ) < δ(r 1 ),. (2) r k 2 = q k 1 r k 1 + r k, δ(r k ) < δ(r k 1 ), r k 1 = q k r k. Moreover, it turns out that r k as it appears in the Euclidean Algorithm is a greatest common divisor for a and b. In particular, if a and b are coprime, then r k is a unit. Moreover, as we shall see in our next theorem, one can use the Euclidean Algorithm to find r, s R such that ra + bs = 1 R. In a Euclidean domain one can ask that r and s have norms satisfying some bound; the usual bounds are that δ(r) < δ(b) and δ(s) < δ(a). As we see in the following theorem, if one enforces δ-positivity, then the bounds are achieved by the (necessarily unique) solution obtained from the Euclidean Algorithm. Again, most of the steps in this theorem may be found in any textbook, but we give all of the details so as to reveal where the property of δ-positivity is used. 9 Theorem: If (R, δ) is a Euclidean domain and if a, b R\{0 R } are coprime, let k Z 0, q 0, q 1,..., q k R, and r 0 = b, r 1,..., r k 1 R \ {0 R } be such that a = q 0 r 0 + r 1, δ(r 1 ) < δ(r 0 ), r 0 = q 1 r 1 + r 2, δ(r 2 ) < δ(r 1 ),. r k 2 = q k 1 r k 1 + u, δ(u) < δ(r k 1 ), r k 1 = q k u, where u R is a unit (this being the case since a and b are coprime). Then let α 0 = 1 R and β 0 = q k 1, and recursively define α 1,..., α k 1 R and β 1,..., β k 1 R by α j = β j 1, β j = α j 1 q k 1 j β j 1, j {1,..., k 1}.

9 Subsets of Euclidean domains possessing a unique division algorithm 9 If we take r = { 0 R, δ(b) = δ(1 R ), u 1 α k 1, δ(b) > δ(1 R ), s = { b 1, δ(b) = δ(1 R ), u 1 β k 1, δ(b) > δ(1 R ), then ra + sb = 1 R. Moreover, if S R is a nontrivial, δ-closed, and δ-positive subsemiring, and if a and b additionally have the property that a, b S and that at least one of a and b is not a unit, then (i) q 0, q 1..., q k and r 1,..., r k 1 may be chosen to lie in S and, (ii) if q 0, q 1..., q k and r 1,..., r k 1 are so chosen, then r and s as defined above additionally satisfy δ(r) < δ(b) and δ(s) < δ(a). Proof: Let us first reduce to the case when u = 1 R. Multiply all equations in the Euclidean Algorithm for a and b by u 1 : u 1 a = q 0 u 1 r 0 + u 1 r 1, δ(u 1 r 1 ) < δ(u 1 r 0 ), u 1 r 0 = q 1 u 1 r 1 + u 1 r 2, δ(u 1 r 2 ) < δ(u 1 r 1 ),. u 1 r k 2 = q k 1 u 1 r k R, δ(1 R ) < δ(u 1 r k 1 ), u 1 r k 1 = q k. Note that the resulting equations hold if and only if the original equations hold, by virtue of R being an integral domain. The resulting equations are then the Euclidean Algorithm for u 1 a and u 1 b, and at each step the remainders r 0, r 1,..., r k 1 are multiplied by u 1. The quotients q 0, q 1,..., q k remain the same, however. Thus the definitions of α 0, α 1,..., α k 1 and β 0, β 1,..., β k 1 are unchanged from the Euclidean Algorithm for a and b. Applying the conclusions of the theorem to the modified Euclidean Algorithm then gives r, s R such that r (u 1 a) + s (u 1 b) = 1 R. Thus the conclusions of the first part of the theorem in the general case follow from those when u = 1 R by taking r = u 1 r and s = u 1 s. Also note that the relation δ(u 1 r j 1 ) < δ(u 1 r j ) is equivalent to the relation δ(r j 1 ) < δ(r j ), j {0, 1,..., k 1}. Therefore, the conclusions of the second part of the theorem in the general case also follow from those for the case when u = 1 R. Thus, in the remainder of the proof we suppose that u = 1 R. Let us also eliminate the case where δ(b) = δ(1 R ). If this is the case then we have a = qb + r with δ(r) = δ(0 R ), and so r = 0 R. Therefore, since b is a unit, q = ab 1. Now, taking r = 0 R and s = b 1, we have ra + sb = 1 R. Moreover, for the second part of the theorem, δ(r) < δ(b) and δ(s) < δ(a) since s is a unit and a is not, the latter by the hypotheses of the theorem. Thus the conclusions of the theorem hold when δ(b) = δ(1 R ). Thus, in the remainder of the proof we suppose that b is a nonzero nonunit. We now prove the theorem by induction on k. If k = 1 then we have a = q 0 r R, δ(1 R ) < δ(r 0 ), r 0 = q 1.

10 10 A. D. Lewis Thus 1 R = 1 R a + ( q 0 ) b, and the theorem holds with r = α 0 = 1 R and s = β 0 = q 0. Now suppose the theorem true for k {1,..., m 1} and consider the Euclidean Algorithm for a and b = r 0 of the form a = q 0 r 0 + r 1, δ(r 1 ) < δ(r 0 ), r 0 = q 1 r 1 + r 2, δ(r 2 ) < δ(r 1 ),. r m 2 = q m 1 r m R, δ(1 R ) < δ(r m 1 ), r m 1 = q m. By the induction hypothesis, the conclusions of the theorem hold for the last m equations. But the last m equations are the result of applying the Euclidean Algorithm in the case where a = r 0 and b = r 1. Thus, if we define α 0 = 1 R and β 0 = q k 1, and recursively define α 1,..., α m 2 and β 1,..., β m 2 by α j = β j 1, β j = α j 1 q m 1 j β j 1, j {1,..., m 2}, and if we take r = α m 2 and s = β m 2, then we have r r 0 + s r 1 = 1 R. Since r 0 = b we have 1 R = α m 2 r 0 + β m 2 (a q 0 r 0 ) = (α m 2 q 0 β m 2 )b + β m 2 a, and so the theorem holds with r = α m 1 = β m 2 and s = β m 1 = α m 2 q 0 β m 2, as desired. Now we proceed to the second part of the theorem, supposing that a, b S for a δ-closed and δ-positive subsemiring S R. Since r 0 = b, that q 0 and r 1 can be chosen to lie in S follows from the fact that S is δ-closed. This reasoning can then be applied to each line of the Euclidean Algorithm to ensure that all quotients and remainders can be chosen to lie in S. The following lemma records a useful property of these quotients and remainders. Lemma: Using the notation of the theorem statement, suppose that a, b S and that q 0, q 1,..., q k and r 1,..., r k 1 are chosen to lie in S. Then, for j {0, 1,..., k 1}, either (i) α j S and β j S or (ii) α j S and β j S. Proof: The lemma is proved by induction on j. For j = 0 we have α 0 = 1 R S and β 0 = q k 1 S. Suppose the lemma true for j {0, 1,..., m}. We have two cases. 1. α m S and β m S: We immediately have α m+1 = β m S. Also, β m+1 = α m q k 2 m β m S since α m S and q k m 2 ( β m ) S, using the semiring property of S. 2. α m S and β m S: This case follows, mutatis mutandis, in the manner of the previous case. Now, the final thing we need to show is that r and s constructed as above from a, b S satisfy δ(r) < δ(b) and δ(s) < δ(a). We prove this by induction on k. For k = 1 we have r = 1 R and s = q 0. Therefore, δ(r) = δ(1 R ) < δ(b)

11 Subsets of Euclidean domains possessing a unique division algorithm 11 since we are assuming that b is a nonzero nonunit. Also, since b is a nonzero nonunit, δ(s) = δ( q 0 ) < δ( q 0 b) = δ(a 1 R ) max{δ(a), δ(1 R )} δ(a), using δ-positivity of S. So the final assertion of the theorem holds for k = 1. Now suppose that this assertion holds for k {1,..., m 1} and consider the Euclidean Algorithm for a and b of the form a = q 0 r 0 + r 1, δ(r 1 ) < δ(r 0 ), r 0 = q 1 r 1 + r 2, δ(r 2 ) < δ(r 1 ),. r m 2 = q m 1 r m R, δ(1 R ) < δ(r m 1 ), r m 1 = q m. Considering the last m equations, as in the first part of the proof we have the Euclidean Algorithm for a = r 0 and b = r 1. Therefore, considering r, s R as constructed in the first part of the proof, we have δ(r ) < δ(r 1 ) and δ(s ) < δ(r 0 ). Again as in the first part of the proof, we take r = s and s = r q 0 s so that ra + sb = 1 R. Then δ(r) = δ(s ) < δ(r 0 ) = δ(b). It remains to show that δ(s) < δ(a). First suppose that δ(a) < δ(b). Then, by Proposition 4 we have a = 0 R b + a as the unique output of the Division Algorithm in S. Thus we must have q 0 = 0 R and r 1 = a. In this case, δ(s) = δ(r ) < δ(r 1 ) = δ(a), giving the norm bound for s if δ(a) < δ(b). Thus we consider the case when δ(b) δ(a). By the lemma we have either (1) r S and q 0 s S or (2) r S and q 0 s S. Consider the case r, q 0 s S. We then have a = q 0 b + r 1, s = q 0 s + r with δ(r 1 ) < δ(b), δ(s ) < δ(b), and δ(r ) < δ(r 1 ). Since a, q 0, b, r 1, s, s, r S we use Proposition 7 to write these elements of S as uniquely defined polynomials in x, where δ(x) = inf{δ(r) r S, δ(r) > δ(1 R )}. Let us denote these polynomials by P a, P q0, P b, P r1, P s, P s, and P r. By Proposition 7 we have This immediately gives δ(r 1 ) < δ(b) = deg(p r1 ) < deg(p b ), δ(s ) < δ(b) = deg(p s ) < deg(p b ), δ(r ) < δ(r 1 ) = deg(p r ) < deg(p r1 ). deg(p a ) = deg(p q0 ) + deg(p b ), deg(p s ) max{deg(p q0 ) + deg(p s ), deg(p r )}.

12 12 A. D. Lewis If then if then max{deg(p q0 ) + deg(p s ), deg(p r )} = deg(p q0 ) + deg(p s ) deg(p a ) = deg(p q0 ) + deg(p b ) > deg(p q0 ) + deg(p s ) deg(p s ) max{deg(p q0 ) + deg(p s ), deg(p r )} = deg(p r ) deg(p a ) = deg(p q0 ) + deg(p b ) > deg(p r1 ) > deg(p r ) deg(p s ). In either case we have deg(p s ) > deg(p a ), and then we apply Proposition 7 again to give δ(s) < δ(a) in the case when r, q 0 s S. When r, q 0 s S then s S and we write a = q 0 b + r 1, s = q 0 s + ( r ). The steps above may now be repeated to give δ(s) = δ( s) < δ(a) in this case. References Jodeit Jr., M. A. [1967]. Uniqueness in the division algorithm. The American Mathematical Monthly 74(1), pages issn: doi: /

Theorem (The division theorem) Suppose that a and b are integers with b > 0. There exist unique integers q and r so that. a = bq + r and 0 r < b.

Theorem (The division theorem) Suppose that a and b are integers with b > 0. There exist unique integers q and r so that. a = bq + r and 0 r < b. Theorem (The division theorem) Suppose that a and b are integers with b > 0. There exist unique integers q and r so that a = bq + r and 0 r < b. We re dividing a by b: q is the quotient and r is the remainder,

More information

11 Ideals. 11.1 Revisiting Z

11 Ideals. 11.1 Revisiting Z 11 Ideals The presentation here is somewhat different than the text. In particular, the sections do not match up. We have seen issues with the failure of unique factorization already, e.g., Z[ 5] = O Q(

More information

Continued Fractions and the Euclidean Algorithm

Continued Fractions and the Euclidean Algorithm Continued Fractions and the Euclidean Algorithm Lecture notes prepared for MATH 326, Spring 997 Department of Mathematics and Statistics University at Albany William F Hammond Table of Contents Introduction

More information

Greatest common divisors

Greatest common divisors Greatest common divisors Robert Friedman Long division Does 5 divide 34? It is easy to see that the answer is no, for many different reasons: 1. 34 does not end in a 0 or 5. 2. Checking directly by hand,

More information

Prime Numbers and Irreducible Polynomials

Prime Numbers and Irreducible Polynomials Prime Numbers and Irreducible Polynomials M. Ram Murty The similarity between prime numbers and irreducible polynomials has been a dominant theme in the development of number theory and algebraic geometry.

More information

Computing Science 272 The Integers

Computing Science 272 The Integers Computing Science 272 The Integers Properties of the Integers The set of all integers is the set Z = {, 5, 4, 3, 2, 1, 0, 1, 2, 3, 4, 5, }, and the subset of Z given by N = {0, 1, 2, 3, 4, }, is the set

More information

2. Prime and Maximal Ideals

2. Prime and Maximal Ideals 18 Andreas Gathmann 2. Prime and Maximal Ideals There are two special kinds of ideals that are of particular importance, both algebraically and geometrically: the so-called prime and maximal ideals. Let

More information

FACTORING POLYNOMIALS IN THE RING OF FORMAL POWER SERIES OVER Z

FACTORING POLYNOMIALS IN THE RING OF FORMAL POWER SERIES OVER Z FACTORING POLYNOMIALS IN THE RING OF FORMAL POWER SERIES OVER Z DANIEL BIRMAJER, JUAN B GIL, AND MICHAEL WEINER Abstract We consider polynomials with integer coefficients and discuss their factorization

More information

POLYNOMIAL RINGS AND UNIQUE FACTORIZATION DOMAINS

POLYNOMIAL RINGS AND UNIQUE FACTORIZATION DOMAINS POLYNOMIAL RINGS AND UNIQUE FACTORIZATION DOMAINS RUSS WOODROOFE 1. Unique Factorization Domains Throughout the following, we think of R as sitting inside R[x] as the constant polynomials (of degree 0).

More information

Chapter 4, Arithmetic in F [x] Polynomial arithmetic and the division algorithm.

Chapter 4, Arithmetic in F [x] Polynomial arithmetic and the division algorithm. Chapter 4, Arithmetic in F [x] Polynomial arithmetic and the division algorithm. We begin by defining the ring of polynomials with coefficients in a ring R. After some preliminary results, we specialize

More information

2. Integers and Algorithms Euclidean Algorithm. Euclidean Algorithm. Suppose a and b are integers

2. Integers and Algorithms Euclidean Algorithm. Euclidean Algorithm. Suppose a and b are integers 2. INTEGERS AND ALGORITHMS 155 2. Integers and Algorithms 2.1. Euclidean Algorithm. Euclidean Algorithm. Suppose a and b are integers with a b > 0. (1) Apply the division algorithm: a = bq + r, 0 r < b.

More information

8 Divisibility and prime numbers

8 Divisibility and prime numbers 8 Divisibility and prime numbers 8.1 Divisibility In this short section we extend the concept of a multiple from the natural numbers to the integers. We also summarize several other terms that express

More information

Factoring Polynomials

Factoring Polynomials Factoring Polynomials Sue Geller June 19, 2006 Factoring polynomials over the rational numbers, real numbers, and complex numbers has long been a standard topic of high school algebra. With the advent

More information

Mathematics Course 111: Algebra I Part IV: Vector Spaces

Mathematics Course 111: Algebra I Part IV: Vector Spaces Mathematics Course 111: Algebra I Part IV: Vector Spaces D. R. Wilkins Academic Year 1996-7 9 Vector Spaces A vector space over some field K is an algebraic structure consisting of a set V on which are

More information

Lecture Notes on Polynomials

Lecture Notes on Polynomials Lecture Notes on Polynomials Arne Jensen Department of Mathematical Sciences Aalborg University c 008 Introduction These lecture notes give a very short introduction to polynomials with real and complex

More information

Basic Number Theory 1

Basic Number Theory 1 Basic Number Theory 1 Divisibility Basic number theory uncovers the multiplicative structure of the integers. As such, the most important relation between integers is divisibility: the nonzero integer

More information

1.2 Properties of Integers

1.2 Properties of Integers 10 CHAPTER 1. PRELIMINARIES 1.2 Properties of Integers 1.2.1 The Well Ordering Principle and the Division Algorithm We now focus on a special set, the integers, denoted Z, as this set plays an important

More information

Unique Factorization

Unique Factorization Unique Factorization Waffle Mathcamp 2010 Throughout these notes, all rings will be assumed to be commutative. 1 Factorization in domains: definitions and examples In this class, we will study the phenomenon

More information

3.1 The Definition and Some Basic Properties. We identify the natural class of integral domains in which unique factorization of ideals is possible.

3.1 The Definition and Some Basic Properties. We identify the natural class of integral domains in which unique factorization of ideals is possible. Chapter 3 Dedekind Domains 3.1 The Definition and Some Basic Properties We identify the natural class of integral domains in which unique factorization of ideals is possible. 3.1.1 Definition A Dedekind

More information

Strong Induction. Joseph R. Mileti. February 13, 2015

Strong Induction. Joseph R. Mileti. February 13, 2015 Strong Induction Joseph R. Mileti February 13, 2015 1 Strong Induction Remember our original model for induction: Prove that the statement is true for 0. Prove that if the statement is true for 0, then

More information

Polynomial Rings If R is a ring, then R[x], the ring of polynomials in x with coefficients in R, consists of all formal

Polynomial Rings If R is a ring, then R[x], the ring of polynomials in x with coefficients in R, consists of all formal Polynomial Rings 8-17-2009 If R is a ring, then R[x], the ring of polynomials in x with coefficients in R, consists of all formal sums a i x i, where a i = 0 for all but finitely many values of i. If a

More information

PROBLEM SET 6: POLYNOMIALS

PROBLEM SET 6: POLYNOMIALS PROBLEM SET 6: POLYNOMIALS 1. introduction In this problem set we will consider polynomials with coefficients in K, where K is the real numbers R, the complex numbers C, the rational numbers Q or any other

More information

The Division Algorithm for Polynomials Handout Monday March 5, 2012

The Division Algorithm for Polynomials Handout Monday March 5, 2012 The Division Algorithm for Polynomials Handout Monday March 5, 0 Let F be a field (such as R, Q, C, or F p for some prime p. This will allow us to divide by any nonzero scalar. (For some of the following,

More information

1. The Natural Numbers Denition 1.1. Given sets a and b, the order pair of a and b is dened as the set

1. The Natural Numbers Denition 1.1. Given sets a and b, the order pair of a and b is dened as the set 1. The Natural Numbers Denition 1.1. Given sets a and b, the order pair of a and b is dened as the set (a, b) = {{a}, {a, b}}. For two sets A and B we dene the Cartesian product of A and B as We often

More information

Introduction to Finite Fields (cont.)

Introduction to Finite Fields (cont.) Chapter 6 Introduction to Finite Fields (cont.) 6.1 Recall Theorem. Z m is a field m is a prime number. Theorem (Subfield Isomorphic to Z p ). Every finite field has the order of a power of a prime number

More information

Some Polynomial Theorems. John Kennedy Mathematics Department Santa Monica College 1900 Pico Blvd. Santa Monica, CA 90405 rkennedy@ix.netcom.

Some Polynomial Theorems. John Kennedy Mathematics Department Santa Monica College 1900 Pico Blvd. Santa Monica, CA 90405 rkennedy@ix.netcom. Some Polynomial Theorems by John Kennedy Mathematics Department Santa Monica College 1900 Pico Blvd. Santa Monica, CA 90405 rkennedy@ix.netcom.com This paper contains a collection of 31 theorems, lemmas,

More information

it is easy to see that α = a

it is easy to see that α = a 21. Polynomial rings Let us now turn out attention to determining the prime elements of a polynomial ring, where the coefficient ring is a field. We already know that such a polynomial ring is a UF. Therefore

More information

Algebraic Structures II

Algebraic Structures II MAS 305 Algebraic Structures II Notes 10 Autumn 2006 Ring Theory A ring is a set R with two binary operations + and satisfying (a) (R,+) is an Abelian group; (b) R is closed under ; (c) is associative;

More information

Factorization in Polynomial Rings

Factorization in Polynomial Rings Factorization in Polynomial Rings These notes are a summary of some of the important points on divisibility in polynomial rings from 17 and 18 of Gallian s Contemporary Abstract Algebra. Most of the important

More information

DEGREES OF ORDERS ON TORSION-FREE ABELIAN GROUPS

DEGREES OF ORDERS ON TORSION-FREE ABELIAN GROUPS DEGREES OF ORDERS ON TORSION-FREE ABELIAN GROUPS ASHER M. KACH, KAREN LANGE, AND REED SOLOMON Abstract. We construct two computable presentations of computable torsion-free abelian groups, one of isomorphism

More information

SUBGROUPS OF CYCLIC GROUPS. 1. Introduction In a group G, we denote the (cyclic) group of powers of some g G by

SUBGROUPS OF CYCLIC GROUPS. 1. Introduction In a group G, we denote the (cyclic) group of powers of some g G by SUBGROUPS OF CYCLIC GROUPS KEITH CONRAD 1. Introduction In a group G, we denote the (cyclic) group of powers of some g G by g = {g k : k Z}. If G = g, then G itself is cyclic, with g as a generator. Examples

More information

z 0 and y even had the form

z 0 and y even had the form Gaussian Integers The concepts of divisibility, primality and factoring are actually more general than the discussion so far. For the moment, we have been working in the integers, which we denote by Z

More information

CONTRIBUTIONS TO ZERO SUM PROBLEMS

CONTRIBUTIONS TO ZERO SUM PROBLEMS CONTRIBUTIONS TO ZERO SUM PROBLEMS S. D. ADHIKARI, Y. G. CHEN, J. B. FRIEDLANDER, S. V. KONYAGIN AND F. PAPPALARDI Abstract. A prototype of zero sum theorems, the well known theorem of Erdős, Ginzburg

More information

Module MA3411: Abstract Algebra Galois Theory Appendix Michaelmas Term 2013

Module MA3411: Abstract Algebra Galois Theory Appendix Michaelmas Term 2013 Module MA3411: Abstract Algebra Galois Theory Appendix Michaelmas Term 2013 D. R. Wilkins Copyright c David R. Wilkins 1997 2013 Contents A Cyclotomic Polynomials 79 A.1 Minimum Polynomials of Roots of

More information

4. Number Theory (Part 2)

4. Number Theory (Part 2) 4. Number Theory (Part 2) Terence Sim Mathematics is the queen of the sciences and number theory is the queen of mathematics. Reading Sections 4.8, 5.2 5.4 of Epp. Carl Friedrich Gauss, 1777 1855 4.3.

More information

Kevin James. MTHSC 412 Section 2.4 Prime Factors and Greatest Comm

Kevin James. MTHSC 412 Section 2.4 Prime Factors and Greatest Comm MTHSC 412 Section 2.4 Prime Factors and Greatest Common Divisor Greatest Common Divisor Definition Suppose that a, b Z. Then we say that d Z is a greatest common divisor (gcd) of a and b if the following

More information

ALGEBRA HANDOUT 2: IDEALS AND QUOTIENTS. 1. Ideals in Commutative Rings In this section all groups and rings will be commutative.

ALGEBRA HANDOUT 2: IDEALS AND QUOTIENTS. 1. Ideals in Commutative Rings In this section all groups and rings will be commutative. ALGEBRA HANDOUT 2: IDEALS AND QUOTIENTS PETE L. CLARK 1. Ideals in Commutative Rings In this section all groups and rings will be commutative. 1.1. Basic definitions and examples. Let R be a (commutative!)

More information

REMARKS ABOUT EUCLIDEAN DOMAINS. 1. Introduction. Definition 1.2. An integral domain R is called Euclidean if there is a function d: R {0}

REMARKS ABOUT EUCLIDEAN DOMAINS. 1. Introduction. Definition 1.2. An integral domain R is called Euclidean if there is a function d: R {0} REMARKS ABOUT EUCLIDEAN DOMAINS KEITH CONRAD 1. Introduction The following definition of a Euclidean (not Euclidian!) textbooks. We write N for {0, 1, 2,... }. domain is very common in Definition 1.1.

More information

MODULES OVER A PID. induces an isomorphism

MODULES OVER A PID. induces an isomorphism MODULES OVER A PID A module over a PID is an abelian group that also carries multiplication by a particularly convenient ring of scalars. Indeed, when the scalar ring is the integers, the module is precisely

More information

MATH10040 Chapter 2: Prime and relatively prime numbers

MATH10040 Chapter 2: Prime and relatively prime numbers MATH10040 Chapter 2: Prime and relatively prime numbers Recall the basic definition: 1. Prime numbers Definition 1.1. Recall that a positive integer is said to be prime if it has precisely two positive

More information

UNIQUE REPRESENTATION DOMAINS, II

UNIQUE REPRESENTATION DOMAINS, II UNIQUE REPRESENTATION DOMAINS, II SAID EL BAGHDADI, STEFANIA GABELLI, AND MUHAMMAD ZAFRULLAH Introduction Let R be an integral domain. Two elements x, y R are said to have a greatest common divisor (for

More information

CONTINUED FRACTIONS AND PELL S EQUATION. Contents 1. Continued Fractions 1 2. Solution to Pell s Equation 9 References 12

CONTINUED FRACTIONS AND PELL S EQUATION. Contents 1. Continued Fractions 1 2. Solution to Pell s Equation 9 References 12 CONTINUED FRACTIONS AND PELL S EQUATION SEUNG HYUN YANG Abstract. In this REU paper, I will use some important characteristics of continued fractions to give the complete set of solutions to Pell s equation.

More information

A2. (Existence of zero) There is a real number, called zero and denoted by 0, such that x + 0 = 0 + x = x for all real numbers x.

A2. (Existence of zero) There is a real number, called zero and denoted by 0, such that x + 0 = 0 + x = x for all real numbers x. 2.1 Real Numbers The set of all real numbers, R, has the following properties: (a) the arithmetic properties, (b) the ordering properties, and (c) the completeness property. Axioms of addition There is

More information

Math 581. Basic Background Results. Below are some basic results from algebra dealing with fields and polynomial rings which will be handy to

Math 581. Basic Background Results. Below are some basic results from algebra dealing with fields and polynomial rings which will be handy to Math 581 Basic Background Results Below are some basic results from algebra dealing with fields and polynomial rings which will be handy to recall in 581. This should be a reasonably logical ordering,

More information

EUCLID S ALGORITHM AND THE FUNDAMENTAL THEOREM OF ARITHMETIC. after N. Vasiliev and V. Gutenmacher (Kvant, 1972)

EUCLID S ALGORITHM AND THE FUNDAMENTAL THEOREM OF ARITHMETIC. after N. Vasiliev and V. Gutenmacher (Kvant, 1972) Intro to Math Reasoning Grinshpan EUCLID S ALGORITHM AND THE FUNDAMENTAL THEOREM OF ARITHMETIC. after N. Vasiliev and V. Gutenmacher (Kvant, 1972) We all know that every composite natural number is a product

More information

Breaking The Code. Ryan Lowe. Ryan Lowe is currently a Ball State senior with a double major in Computer Science and Mathematics and

Breaking The Code. Ryan Lowe. Ryan Lowe is currently a Ball State senior with a double major in Computer Science and Mathematics and Breaking The Code Ryan Lowe Ryan Lowe is currently a Ball State senior with a double major in Computer Science and Mathematics and a minor in Applied Physics. As a sophomore, he took an independent study

More information

ON THE FIBONACCI NUMBERS

ON THE FIBONACCI NUMBERS ON THE FIBONACCI NUMBERS Prepared by Kei Nakamura The Fibonacci numbers are terms of the sequence defined in a quite simple recursive fashion. However, despite its simplicity, they have some curious properties

More information

Prime Numbers. p 1 p 2 p n + 1.

Prime Numbers. p 1 p 2 p n + 1. Prime Numbers 7-19-2006 A prime number is an integer n > 1 whose only positive divisors are 1 and n. An integer greater than 1 which is not prime is composite. Euclid showed that there are infinitely many

More information

0.3 Abelian groups. J.A.Beachy 1

0.3 Abelian groups. J.A.Beachy 1 J.A.Beachy 1 0.3 Abelian groups The goal of this section is to look at several properties of abelian groups and see how they relate to general properties of modules. I ll usually repeat the definitions

More information

The Ideal Class Group

The Ideal Class Group Chapter 5 The Ideal Class Group We will use Minkowski theory, which belongs to the general area of geometry of numbers, to gain insight into the ideal class group of a number field. We have already mentioned

More information

APPENDIX EXISTENCE AND UNIQUENESS OF A COMPLETE ORDERED FIELD

APPENDIX EXISTENCE AND UNIQUENESS OF A COMPLETE ORDERED FIELD APPENDIX EXISTENCE AND UNIQUENESS OF A COMPLETE ORDERED FIELD This appendix is devoted to the proofs of Theorems 1.1 and 1.2, which together assert that there exists a unique complete ordered field. Our

More information

6.6. Unique Factorization Domains

6.6. Unique Factorization Domains book 2005/2/6 14:15 page 289 #303 6.6. UNIQUE FACTORIZATION DOMAINS 289 6.5.24. Fix a prime number p and consider the set Q p of rational numbers a/b, where b is not divisible by p. (The notation Q p is

More information

Quotient Rings and Field Extensions

Quotient Rings and Field Extensions Chapter 5 Quotient Rings and Field Extensions In this chapter we describe a method for producing field extension of a given field. If F is a field, then a field extension is a field K that contains F.

More information

1.3. INDUCTION 17. n (n + 1) 2 (cos x + i sin x) n = cos nx+i sin nx. This is known as de Moivre s theorem.

1.3. INDUCTION 17. n (n + 1) 2 (cos x + i sin x) n = cos nx+i sin nx. This is known as de Moivre s theorem. .3. INDUCTION 7.3 Induction.3. Definition and Examples Proofs by induction are often used when one tries to prove a statement made about natural numbers or integers. Here are examples of statements where

More information

Factorization in Integral Domains I

Factorization in Integral Domains I Factorization in Integral Domains I Throughout these notes, R denotes an integral domain. 1 Unique factorization domains and principal ideal domains Definition 1.1. For r, s R, we say that r divides s

More information

FACTORING IN QUADRATIC FIELDS. 1. Introduction. This is called a quadratic field and it has degree 2 over Q. Similarly, set

FACTORING IN QUADRATIC FIELDS. 1. Introduction. This is called a quadratic field and it has degree 2 over Q. Similarly, set FACTORING IN QUADRATIC FIELDS KEITH CONRAD For a squarefree integer d other than 1, let 1. Introduction K = Q[ d] = {x + y d : x, y Q}. This is called a quadratic field and it has degree 2 over Q. Similarly,

More information

Algebra Interactive. Reader. Arjeh M. Cohen, Hans Cuypers, Hans Sterk. Eindhoven University of Technology

Algebra Interactive. Reader. Arjeh M. Cohen, Hans Cuypers, Hans Sterk. Eindhoven University of Technology Algebra Interactive Reader Arjeh M. Cohen, Hans Cuypers, Hans Sterk Eindhoven University of Technology iii Preface Algebra Interactive is designed as modern course material for undergraduate courses in

More information

Divides. Note a b is a statement, a/b is a number.

Divides. Note a b is a statement, a/b is a number. Divides Given integers a and b we say a divides b and write a b provided there exists and integer q such that aq = b. Examples Does 3 divide 6? Does 3 divide 6? Does 7 divide 15? Does 5 divide 0? Does

More information

Notes on Factoring. MA 206 Kurt Bryan

Notes on Factoring. MA 206 Kurt Bryan The General Approach Notes on Factoring MA 26 Kurt Bryan Suppose I hand you n, a 2 digit integer and tell you that n is composite, with smallest prime factor around 5 digits. Finding a nontrivial factor

More information

Further linear algebra. Chapter I. Integers.

Further linear algebra. Chapter I. Integers. Further linear algebra. Chapter I. Integers. Andrei Yafaev Number theory is the theory of Z = {0, ±1, ±2,...}. 1 Euclid s algorithm, Bézout s identity and the greatest common divisor. We say that a Z divides

More information

7. Some irreducible polynomials

7. Some irreducible polynomials 7. Some irreducible polynomials 7.1 Irreducibles over a finite field 7.2 Worked examples Linear factors x α of a polynomial P (x) with coefficients in a field k correspond precisely to roots α k [1] of

More information

Notes from February 11

Notes from February 11 Notes from February 11 Math 130 Course web site: www.courses.fas.harvard.edu/5811 Two lemmas Before proving the theorem which was stated at the end of class on February 8, we begin with two lemmas. The

More information

The Dirichlet Unit Theorem

The Dirichlet Unit Theorem Chapter 6 The Dirichlet Unit Theorem As usual, we will be working in the ring B of algebraic integers of a number field L. Two factorizations of an element of B are regarded as essentially the same if

More information

Elementary Number Theory We begin with a bit of elementary number theory, which is concerned

Elementary Number Theory We begin with a bit of elementary number theory, which is concerned CONSTRUCTION OF THE FINITE FIELDS Z p S. R. DOTY Elementary Number Theory We begin with a bit of elementary number theory, which is concerned solely with questions about the set of integers Z = {0, ±1,

More information

INTRODUCTION TO PROOFS: HOMEWORK SOLUTIONS

INTRODUCTION TO PROOFS: HOMEWORK SOLUTIONS INTRODUCTION TO PROOFS: HOMEWORK SOLUTIONS STEVEN HEILMAN Contents 1. Homework 1 1 2. Homework 2 6 3. Homework 3 10 4. Homework 4 16 5. Homework 5 19 6. Homework 6 21 7. Homework 7 25 8. Homework 8 28

More information

27 Principal ideal domains and Euclidean rings

27 Principal ideal domains and Euclidean rings Note. From now on all rings are commutative rings with identity 1 0 unless stated otherwise. 27 Principal ideal domains and Euclidean rings 27.1 Definition. If R is a ring and S is a subset of R then denote

More information

JUST THE MATHS UNIT NUMBER 1.8. ALGEBRA 8 (Polynomials) A.J.Hobson

JUST THE MATHS UNIT NUMBER 1.8. ALGEBRA 8 (Polynomials) A.J.Hobson JUST THE MATHS UNIT NUMBER 1.8 ALGEBRA 8 (Polynomials) by A.J.Hobson 1.8.1 The factor theorem 1.8.2 Application to quadratic and cubic expressions 1.8.3 Cubic equations 1.8.4 Long division of polynomials

More information

DIVISORS ON NONSINGULAR CURVES

DIVISORS ON NONSINGULAR CURVES DIVISORS ON NONSINGULAR CURVES BRIAN OSSERMAN We now begin a closer study of the behavior of projective nonsingular curves, and morphisms between them, as well as to projective space. To this end, we introduce

More information

Given two integers a, b with a 0. We say that a divides b, written

Given two integers a, b with a 0. We say that a divides b, written 1 Divisibility Given two integers a, b with a 0. We say that a divides b, written a b, if there exists an integer q such that b = qa. When this is true, we say that a is a factor (or divisor) of b, and

More information

Reading 7 : Program Correctness

Reading 7 : Program Correctness CS/Math 240: Introduction to Discrete Mathematics Fall 2015 Instructors: Beck Hasti, Gautam Prakriya Reading 7 : Program Correctness 7.1 Program Correctness Showing that a program is correct means that

More information

3. Arithmetic of Rational Numbers We now define addition and multiplication on the rational numbers. For addition we should have a b + c d = ad+bc

3. Arithmetic of Rational Numbers We now define addition and multiplication on the rational numbers. For addition we should have a b + c d = ad+bc RATIONAL NUMBERS Abstract. These are notes on the construction of the rational numbers from the integers. We go through equivalence relations, the definition of rationals, addition and multiplication of

More information

MODULAR ARITHMETIC. a smallest member. It is equivalent to the Principle of Mathematical Induction.

MODULAR ARITHMETIC. a smallest member. It is equivalent to the Principle of Mathematical Induction. MODULAR ARITHMETIC 1 Working With Integers The usual arithmetic operations of addition, subtraction and multiplication can be performed on integers, and the result is always another integer Division, on

More information

a 2 + b 2) ( c 2 + d 2) = (ac bd) 2 + (ad + bc) 2 = (ac + bd) 2 + (ad bc) 2

a 2 + b 2) ( c 2 + d 2) = (ac bd) 2 + (ad + bc) 2 = (ac + bd) 2 + (ad bc) 2 We will be talking about integers. We start with the rational integers. These are the ordinary integers 0, ±1, ±, ±3,.... The text denotes the set of rational integers by J. A lot of people use the letter

More information

Notes on Chapter 1, Section 2 Arithmetic and Divisibility

Notes on Chapter 1, Section 2 Arithmetic and Divisibility Notes on Chapter 1, Section 2 Arithmetic and Divisibility August 16, 2006 1 Arithmetic Properties of the Integers Recall that the set of integers is the set Z = f0; 1; 1; 2; 2; 3; 3; : : :g. The integers

More information

The Factor Theorem and a corollary of the Fundamental Theorem of Algebra

The Factor Theorem and a corollary of the Fundamental Theorem of Algebra Math 421 Fall 2010 The Factor Theorem and a corollary of the Fundamental Theorem of Algebra 27 August 2010 Copyright 2006 2010 by Murray Eisenberg. All rights reserved. Prerequisites Mathematica Aside

More information

The Ring of Integers

The Ring of Integers The Ring of Integers The integers Z satisfy the axioms for an algebraic structure called an integral domain. The integers have an order relation

More information

(a) Write each of p and q as a polynomial in x with coefficients in Z[y, z]. deg(p) = 7 deg(q) = 9

(a) Write each of p and q as a polynomial in x with coefficients in Z[y, z]. deg(p) = 7 deg(q) = 9 Homework #01, due 1/20/10 = 9.1.2, 9.1.4, 9.1.6, 9.1.8, 9.2.3 Additional problems for study: 9.1.1, 9.1.3, 9.1.5, 9.1.13, 9.2.1, 9.2.2, 9.2.4, 9.2.5, 9.2.6, 9.3.2, 9.3.3 9.1.1 (This problem was not assigned

More information

Basic Notation and Properties of Integers

Basic Notation and Properties of Integers Basic Notation and Properties of Integers Denote the set of natural numbers N = {1, 2, 3,...} and the set of integers Z = {..., 3, 2, 1, 0, 1, 2, 3,...}. Let a and b be integers. We say that a divides

More information

MATH 523 LECTURE NOTES Summer 2008

MATH 523 LECTURE NOTES Summer 2008 MATH 523 LECTURE NOTES Summer 2008 These notes are intended to provide additional background from abstract algebra that is necessary to provide a good context for the study of algebraic coding theory.

More information

MA2C03 Mathematics School of Mathematics, Trinity College Hilary Term 2016 Lecture 59 (April 1, 2016) David R. Wilkins

MA2C03 Mathematics School of Mathematics, Trinity College Hilary Term 2016 Lecture 59 (April 1, 2016) David R. Wilkins MA2C03 Mathematics School of Mathematics, Trinity College Hilary Term 2016 Lecture 59 (April 1, 2016) David R. Wilkins The RSA encryption scheme works as follows. In order to establish the necessary public

More information

(x + a) n = x n + a Z n [x]. Proof. If n is prime then the map

(x + a) n = x n + a Z n [x]. Proof. If n is prime then the map 22. A quick primality test Prime numbers are one of the most basic objects in mathematics and one of the most basic questions is to decide which numbers are prime (a clearly related problem is to find

More information

Suppose we try to find the digits in the base 60 expression for 1/7. Just as in elementary school we divide

Suppose we try to find the digits in the base 60 expression for 1/7. Just as in elementary school we divide The digits of a fraction. Getting the expansion from the fraction Suppose we try to find the digits in the base 60 expression for /. Just as in elementary school we divide 0... 8: 34: : 8: 34: 0: 0: 0:

More information

Section III.6. Factorization in Polynomial Rings

Section III.6. Factorization in Polynomial Rings III.6. Factorization in Polynomial Rings 1 Section III.6. Factorization in Polynomial Rings Note. We push several of the results in Section III.3 (such as divisibility, irreducibility, and unique factorization)

More information

Have two operations addition and multiplication. Multiplication is associative, commutative, has identity

Have two operations addition and multiplication. Multiplication is associative, commutative, has identity The integers Have two operations addition and multiplication Addition is associative, commutative, has identity and each element has an additive inverse Multiplication is associative, commutative, has

More information

(4) (identity element for +) There is an element e in R such that. (5) (inverse element for +) For all a R there exists x R so that.

(4) (identity element for +) There is an element e in R such that. (5) (inverse element for +) For all a R there exists x R so that. Chapter 12 - Introduction to Rings We now study of an algebraic structure called a ring This is in some sense a minimal list of characteristics of the system of integers We will see that many other systems

More information

= 2 + 1 2 2 = 3 4, Now assume that P (k) is true for some fixed k 2. This means that

= 2 + 1 2 2 = 3 4, Now assume that P (k) is true for some fixed k 2. This means that Instructions. Answer each of the questions on your own paper, and be sure to show your work so that partial credit can be adequately assessed. Credit will not be given for answers (even correct ones) without

More information

FIELDS AND GALOIS THEORY

FIELDS AND GALOIS THEORY FIELDS AND GALOIS THEORY GEORGE GILBERT 1. Rings and Polynomials Given a polynomial of degree n, there exist at most n roots in the field. Given a polynomial that factors completely, x r 1 ) x r 2 )...

More information

Appendix A. Appendix. A.1 Algebra. Fields and Rings

Appendix A. Appendix. A.1 Algebra. Fields and Rings Appendix A Appendix A.1 Algebra Algebra is the foundation of algebraic geometry; here we collect some of the basic algebra on which we rely. We develop some algebraic background that is needed in the text.

More information

Computing divisors and common multiples of quasi-linear ordinary differential equations

Computing divisors and common multiples of quasi-linear ordinary differential equations Computing divisors and common multiples of quasi-linear ordinary differential equations Dima Grigoriev CNRS, Mathématiques, Université de Lille Villeneuve d Ascq, 59655, France Dmitry.Grigoryev@math.univ-lille1.fr

More information

Irreducibility criteria for compositions and multiplicative convolutions of polynomials with integer coefficients

Irreducibility criteria for compositions and multiplicative convolutions of polynomials with integer coefficients DOI: 10.2478/auom-2014-0007 An. Şt. Univ. Ovidius Constanţa Vol. 221),2014, 73 84 Irreducibility criteria for compositions and multiplicative convolutions of polynomials with integer coefficients Anca

More information

U.C. Berkeley CS276: Cryptography Handout 0.1 Luca Trevisan January, 2009. Notes on Algebra

U.C. Berkeley CS276: Cryptography Handout 0.1 Luca Trevisan January, 2009. Notes on Algebra U.C. Berkeley CS276: Cryptography Handout 0.1 Luca Trevisan January, 2009 Notes on Algebra These notes contain as little theory as possible, and most results are stated without proof. Any introductory

More information

Basic Properties of Rings

Basic Properties of Rings LECTURE 15 Basic Properties of Rings Theorem 15.1. For any element a in a ring R, the equation a + x 0 R has a unique solution. We know that a + x 0 R has at least one solution u R by Axiom (5) in the

More information

IRREDUCIBLE OPERATOR SEMIGROUPS SUCH THAT AB AND BA ARE PROPORTIONAL. 1. Introduction

IRREDUCIBLE OPERATOR SEMIGROUPS SUCH THAT AB AND BA ARE PROPORTIONAL. 1. Introduction IRREDUCIBLE OPERATOR SEMIGROUPS SUCH THAT AB AND BA ARE PROPORTIONAL R. DRNOVŠEK, T. KOŠIR Dedicated to Prof. Heydar Radjavi on the occasion of his seventieth birthday. Abstract. Let S be an irreducible

More information

MA651 Topology. Lecture 6. Separation Axioms.

MA651 Topology. Lecture 6. Separation Axioms. MA651 Topology. Lecture 6. Separation Axioms. This text is based on the following books: Fundamental concepts of topology by Peter O Neil Elements of Mathematics: General Topology by Nicolas Bourbaki Counterexamples

More information

MOP 2007 Black Group Integer Polynomials Yufei Zhao. Integer Polynomials. June 29, 2007 Yufei Zhao yufeiz@mit.edu

MOP 2007 Black Group Integer Polynomials Yufei Zhao. Integer Polynomials. June 29, 2007 Yufei Zhao yufeiz@mit.edu Integer Polynomials June 9, 007 Yufei Zhao yufeiz@mit.edu We will use Z[x] to denote the ring of polynomials with integer coefficients. We begin by summarizing some of the common approaches used in dealing

More information

4 Unique Factorization and Applications

4 Unique Factorization and Applications Number Theory (part 4): Unique Factorization and Applications (by Evan Dummit, 2014, v. 1.00) Contents 4 Unique Factorization and Applications 1 4.1 Integral Domains...............................................

More information

Abstract Algebra. Ch 0: Preliminaries. Properties of Integers

Abstract Algebra. Ch 0: Preliminaries. Properties of Integers Abstract Algebra Ch 0: Preliminaries Properties of Integers Note: Solutions to many of the examples are found at the end of this booklet, but try working them out for yourself first. 1. Fundamental Theorem

More information

SUBSPACES. Chapter Introduction. 3.2 Subspaces of F n

SUBSPACES. Chapter Introduction. 3.2 Subspaces of F n Chapter 3 SUBSPACES 3. Introduction Throughout this chapter, we will be studying F n, the set of all n dimensional column vectors with components from a field F. We continue our study of matrices by considering

More information

GREATEST COMMON DIVISOR

GREATEST COMMON DIVISOR DEFINITION: GREATEST COMMON DIVISOR The greatest common divisor (gcd) of a and b, denoted by (a, b), is the largest common divisor of integers a and b. THEOREM: If a and b are nonzero integers, then their

More information

GREATEST COMMON DIVISOR

GREATEST COMMON DIVISOR DEFINITION: GREATEST COMMON DIVISOR The greatest common divisor (gcd) of a and b, denoted by (a, b), is the largest common divisor of integers a and b. THEOREM: If a and b are nonzero integers, then their

More information