How To Know If A Domain Is Unique In An Octempo (Euclidean) Or Not (Ecl)

Size: px
Start display at page:

Download "How To Know If A Domain Is Unique In An Octempo (Euclidean) Or Not (Ecl)"

Transcription

1 Subsets of Euclidean domains possessing a unique division algorithm Andrew D. Lewis 2009/03/16 Abstract Subsets of a Euclidean domain are characterised with the following objectives: (1) ensuring uniqueness of the quotient and remainder in the Division Algorithm; (2) permitting unique base expansion with respect to any nonzero nonunit in the ring; (3) allowing explicit solutions to Bézout s identity with norm constraints. The two most popular examples of Euclidean domains, the ring of integers Z and the ring F[ξ] of polynomials over a field F, possess slightly different properties. For example, in Z the quotient and remainder from the Division Algorithm are generally not unique (becoming so when one restricts to positive integers), while the quotient and remainder in F[ξ] are unique. Indeed, Jodeit Jr. [1967] shows that any Euclidean domain with a unique Division Algorithm is isomorphic to either a field or to the polynomial ring over a field. The differences in the two rings Z and F[ξ] also shows up in two other commonly presented results which derive from the Division Algorithm: (1) the expansion of elements of the ring in terms of a base (which is taken to be a nonzero nonunit); (2) the computation, using the Euclidean Algorithm, of solutions to Bézout s identity for coprime ring elements, and with constraints on the Euclidean norms of the solution. For the base expansion in Z, to ensure uniqueness one again needs to restrict to positive integers, whereas the base expansion is always unique in F[ξ]. Moreover, the proofs in the two cases are typically carried out separately, or the proof of one is (not entirely accurately) suggested to follow just like the proof of the other. This leads to the natural question, Is there a property of subsets of Euclidean domains which ensures, in these subsets: (1) uniqueness of the quotient and remainder; (2) uniqueness of base expansion; (3) norm bounds in the Euclidean Algorithm. We show that there is indeed such a property, and it is quite simple we call this property δ-positivity. Let us review the basic features of Euclidean domains, and provide the new definitions that will be used to prove some useful results for Euclidean domains having these properties. If A is a subset of B we write A B, using the notation A B to denote proper inclusion. We denote by Z >0 the set of positive integers and by Z 0 the set of nonnegative integers. For an integral domain R we let 1 R denote the unit element and 0 R denote the zero element. For a field F, F[ξ] denotes the polynomial ring with coefficients in F. By deg(a) we denote the degree of A F[ξ], with the convention that deg(0 F[ξ] ) =. Since there is not perfect agreement on what properties should be assigned to a Euclidean norm, let us first say exactly what we mean in this paper by a Euclidean domain. A Professor, Department of Mathematics and Statistics, Queen s University, Kingston, ON K7L 3N6, Canada andrew@mast.queensu.ca, URL: Research supported in part by a grant from the Natural Sciences and Engineering Research Council of Canada 1

2 2 A. D. Lewis Euclidean domain is a pair (R, δ), where R is an integral domain and where the map δ : R Z 0, called the norm, has the following properties: 1. if a, b R and if ab 0 R, then δ(ab) δ(a); 2. if a, b R with b 0 R, then there exists q, r R such that (a) a = qb + r and such that (b) δ(r) < δ(b). We shall make use of the following facts about Euclidean domains, without explicit mention: 1. δ(0 R ) < δ(1 R ); 2. if a R \ {0 R } then δ(a) δ(1 R ); 3. δ(a) = δ(0 R ) if and only if a = 0 R ; 4. for a R \ {0 R }, δ(ab) = δ(a) if and only if b is a unit; 5. a R is a unit if and only if δ(a) = δ(1 R ). Now let us give a few new definitions. 1 Definition: Let (R, δ) be a Euclidean domain. (i) A subset C R is trivial if C = {0 R }, and is nontrivial otherwise. (ii) A nonempty subset C R is δ-closed if, for each a, b C with b 0 R, there exists q, r C such that a = qb + r and such that δ(r) < δ(b). (iii) A subset C R admits a unique Division Algorithm if, for each a, b C with b 0 R, there exists unique q, r C such that a = qb + r and such that δ(r) < δ(b). (iv) A nonempty subset P R is δ-positive if, for each a, b P, we have δ(a b) max{δ(a), δ(b)}. In this paper we will be interested in nontrivial, δ-closed, and δ-positive subsemirings of Euclidean domains, recalling that a subsemiring S R has the property that if a, b S then ab S and a + b S. Let us give the two primary examples which illustrate the preceding concepts. 2 Examples: 1. For the ring Z we take the usual Euclidean norm: δ(k) = k. One can easily verify using elementary properties of integers that the subset Z 0 Z is a nontrivial, δ-closed, and δ-positive subsemiring. Note, however, that Z is not a δ-positive subset of itself since, for example, δ(1 ( 2)) = 3 > max{δ(1), δ(2)}. 2. Let F be a field and define δ : F[ξ] Z 0 by { 0, A = 0 δ(a) = F[ξ], deg(a) + 1, A 0 F[ξ].

3 Subsets of Euclidean domains possessing a unique division algorithm 3 The pair (F[ξ], δ) is then well known to be a Euclidean domain. We claim that F[ξ] is a δ-positive subset of itself. If either A or B is nonzero, then δ(a B) = deg(a B) + 1 max{deg(a), deg(b)} + 1 = max{deg(a) + 1, deg(b) + 1} = max{δ(a), δ(b)}, and, if A = B = 0 F[ξ], then δ(a B) = max{δ(a), δ(b)}. This shows that F[ξ] is indeed δ-positive. The following property of nontrivial δ-closed subsets is useful. 3 Lemma: If (R, δ) is a Euclidean domain and if S R is a nontrivial δ-closed subsemiring, then 0 R, 1 R S. Proof: Let b S {0 R }. Since S is δ-closed there exists q, r S such that b = qb + r with δ(r) < δ(b). We claim that this implies that q = 1 R and r = 0 R. Suppose that q 1 R. Then δ(b) δ((1 R q)b) = δ(r) < δ(b) which is a contradiction. Thus q = 1 R, and it then follows that r = 0 R. Let us first explore the relationship between δ-positivity and uniqueness in the Division Algorithm. Note that, for the Euclidean domain (Z, δ), we do not generally have such uniqueness since, for example, we can write 6 = = Proposition: If (R, δ) is a Euclidean domain and if S is a nontrivial, δ-closed, and δ- positive subsemiring of R, then S admits a unique Division Algorithm. Proof: Suppose that a = q 1 b + r 1 = q 2 b + r 2 for q 1, q 2, r 1, r 2 S with δ(r 1 ), δ(r 2 ) < δ(b). Then (q 1 q 2 )b = r 2 r 1, and so δ((q 1 q 2 )b) = δ(r 1 r 2 ) max{δ(r 1 ), δ(r 2 )} < δ(b), using δ-closedness of S. This implies that (q 1 q 2 )b = 0 R. Since b 0 R this implies that q 1 q 2 = 0 R and so q 1 = q 2. We then immediately have r 1 = r 2. The condition of δ-positivity is, in certain circumstances, also necessary for uniqueness in the Division Algorithm. 5 Proposition: Let (R, δ) be a Euclidean domain and let S R be a nontrivial, δ-closed subsemiring with the following properties: (i) S generates R as a ring; (ii) S admits a unique Division Algorithm. Then S is δ-positive. Proof: Note that since S is a subsemiring, S generates R as a ring if and only if, for every r R, it holds that either r S or r S. Suppose that S is not δ-positive so that δ(a b) > max{δ(a), δ(b)} for some a, b S. Suppose that b a S. Then b = 0 R (b a) + b, b = 1 R (b a) + a, δ(b) < δ(b a), δ(a) < δ(b a), which shows that S does not admit a unique Division Algorithm. argument gives the same conclusion when a b S. An entirely similar

4 4 A. D. Lewis Next we show that base expansion is valid in δ-positive subsets. Again, while base expansions exist for all integers, in order to ensure uniqueness of the coefficients in the expansion, one needs to restrict to positive integers to obtain uniqueness. Much of the proof we give is to be found in standard texts, but we give all of the details in order to illustrate exactly where our additional hypothesis of δ-positivity is used. 6 Proposition: Let (R, δ) be a Euclidean domain, let S R be a nontrivial, δ-closed, and δ-positive subsemiring, and let b S be a nonzero nonunit. Then, given a S \ {0 R }, there exists a unique k Z 0 and unique r 0, r 1,..., r k S such that (i) r k 0 R, (ii) δ(r 0 ), δ(r 1 ),..., δ(r k ) < δ(b) and (iii) a = r 0 + r 1 b + r 2 b r k b k. Proof: We prove the result by induction on δ(a). By Lemma 3 we have inf{δ(a) a S} = 0. Since we do not consider the case δ(a) = δ(0 R ), first consider a R such that δ(a) = δ(1 R ). Then a is a unit. Thus, since b is a nonzero nonunit, we have δ(a) < δ(b), and the existence part of the result follows by taking k = 0 and r 0 = a. Now suppose that the result holds for all a S such that δ(a) {δ(1 R,..., m}. Let a be such that δ(a) = inf{δ(r) r S, δ(r) > m}. If δ(a) < δ(b) then take k = 0 and r 0 = a to give existence in this case. Otherwise, apply the Division Algorithm to give a = qb + r with δ(r) < δ(b). Since S is δ-closed, we can moreover suppose that q, r S. Now, since b is a nonzero nonunit, since we are supposing that δ(a) δ(b) > δ(r), and since S is δ-positive, δ(q) < δ(qb) = δ(a r) max{δ(a), δ(r)} = δ(a). Therefore, we may apply the induction hypothesis to q to give q = r 0 + r 1b + r 2b r k bk for some k Z 0 and for r 0, r 1,..., r k S. Then a = (r 0 + r 1b + r 2b r k bk )b + r = r + r 0b + r 1b r k bk+1, showing that the existence part of the result holds for δ(a) = inf{δ(r) r S, δ(r) > m}. This proves the existence part of the result for all a S by induction. We also prove the uniqueness assertion by induction on δ(a). First we use a technical lemma concerning the general expansion of 0 R in the base b.

5 Subsets of Euclidean domains possessing a unique division algorithm 5 Lemma: Let (R, δ) be a Euclidean domain with b R a nonzero nonunit. If k Z 0 and r 0, r 1,..., r k R satisfy (i) r 0 + r 1 b + r 2 b r k b k = 0 R and (ii) δ(r 0 ), δ(r 1 ),..., δ(r k ) < δ(b), then r 0 = r 1 = = r k = 0 R. Proof: We prove this by induction on k. For k = 0 the result is trivial. For k = 1 we have r 0 + r 1 b = 0 R, and we claim that r 0 = r 1 = 0 R. Suppose that r 1 0 R. Then δ(b) δ(r 1 b) = δ( r 0 ) = δ(r 0 ) < δ(b), which is a contradiction. Thus r 1 = 0 R, and then also r 0 = 0 R. Now suppose the result holds for k {0, 1,..., m} and consider the expression 0 R = r 0 + r 1 b + r 2 b r m+1 b m+1 = (r 1 + r 2 b + + r m+1 b m )b + r 0. Since the result holds for k = 1, it follows that r 1 + r 2 b + + r m+1 b m = 0 R, r 0 = 0 R. By the induction hypothesis, r 1 = r 2 = = r m+1 = 0 R, and so the result follows. Now we carry on with the uniqueness part of the proof. First consider the case when δ(a) = δ(1 R ). Then, since b is a nonzero nonunit, δ(a) < δ(b). Suppose that a = r 0 + r 1 b + r 2 b r k b k = (r 1 + r 2 b + + r k b k 1 )b + r 0 (1) for r 0, r 1,..., r k S with δ(r 0 ), δ(r 1 ),..., δ(r k ) < δ(b). By Proposition 4 there is only one way to express a as qb + r with δ(r) < δ(b) and with q, r S, and from the existence part of the proof we know that this implies that r 1 + r 2 b + + r k b k 1 = 0 R, r 0 = a. By the lemma we can then assert that r 1 = = r k = 0 R, and so we must have k = 0 and r 0 = a as the unique solution to (1). Thus the result holds when δ(a) = δ(1 R ). Next suppose the result true for δ(a) {δ(1 R,..., m}, and suppose that a S satisfies Then suppose that δ(a) = inf{δ(r) r S, δ(r) > m}. a = r 0 + r 1 b + + r k b k = r 0 + r 1b + + r k bk for k, k Z 0, r 0, r 1,..., r k S, and r 0, r 1,..., r k S satisfying δ(r j ), δ(r j ) < δ(b) for j {0, 1,..., k} and j {0, 1,..., k }. Also suppose that r k, r k 0 R. Then (r 1 + r 2 b + + r k b k 1 ) b + r } {{ } 0 = (r 1 + r 2b + + r k 1 bk ) b + r } {{ } 0. q q

6 6 A. D. Lewis By Proposition 4 we have q = q and r 0 = r 0. First suppose that δ(a) < δ(b). Then, by Proposition 4, we have q = q = 0 R and r 0 = r 0 = a. By the lemma it follows that r 1 = = r k = 0 R and r 1 = = r k = 0 R, and so we have k = k = 0 and r 0 = r 0 = a. Next suppose that δ(a) δ(b). Then it follows that q, q 0 R, since otherwise we have a = r 0 = r 0, contradicting the fact that δ(r 0), δ(r 0 ) < δ(b). Then we have δ(q) < δ(qb) = δ(a r 0 ) max{δ(a), δ(r 0 )} = δ(a) since b is a nonzero nonunit and since δ(a) δ(b) > δ(r 0 ). Similarly, δ(q ) < δ(a). Therefore, the induction hypothesis applies to q and q and we conclude that k 1 = k 1 and r j = r j for j {1,..., k}, so proving the uniqueness part of the result by induction on δ(a). The preceding base expansion result has the following consequence which will be useful to us in our proof below of the norm bounds in the Euclidean Algorithm. 7 Proposition: Let (R, δ) be a Euclidean domain, let S R be a nontrivial, δ-closed, and δ-positive subsemiring of R, and let If U S and if x S satisfies U = {r S r is a unit} {0 R }. δ(x) = inf{δ(r) r S, δ(r) > δ(1 R )}, then, for a S \ {0 R }, there exists a unique k Z 0 and c 0, c 1,..., c k U such that (i) c k 0 R and (ii) a = c 0 + c 1 x + + c k x k. Moreover, if U S and if a, b S \ {0 R } are written as a = c 0 + c 1 x + + c k x k, b = d 0 + d 1 x + + d l x l for c 0, c 1,..., c k, d 0, d 1,..., d l U such that c k, d l 0 R, then δ(a) > δ(b) if and only if k > l. Proof: Since x is a nonzero nonunit, from Proposition 6 we can write a = c 0 +c 1 x+ +c k x k for unique c 0, c 1,..., c k S with c k 0 R and δ(c 0 ), δ(c 1 ),..., δ(c k ) < δ(x). The hypotheses on x immediately give c 0, c 1,..., c k U. Now let a and b be as stated in the second assertion and write a = qb + r for q, r S with δ(r) < δ(b), this being possible by δ-closedness of S. Let us assume that δ(a) > δ(b). We will show by induction on δ(b) that k > l. First suppose that δ(b) = δ(1 R ) so that b U. Since δ(a) > δ(b) it follows that a is a nonzero nonunit and so, by the first part of the result, k > 1, giving the result in this case. Assume the result holds for δ(b) {δ(1 R ),..., n} and suppose that δ(b) = inf{δ(r) r c, δ(r) > n}. We claim that the hypothesis that δ(a) > δ(b) implies that q is a nonzero nonunit. If q = 0 R then a = r and so δ(b) > δ(r) = δ(a), in contradiction with our assumption. If q is a unit then δ(b) = δ(qb) = δ(a r) = δ(a),

7 Subsets of Euclidean domains possessing a unique division algorithm 7 the last equality holding since δ(r) < δ(b) < δ(a) and since δ(a r) max{δ(a), δ(r)} by δ-positivity of S. Thus q being a unit leads to the contradiction δ(b) = δ(a). Since q is a nonzero nonunit, by the first conclusion of the proposition we have q = u 0 +u 1 x+ +u m x m for m Z >0 with u 0, u 1,..., u m U and u m 0 R. Since δ(r) < δ(b) the induction hypotheses imply that r = v 0 + v 1 x + + v p x p for p < l with v 0, v 1,..., v p U and v p 0 R. Therefore, a = c 0 + c 1 x + + c k x k = (u 0 + u 1 x + + u m x m )(d 0 + d 1 x + + d l x l ) + v 0 + v 1 x + + v p x p, from which we deduce that k > l since R is a domain and since p < m + l. Now assume that k > l. Let us write q = u 0 + u 1 x + + u m x m, r = v 0 + v 1 x + + v p x p with u 0, u 1,..., u m, v 0, v 1,..., v p U and u m, v p 0 R. Since δ(r) < δ(b) the previous part of the proof gives p < l. By the uniqueness part of Proposition 6 we must have m = k l > 0. Therefore, again by the uniqueness part of Proposition 6, we conclude that q is not a unit and so δ(q) > δ(1 R ). Therefore, δ(b) < δ(qb) = δ(a r) max{δ(a), δ(r)} = δ(a), the last equality holding since δ(r) < δ(b). This gives the result. Note that as a consequence of this, the characterisation of Jodeit Jr. [1967] of Euclidean rings admitting a unique division algorithm follows straightforwardly. 8 Corollary: If (R, δ) is a Euclidean domain that admits a unique Division Algorithm, then (i) the set of units in R forms a field which we denote by F R and (ii) if F R R then R is isomorphic to F R [ξ]. Proof: We claim that R admits a unique Division Algorithm if and only if δ(a + b) max{δ(a), δ(b)} for every a, b R. Certainly, if δ(a+b) max{δ(a), δ(b)} for every a, b R, then R is a δ-closed and δ-positive subsemiring of itself, and then uniqueness of quotient and remainder follows from Proposition 4. Conversely, suppose that a, b R \ {0 R } satisfy δ(a + b) > max{δ(a), δ(b)}. Then we can write a = 0 R (a + b) + a with δ(a) < δ(a + b) and also a = 1 R (a + b) + ( b) with δ( b) < δ(a + b). Thus R does not admit a unique Division Algorithm. That the units in R form a field will follow if we can show that, if units a, b R satisfy a + b 0 R, then a + b is a unit. This, however, follows since δ(1 R ) δ(a + b) max{δ(a), δ(b)} = δ(1 R ), and so δ(a + b) = δ(1 R ), implying that a + b is a unit. The final assertion of the corollary follows from Proposition 7 since every r R can be written as r = a 0 + a 1 x + + a k x k

8 8 A. D. Lewis for unique a 0, a 1,..., a k F R with a k 0 R and with x as defined in the statement of Proposition 7. We then easily see that the map R a 0 + a 1 x + + a k x k a 0 + a 1 ξ + + a k ξ k F R [ξ] is the desired isomorphism. The final theorem we state concerns solutions to Bézout s identity, which states that, if a, b R are elements of a principal ideal domain, then a and b are coprime if and only if there exists r, s R such that ra + bs = 1 R. One way to compute r and s for Euclidean domains involves the Euclidean Algorithm. To establish notation, let us recall that the Euclidean Algorithm states that, if (R, δ) is a Euclidean domain and if a, b R with b 0 R, then there exists k Z 0, q 0, q 1,..., q k R, and r 0 = b, r 1,..., r k R \ {0 R } such that a = q 0 r 0 + r 1, δ(r 1 ) < δ(r 0 ), r 0 = q 1 r 1 + r 2, δ(r 2 ) < δ(r 1 ),. (2) r k 2 = q k 1 r k 1 + r k, δ(r k ) < δ(r k 1 ), r k 1 = q k r k. Moreover, it turns out that r k as it appears in the Euclidean Algorithm is a greatest common divisor for a and b. In particular, if a and b are coprime, then r k is a unit. Moreover, as we shall see in our next theorem, one can use the Euclidean Algorithm to find r, s R such that ra + bs = 1 R. In a Euclidean domain one can ask that r and s have norms satisfying some bound; the usual bounds are that δ(r) < δ(b) and δ(s) < δ(a). As we see in the following theorem, if one enforces δ-positivity, then the bounds are achieved by the (necessarily unique) solution obtained from the Euclidean Algorithm. Again, most of the steps in this theorem may be found in any textbook, but we give all of the details so as to reveal where the property of δ-positivity is used. 9 Theorem: If (R, δ) is a Euclidean domain and if a, b R\{0 R } are coprime, let k Z 0, q 0, q 1,..., q k R, and r 0 = b, r 1,..., r k 1 R \ {0 R } be such that a = q 0 r 0 + r 1, δ(r 1 ) < δ(r 0 ), r 0 = q 1 r 1 + r 2, δ(r 2 ) < δ(r 1 ),. r k 2 = q k 1 r k 1 + u, δ(u) < δ(r k 1 ), r k 1 = q k u, where u R is a unit (this being the case since a and b are coprime). Then let α 0 = 1 R and β 0 = q k 1, and recursively define α 1,..., α k 1 R and β 1,..., β k 1 R by α j = β j 1, β j = α j 1 q k 1 j β j 1, j {1,..., k 1}.

9 Subsets of Euclidean domains possessing a unique division algorithm 9 If we take r = { 0 R, δ(b) = δ(1 R ), u 1 α k 1, δ(b) > δ(1 R ), s = { b 1, δ(b) = δ(1 R ), u 1 β k 1, δ(b) > δ(1 R ), then ra + sb = 1 R. Moreover, if S R is a nontrivial, δ-closed, and δ-positive subsemiring, and if a and b additionally have the property that a, b S and that at least one of a and b is not a unit, then (i) q 0, q 1..., q k and r 1,..., r k 1 may be chosen to lie in S and, (ii) if q 0, q 1..., q k and r 1,..., r k 1 are so chosen, then r and s as defined above additionally satisfy δ(r) < δ(b) and δ(s) < δ(a). Proof: Let us first reduce to the case when u = 1 R. Multiply all equations in the Euclidean Algorithm for a and b by u 1 : u 1 a = q 0 u 1 r 0 + u 1 r 1, δ(u 1 r 1 ) < δ(u 1 r 0 ), u 1 r 0 = q 1 u 1 r 1 + u 1 r 2, δ(u 1 r 2 ) < δ(u 1 r 1 ),. u 1 r k 2 = q k 1 u 1 r k R, δ(1 R ) < δ(u 1 r k 1 ), u 1 r k 1 = q k. Note that the resulting equations hold if and only if the original equations hold, by virtue of R being an integral domain. The resulting equations are then the Euclidean Algorithm for u 1 a and u 1 b, and at each step the remainders r 0, r 1,..., r k 1 are multiplied by u 1. The quotients q 0, q 1,..., q k remain the same, however. Thus the definitions of α 0, α 1,..., α k 1 and β 0, β 1,..., β k 1 are unchanged from the Euclidean Algorithm for a and b. Applying the conclusions of the theorem to the modified Euclidean Algorithm then gives r, s R such that r (u 1 a) + s (u 1 b) = 1 R. Thus the conclusions of the first part of the theorem in the general case follow from those when u = 1 R by taking r = u 1 r and s = u 1 s. Also note that the relation δ(u 1 r j 1 ) < δ(u 1 r j ) is equivalent to the relation δ(r j 1 ) < δ(r j ), j {0, 1,..., k 1}. Therefore, the conclusions of the second part of the theorem in the general case also follow from those for the case when u = 1 R. Thus, in the remainder of the proof we suppose that u = 1 R. Let us also eliminate the case where δ(b) = δ(1 R ). If this is the case then we have a = qb + r with δ(r) = δ(0 R ), and so r = 0 R. Therefore, since b is a unit, q = ab 1. Now, taking r = 0 R and s = b 1, we have ra + sb = 1 R. Moreover, for the second part of the theorem, δ(r) < δ(b) and δ(s) < δ(a) since s is a unit and a is not, the latter by the hypotheses of the theorem. Thus the conclusions of the theorem hold when δ(b) = δ(1 R ). Thus, in the remainder of the proof we suppose that b is a nonzero nonunit. We now prove the theorem by induction on k. If k = 1 then we have a = q 0 r R, δ(1 R ) < δ(r 0 ), r 0 = q 1.

10 10 A. D. Lewis Thus 1 R = 1 R a + ( q 0 ) b, and the theorem holds with r = α 0 = 1 R and s = β 0 = q 0. Now suppose the theorem true for k {1,..., m 1} and consider the Euclidean Algorithm for a and b = r 0 of the form a = q 0 r 0 + r 1, δ(r 1 ) < δ(r 0 ), r 0 = q 1 r 1 + r 2, δ(r 2 ) < δ(r 1 ),. r m 2 = q m 1 r m R, δ(1 R ) < δ(r m 1 ), r m 1 = q m. By the induction hypothesis, the conclusions of the theorem hold for the last m equations. But the last m equations are the result of applying the Euclidean Algorithm in the case where a = r 0 and b = r 1. Thus, if we define α 0 = 1 R and β 0 = q k 1, and recursively define α 1,..., α m 2 and β 1,..., β m 2 by α j = β j 1, β j = α j 1 q m 1 j β j 1, j {1,..., m 2}, and if we take r = α m 2 and s = β m 2, then we have r r 0 + s r 1 = 1 R. Since r 0 = b we have 1 R = α m 2 r 0 + β m 2 (a q 0 r 0 ) = (α m 2 q 0 β m 2 )b + β m 2 a, and so the theorem holds with r = α m 1 = β m 2 and s = β m 1 = α m 2 q 0 β m 2, as desired. Now we proceed to the second part of the theorem, supposing that a, b S for a δ-closed and δ-positive subsemiring S R. Since r 0 = b, that q 0 and r 1 can be chosen to lie in S follows from the fact that S is δ-closed. This reasoning can then be applied to each line of the Euclidean Algorithm to ensure that all quotients and remainders can be chosen to lie in S. The following lemma records a useful property of these quotients and remainders. Lemma: Using the notation of the theorem statement, suppose that a, b S and that q 0, q 1,..., q k and r 1,..., r k 1 are chosen to lie in S. Then, for j {0, 1,..., k 1}, either (i) α j S and β j S or (ii) α j S and β j S. Proof: The lemma is proved by induction on j. For j = 0 we have α 0 = 1 R S and β 0 = q k 1 S. Suppose the lemma true for j {0, 1,..., m}. We have two cases. 1. α m S and β m S: We immediately have α m+1 = β m S. Also, β m+1 = α m q k 2 m β m S since α m S and q k m 2 ( β m ) S, using the semiring property of S. 2. α m S and β m S: This case follows, mutatis mutandis, in the manner of the previous case. Now, the final thing we need to show is that r and s constructed as above from a, b S satisfy δ(r) < δ(b) and δ(s) < δ(a). We prove this by induction on k. For k = 1 we have r = 1 R and s = q 0. Therefore, δ(r) = δ(1 R ) < δ(b)

11 Subsets of Euclidean domains possessing a unique division algorithm 11 since we are assuming that b is a nonzero nonunit. Also, since b is a nonzero nonunit, δ(s) = δ( q 0 ) < δ( q 0 b) = δ(a 1 R ) max{δ(a), δ(1 R )} δ(a), using δ-positivity of S. So the final assertion of the theorem holds for k = 1. Now suppose that this assertion holds for k {1,..., m 1} and consider the Euclidean Algorithm for a and b of the form a = q 0 r 0 + r 1, δ(r 1 ) < δ(r 0 ), r 0 = q 1 r 1 + r 2, δ(r 2 ) < δ(r 1 ),. r m 2 = q m 1 r m R, δ(1 R ) < δ(r m 1 ), r m 1 = q m. Considering the last m equations, as in the first part of the proof we have the Euclidean Algorithm for a = r 0 and b = r 1. Therefore, considering r, s R as constructed in the first part of the proof, we have δ(r ) < δ(r 1 ) and δ(s ) < δ(r 0 ). Again as in the first part of the proof, we take r = s and s = r q 0 s so that ra + sb = 1 R. Then δ(r) = δ(s ) < δ(r 0 ) = δ(b). It remains to show that δ(s) < δ(a). First suppose that δ(a) < δ(b). Then, by Proposition 4 we have a = 0 R b + a as the unique output of the Division Algorithm in S. Thus we must have q 0 = 0 R and r 1 = a. In this case, δ(s) = δ(r ) < δ(r 1 ) = δ(a), giving the norm bound for s if δ(a) < δ(b). Thus we consider the case when δ(b) δ(a). By the lemma we have either (1) r S and q 0 s S or (2) r S and q 0 s S. Consider the case r, q 0 s S. We then have a = q 0 b + r 1, s = q 0 s + r with δ(r 1 ) < δ(b), δ(s ) < δ(b), and δ(r ) < δ(r 1 ). Since a, q 0, b, r 1, s, s, r S we use Proposition 7 to write these elements of S as uniquely defined polynomials in x, where δ(x) = inf{δ(r) r S, δ(r) > δ(1 R )}. Let us denote these polynomials by P a, P q0, P b, P r1, P s, P s, and P r. By Proposition 7 we have This immediately gives δ(r 1 ) < δ(b) = deg(p r1 ) < deg(p b ), δ(s ) < δ(b) = deg(p s ) < deg(p b ), δ(r ) < δ(r 1 ) = deg(p r ) < deg(p r1 ). deg(p a ) = deg(p q0 ) + deg(p b ), deg(p s ) max{deg(p q0 ) + deg(p s ), deg(p r )}.

12 12 A. D. Lewis If then if then max{deg(p q0 ) + deg(p s ), deg(p r )} = deg(p q0 ) + deg(p s ) deg(p a ) = deg(p q0 ) + deg(p b ) > deg(p q0 ) + deg(p s ) deg(p s ) max{deg(p q0 ) + deg(p s ), deg(p r )} = deg(p r ) deg(p a ) = deg(p q0 ) + deg(p b ) > deg(p r1 ) > deg(p r ) deg(p s ). In either case we have deg(p s ) > deg(p a ), and then we apply Proposition 7 again to give δ(s) < δ(a) in the case when r, q 0 s S. When r, q 0 s S then s S and we write a = q 0 b + r 1, s = q 0 s + ( r ). The steps above may now be repeated to give δ(s) = δ( s) < δ(a) in this case. References Jodeit Jr., M. A. [1967]. Uniqueness in the division algorithm. The American Mathematical Monthly 74(1), pages issn: doi: /

Continued Fractions and the Euclidean Algorithm

Continued Fractions and the Euclidean Algorithm Continued Fractions and the Euclidean Algorithm Lecture notes prepared for MATH 326, Spring 997 Department of Mathematics and Statistics University at Albany William F Hammond Table of Contents Introduction

More information

Prime Numbers and Irreducible Polynomials

Prime Numbers and Irreducible Polynomials Prime Numbers and Irreducible Polynomials M. Ram Murty The similarity between prime numbers and irreducible polynomials has been a dominant theme in the development of number theory and algebraic geometry.

More information

11 Ideals. 11.1 Revisiting Z

11 Ideals. 11.1 Revisiting Z 11 Ideals The presentation here is somewhat different than the text. In particular, the sections do not match up. We have seen issues with the failure of unique factorization already, e.g., Z[ 5] = O Q(

More information

Lecture Notes on Polynomials

Lecture Notes on Polynomials Lecture Notes on Polynomials Arne Jensen Department of Mathematical Sciences Aalborg University c 008 Introduction These lecture notes give a very short introduction to polynomials with real and complex

More information

8 Divisibility and prime numbers

8 Divisibility and prime numbers 8 Divisibility and prime numbers 8.1 Divisibility In this short section we extend the concept of a multiple from the natural numbers to the integers. We also summarize several other terms that express

More information

FACTORING POLYNOMIALS IN THE RING OF FORMAL POWER SERIES OVER Z

FACTORING POLYNOMIALS IN THE RING OF FORMAL POWER SERIES OVER Z FACTORING POLYNOMIALS IN THE RING OF FORMAL POWER SERIES OVER Z DANIEL BIRMAJER, JUAN B GIL, AND MICHAEL WEINER Abstract We consider polynomials with integer coefficients and discuss their factorization

More information

Kevin James. MTHSC 412 Section 2.4 Prime Factors and Greatest Comm

Kevin James. MTHSC 412 Section 2.4 Prime Factors and Greatest Comm MTHSC 412 Section 2.4 Prime Factors and Greatest Common Divisor Greatest Common Divisor Definition Suppose that a, b Z. Then we say that d Z is a greatest common divisor (gcd) of a and b if the following

More information

Chapter 4, Arithmetic in F [x] Polynomial arithmetic and the division algorithm.

Chapter 4, Arithmetic in F [x] Polynomial arithmetic and the division algorithm. Chapter 4, Arithmetic in F [x] Polynomial arithmetic and the division algorithm. We begin by defining the ring of polynomials with coefficients in a ring R. After some preliminary results, we specialize

More information

Mathematics Course 111: Algebra I Part IV: Vector Spaces

Mathematics Course 111: Algebra I Part IV: Vector Spaces Mathematics Course 111: Algebra I Part IV: Vector Spaces D. R. Wilkins Academic Year 1996-7 9 Vector Spaces A vector space over some field K is an algebraic structure consisting of a set V on which are

More information

CONTINUED FRACTIONS AND PELL S EQUATION. Contents 1. Continued Fractions 1 2. Solution to Pell s Equation 9 References 12

CONTINUED FRACTIONS AND PELL S EQUATION. Contents 1. Continued Fractions 1 2. Solution to Pell s Equation 9 References 12 CONTINUED FRACTIONS AND PELL S EQUATION SEUNG HYUN YANG Abstract. In this REU paper, I will use some important characteristics of continued fractions to give the complete set of solutions to Pell s equation.

More information

POLYNOMIAL RINGS AND UNIQUE FACTORIZATION DOMAINS

POLYNOMIAL RINGS AND UNIQUE FACTORIZATION DOMAINS POLYNOMIAL RINGS AND UNIQUE FACTORIZATION DOMAINS RUSS WOODROOFE 1. Unique Factorization Domains Throughout the following, we think of R as sitting inside R[x] as the constant polynomials (of degree 0).

More information

Some Polynomial Theorems. John Kennedy Mathematics Department Santa Monica College 1900 Pico Blvd. Santa Monica, CA 90405 rkennedy@ix.netcom.

Some Polynomial Theorems. John Kennedy Mathematics Department Santa Monica College 1900 Pico Blvd. Santa Monica, CA 90405 rkennedy@ix.netcom. Some Polynomial Theorems by John Kennedy Mathematics Department Santa Monica College 1900 Pico Blvd. Santa Monica, CA 90405 rkennedy@ix.netcom.com This paper contains a collection of 31 theorems, lemmas,

More information

MATH10040 Chapter 2: Prime and relatively prime numbers

MATH10040 Chapter 2: Prime and relatively prime numbers MATH10040 Chapter 2: Prime and relatively prime numbers Recall the basic definition: 1. Prime numbers Definition 1.1. Recall that a positive integer is said to be prime if it has precisely two positive

More information

Quotient Rings and Field Extensions

Quotient Rings and Field Extensions Chapter 5 Quotient Rings and Field Extensions In this chapter we describe a method for producing field extension of a given field. If F is a field, then a field extension is a field K that contains F.

More information

PROBLEM SET 6: POLYNOMIALS

PROBLEM SET 6: POLYNOMIALS PROBLEM SET 6: POLYNOMIALS 1. introduction In this problem set we will consider polynomials with coefficients in K, where K is the real numbers R, the complex numbers C, the rational numbers Q or any other

More information

Unique Factorization

Unique Factorization Unique Factorization Waffle Mathcamp 2010 Throughout these notes, all rings will be assumed to be commutative. 1 Factorization in domains: definitions and examples In this class, we will study the phenomenon

More information

The Division Algorithm for Polynomials Handout Monday March 5, 2012

The Division Algorithm for Polynomials Handout Monday March 5, 2012 The Division Algorithm for Polynomials Handout Monday March 5, 0 Let F be a field (such as R, Q, C, or F p for some prime p. This will allow us to divide by any nonzero scalar. (For some of the following,

More information

z 0 and y even had the form

z 0 and y even had the form Gaussian Integers The concepts of divisibility, primality and factoring are actually more general than the discussion so far. For the moment, we have been working in the integers, which we denote by Z

More information

GREATEST COMMON DIVISOR

GREATEST COMMON DIVISOR DEFINITION: GREATEST COMMON DIVISOR The greatest common divisor (gcd) of a and b, denoted by (a, b), is the largest common divisor of integers a and b. THEOREM: If a and b are nonzero integers, then their

More information

(a) Write each of p and q as a polynomial in x with coefficients in Z[y, z]. deg(p) = 7 deg(q) = 9

(a) Write each of p and q as a polynomial in x with coefficients in Z[y, z]. deg(p) = 7 deg(q) = 9 Homework #01, due 1/20/10 = 9.1.2, 9.1.4, 9.1.6, 9.1.8, 9.2.3 Additional problems for study: 9.1.1, 9.1.3, 9.1.5, 9.1.13, 9.2.1, 9.2.2, 9.2.4, 9.2.5, 9.2.6, 9.3.2, 9.3.3 9.1.1 (This problem was not assigned

More information

CS 103X: Discrete Structures Homework Assignment 3 Solutions

CS 103X: Discrete Structures Homework Assignment 3 Solutions CS 103X: Discrete Structures Homework Assignment 3 s Exercise 1 (20 points). On well-ordering and induction: (a) Prove the induction principle from the well-ordering principle. (b) Prove the well-ordering

More information

SUBGROUPS OF CYCLIC GROUPS. 1. Introduction In a group G, we denote the (cyclic) group of powers of some g G by

SUBGROUPS OF CYCLIC GROUPS. 1. Introduction In a group G, we denote the (cyclic) group of powers of some g G by SUBGROUPS OF CYCLIC GROUPS KEITH CONRAD 1. Introduction In a group G, we denote the (cyclic) group of powers of some g G by g = {g k : k Z}. If G = g, then G itself is cyclic, with g as a generator. Examples

More information

Factoring Polynomials

Factoring Polynomials Factoring Polynomials Sue Geller June 19, 2006 Factoring polynomials over the rational numbers, real numbers, and complex numbers has long been a standard topic of high school algebra. With the advent

More information

DEGREES OF ORDERS ON TORSION-FREE ABELIAN GROUPS

DEGREES OF ORDERS ON TORSION-FREE ABELIAN GROUPS DEGREES OF ORDERS ON TORSION-FREE ABELIAN GROUPS ASHER M. KACH, KAREN LANGE, AND REED SOLOMON Abstract. We construct two computable presentations of computable torsion-free abelian groups, one of isomorphism

More information

Module MA3411: Abstract Algebra Galois Theory Appendix Michaelmas Term 2013

Module MA3411: Abstract Algebra Galois Theory Appendix Michaelmas Term 2013 Module MA3411: Abstract Algebra Galois Theory Appendix Michaelmas Term 2013 D. R. Wilkins Copyright c David R. Wilkins 1997 2013 Contents A Cyclotomic Polynomials 79 A.1 Minimum Polynomials of Roots of

More information

Math 345-60 Abstract Algebra I Questions for Section 23: Factoring Polynomials over a Field

Math 345-60 Abstract Algebra I Questions for Section 23: Factoring Polynomials over a Field Math 345-60 Abstract Algebra I Questions for Section 23: Factoring Polynomials over a Field 1. Throughout this section, F is a field and F [x] is the ring of polynomials with coefficients in F. We will

More information

CONTRIBUTIONS TO ZERO SUM PROBLEMS

CONTRIBUTIONS TO ZERO SUM PROBLEMS CONTRIBUTIONS TO ZERO SUM PROBLEMS S. D. ADHIKARI, Y. G. CHEN, J. B. FRIEDLANDER, S. V. KONYAGIN AND F. PAPPALARDI Abstract. A prototype of zero sum theorems, the well known theorem of Erdős, Ginzburg

More information

it is easy to see that α = a

it is easy to see that α = a 21. Polynomial rings Let us now turn out attention to determining the prime elements of a polynomial ring, where the coefficient ring is a field. We already know that such a polynomial ring is a UF. Therefore

More information

The Factor Theorem and a corollary of the Fundamental Theorem of Algebra

The Factor Theorem and a corollary of the Fundamental Theorem of Algebra Math 421 Fall 2010 The Factor Theorem and a corollary of the Fundamental Theorem of Algebra 27 August 2010 Copyright 2006 2010 by Murray Eisenberg. All rights reserved. Prerequisites Mathematica Aside

More information

Factorization in Polynomial Rings

Factorization in Polynomial Rings Factorization in Polynomial Rings These notes are a summary of some of the important points on divisibility in polynomial rings from 17 and 18 of Gallian s Contemporary Abstract Algebra. Most of the important

More information

Introduction to Finite Fields (cont.)

Introduction to Finite Fields (cont.) Chapter 6 Introduction to Finite Fields (cont.) 6.1 Recall Theorem. Z m is a field m is a prime number. Theorem (Subfield Isomorphic to Z p ). Every finite field has the order of a power of a prime number

More information

8 Primes and Modular Arithmetic

8 Primes and Modular Arithmetic 8 Primes and Modular Arithmetic 8.1 Primes and Factors Over two millennia ago already, people all over the world were considering the properties of numbers. One of the simplest concepts is prime numbers.

More information

Breaking The Code. Ryan Lowe. Ryan Lowe is currently a Ball State senior with a double major in Computer Science and Mathematics and

Breaking The Code. Ryan Lowe. Ryan Lowe is currently a Ball State senior with a double major in Computer Science and Mathematics and Breaking The Code Ryan Lowe Ryan Lowe is currently a Ball State senior with a double major in Computer Science and Mathematics and a minor in Applied Physics. As a sophomore, he took an independent study

More information

3. Mathematical Induction

3. Mathematical Induction 3. MATHEMATICAL INDUCTION 83 3. Mathematical Induction 3.1. First Principle of Mathematical Induction. Let P (n) be a predicate with domain of discourse (over) the natural numbers N = {0, 1,,...}. If (1)

More information

How To Prove The Dirichlet Unit Theorem

How To Prove The Dirichlet Unit Theorem Chapter 6 The Dirichlet Unit Theorem As usual, we will be working in the ring B of algebraic integers of a number field L. Two factorizations of an element of B are regarded as essentially the same if

More information

RESULTANT AND DISCRIMINANT OF POLYNOMIALS

RESULTANT AND DISCRIMINANT OF POLYNOMIALS RESULTANT AND DISCRIMINANT OF POLYNOMIALS SVANTE JANSON Abstract. This is a collection of classical results about resultants and discriminants for polynomials, compiled mainly for my own use. All results

More information

IRREDUCIBLE OPERATOR SEMIGROUPS SUCH THAT AB AND BA ARE PROPORTIONAL. 1. Introduction

IRREDUCIBLE OPERATOR SEMIGROUPS SUCH THAT AB AND BA ARE PROPORTIONAL. 1. Introduction IRREDUCIBLE OPERATOR SEMIGROUPS SUCH THAT AB AND BA ARE PROPORTIONAL R. DRNOVŠEK, T. KOŠIR Dedicated to Prof. Heydar Radjavi on the occasion of his seventieth birthday. Abstract. Let S be an irreducible

More information

The Prime Numbers. Definition. A prime number is a positive integer with exactly two positive divisors.

The Prime Numbers. Definition. A prime number is a positive integer with exactly two positive divisors. The Prime Numbers Before starting our study of primes, we record the following important lemma. Recall that integers a, b are said to be relatively prime if gcd(a, b) = 1. Lemma (Euclid s Lemma). If gcd(a,

More information

7. Some irreducible polynomials

7. Some irreducible polynomials 7. Some irreducible polynomials 7.1 Irreducibles over a finite field 7.2 Worked examples Linear factors x α of a polynomial P (x) with coefficients in a field k correspond precisely to roots α k [1] of

More information

I. GROUPS: BASIC DEFINITIONS AND EXAMPLES

I. GROUPS: BASIC DEFINITIONS AND EXAMPLES I GROUPS: BASIC DEFINITIONS AND EXAMPLES Definition 1: An operation on a set G is a function : G G G Definition 2: A group is a set G which is equipped with an operation and a special element e G, called

More information

Elementary Number Theory and Methods of Proof. CSE 215, Foundations of Computer Science Stony Brook University http://www.cs.stonybrook.

Elementary Number Theory and Methods of Proof. CSE 215, Foundations of Computer Science Stony Brook University http://www.cs.stonybrook. Elementary Number Theory and Methods of Proof CSE 215, Foundations of Computer Science Stony Brook University http://www.cs.stonybrook.edu/~cse215 1 Number theory Properties: 2 Properties of integers (whole

More information

FACTORING IN QUADRATIC FIELDS. 1. Introduction. This is called a quadratic field and it has degree 2 over Q. Similarly, set

FACTORING IN QUADRATIC FIELDS. 1. Introduction. This is called a quadratic field and it has degree 2 over Q. Similarly, set FACTORING IN QUADRATIC FIELDS KEITH CONRAD For a squarefree integer d other than 1, let 1. Introduction K = Q[ d] = {x + y d : x, y Q}. This is called a quadratic field and it has degree 2 over Q. Similarly,

More information

Notes from February 11

Notes from February 11 Notes from February 11 Math 130 Course web site: www.courses.fas.harvard.edu/5811 Two lemmas Before proving the theorem which was stated at the end of class on February 8, we begin with two lemmas. The

More information

Notes on Factoring. MA 206 Kurt Bryan

Notes on Factoring. MA 206 Kurt Bryan The General Approach Notes on Factoring MA 26 Kurt Bryan Suppose I hand you n, a 2 digit integer and tell you that n is composite, with smallest prime factor around 5 digits. Finding a nontrivial factor

More information

Irreducibility criteria for compositions and multiplicative convolutions of polynomials with integer coefficients

Irreducibility criteria for compositions and multiplicative convolutions of polynomials with integer coefficients DOI: 10.2478/auom-2014-0007 An. Şt. Univ. Ovidius Constanţa Vol. 221),2014, 73 84 Irreducibility criteria for compositions and multiplicative convolutions of polynomials with integer coefficients Anca

More information

MOP 2007 Black Group Integer Polynomials Yufei Zhao. Integer Polynomials. June 29, 2007 Yufei Zhao yufeiz@mit.edu

MOP 2007 Black Group Integer Polynomials Yufei Zhao. Integer Polynomials. June 29, 2007 Yufei Zhao yufeiz@mit.edu Integer Polynomials June 9, 007 Yufei Zhao yufeiz@mit.edu We will use Z[x] to denote the ring of polynomials with integer coefficients. We begin by summarizing some of the common approaches used in dealing

More information

1 Sets and Set Notation.

1 Sets and Set Notation. LINEAR ALGEBRA MATH 27.6 SPRING 23 (COHEN) LECTURE NOTES Sets and Set Notation. Definition (Naive Definition of a Set). A set is any collection of objects, called the elements of that set. We will most

More information

U.C. Berkeley CS276: Cryptography Handout 0.1 Luca Trevisan January, 2009. Notes on Algebra

U.C. Berkeley CS276: Cryptography Handout 0.1 Luca Trevisan January, 2009. Notes on Algebra U.C. Berkeley CS276: Cryptography Handout 0.1 Luca Trevisan January, 2009 Notes on Algebra These notes contain as little theory as possible, and most results are stated without proof. Any introductory

More information

COMMUTATIVE RINGS. Definition: A domain is a commutative ring R that satisfies the cancellation law for multiplication:

COMMUTATIVE RINGS. Definition: A domain is a commutative ring R that satisfies the cancellation law for multiplication: COMMUTATIVE RINGS Definition: A commutative ring R is a set with two operations, addition and multiplication, such that: (i) R is an abelian group under addition; (ii) ab = ba for all a, b R (commutative

More information

CONTINUED FRACTIONS AND FACTORING. Niels Lauritzen

CONTINUED FRACTIONS AND FACTORING. Niels Lauritzen CONTINUED FRACTIONS AND FACTORING Niels Lauritzen ii NIELS LAURITZEN DEPARTMENT OF MATHEMATICAL SCIENCES UNIVERSITY OF AARHUS, DENMARK EMAIL: niels@imf.au.dk URL: http://home.imf.au.dk/niels/ Contents

More information

ON UNIQUE FACTORIZATION DOMAINS

ON UNIQUE FACTORIZATION DOMAINS ON UNIQUE FACTORIZATION DOMAINS JIM COYKENDALL AND WILLIAM W. SMITH Abstract. In this paper we attempt to generalize the notion of unique factorization domain in the spirit of half-factorial domain. It

More information

The Ideal Class Group

The Ideal Class Group Chapter 5 The Ideal Class Group We will use Minkowski theory, which belongs to the general area of geometry of numbers, to gain insight into the ideal class group of a number field. We have already mentioned

More information

Lecture 14: Section 3.3

Lecture 14: Section 3.3 Lecture 14: Section 3.3 Shuanglin Shao October 23, 2013 Definition. Two nonzero vectors u and v in R n are said to be orthogonal (or perpendicular) if u v = 0. We will also agree that the zero vector in

More information

MATH 289 PROBLEM SET 4: NUMBER THEORY

MATH 289 PROBLEM SET 4: NUMBER THEORY MATH 289 PROBLEM SET 4: NUMBER THEORY 1. The greatest common divisor If d and n are integers, then we say that d divides n if and only if there exists an integer q such that n = qd. Notice that if d divides

More information

Factoring & Primality

Factoring & Primality Factoring & Primality Lecturer: Dimitris Papadopoulos In this lecture we will discuss the problem of integer factorization and primality testing, two problems that have been the focus of a great amount

More information

1 = (a 0 + b 0 α) 2 + + (a m 1 + b m 1 α) 2. for certain elements a 0,..., a m 1, b 0,..., b m 1 of F. Multiplying out, we obtain

1 = (a 0 + b 0 α) 2 + + (a m 1 + b m 1 α) 2. for certain elements a 0,..., a m 1, b 0,..., b m 1 of F. Multiplying out, we obtain Notes on real-closed fields These notes develop the algebraic background needed to understand the model theory of real-closed fields. To understand these notes, a standard graduate course in algebra is

More information

Integer roots of quadratic and cubic polynomials with integer coefficients

Integer roots of quadratic and cubic polynomials with integer coefficients Integer roots of quadratic and cubic polynomials with integer coefficients Konstantine Zelator Mathematics, Computer Science and Statistics 212 Ben Franklin Hall Bloomsburg University 400 East Second Street

More information

WHAT ARE MATHEMATICAL PROOFS AND WHY THEY ARE IMPORTANT?

WHAT ARE MATHEMATICAL PROOFS AND WHY THEY ARE IMPORTANT? WHAT ARE MATHEMATICAL PROOFS AND WHY THEY ARE IMPORTANT? introduction Many students seem to have trouble with the notion of a mathematical proof. People that come to a course like Math 216, who certainly

More information

Cyclotomic Extensions

Cyclotomic Extensions Chapter 7 Cyclotomic Extensions A cyclotomic extension Q(ζ n ) of the rationals is formed by adjoining a primitive n th root of unity ζ n. In this chapter, we will find an integral basis and calculate

More information

4.5 Linear Dependence and Linear Independence

4.5 Linear Dependence and Linear Independence 4.5 Linear Dependence and Linear Independence 267 32. {v 1, v 2 }, where v 1, v 2 are collinear vectors in R 3. 33. Prove that if S and S are subsets of a vector space V such that S is a subset of S, then

More information

Computing divisors and common multiples of quasi-linear ordinary differential equations

Computing divisors and common multiples of quasi-linear ordinary differential equations Computing divisors and common multiples of quasi-linear ordinary differential equations Dima Grigoriev CNRS, Mathématiques, Université de Lille Villeneuve d Ascq, 59655, France Dmitry.Grigoryev@math.univ-lille1.fr

More information

GROUPS ACTING ON A SET

GROUPS ACTING ON A SET GROUPS ACTING ON A SET MATH 435 SPRING 2012 NOTES FROM FEBRUARY 27TH, 2012 1. Left group actions Definition 1.1. Suppose that G is a group and S is a set. A left (group) action of G on S is a rule for

More information

Ideal Class Group and Units

Ideal Class Group and Units Chapter 4 Ideal Class Group and Units We are now interested in understanding two aspects of ring of integers of number fields: how principal they are (that is, what is the proportion of principal ideals

More information

ADDITIVE GROUPS OF RINGS WITH IDENTITY

ADDITIVE GROUPS OF RINGS WITH IDENTITY ADDITIVE GROUPS OF RINGS WITH IDENTITY SIMION BREAZ AND GRIGORE CĂLUGĂREANU Abstract. A ring with identity exists on a torsion Abelian group exactly when the group is bounded. The additive groups of torsion-free

More information

Math 4310 Handout - Quotient Vector Spaces

Math 4310 Handout - Quotient Vector Spaces Math 4310 Handout - Quotient Vector Spaces Dan Collins The textbook defines a subspace of a vector space in Chapter 4, but it avoids ever discussing the notion of a quotient space. This is understandable

More information

MA651 Topology. Lecture 6. Separation Axioms.

MA651 Topology. Lecture 6. Separation Axioms. MA651 Topology. Lecture 6. Separation Axioms. This text is based on the following books: Fundamental concepts of topology by Peter O Neil Elements of Mathematics: General Topology by Nicolas Bourbaki Counterexamples

More information

Linear Algebra. A vector space (over R) is an ordered quadruple. such that V is a set; 0 V ; and the following eight axioms hold:

Linear Algebra. A vector space (over R) is an ordered quadruple. such that V is a set; 0 V ; and the following eight axioms hold: Linear Algebra A vector space (over R) is an ordered quadruple (V, 0, α, µ) such that V is a set; 0 V ; and the following eight axioms hold: α : V V V and µ : R V V ; (i) α(α(u, v), w) = α(u, α(v, w)),

More information

THE FUNDAMENTAL THEOREM OF ARBITRAGE PRICING

THE FUNDAMENTAL THEOREM OF ARBITRAGE PRICING THE FUNDAMENTAL THEOREM OF ARBITRAGE PRICING 1. Introduction The Black-Scholes theory, which is the main subject of this course and its sequel, is based on the Efficient Market Hypothesis, that arbitrages

More information

THE DIMENSION OF A VECTOR SPACE

THE DIMENSION OF A VECTOR SPACE THE DIMENSION OF A VECTOR SPACE KEITH CONRAD This handout is a supplementary discussion leading up to the definition of dimension and some of its basic properties. Let V be a vector space over a field

More information

Winter Camp 2011 Polynomials Alexander Remorov. Polynomials. Alexander Remorov alexanderrem@gmail.com

Winter Camp 2011 Polynomials Alexander Remorov. Polynomials. Alexander Remorov alexanderrem@gmail.com Polynomials Alexander Remorov alexanderrem@gmail.com Warm-up Problem 1: Let f(x) be a quadratic polynomial. Prove that there exist quadratic polynomials g(x) and h(x) such that f(x)f(x + 1) = g(h(x)).

More information

Modern Algebra Lecture Notes: Rings and fields set 4 (Revision 2)

Modern Algebra Lecture Notes: Rings and fields set 4 (Revision 2) Modern Algebra Lecture Notes: Rings and fields set 4 (Revision 2) Kevin Broughan University of Waikato, Hamilton, New Zealand May 13, 2010 Remainder and Factor Theorem 15 Definition of factor If f (x)

More information

Real Roots of Univariate Polynomials with Real Coefficients

Real Roots of Univariate Polynomials with Real Coefficients Real Roots of Univariate Polynomials with Real Coefficients mostly written by Christina Hewitt March 22, 2012 1 Introduction Polynomial equations are used throughout mathematics. When solving polynomials

More information

Section 4.2: The Division Algorithm and Greatest Common Divisors

Section 4.2: The Division Algorithm and Greatest Common Divisors Section 4.2: The Division Algorithm and Greatest Common Divisors The Division Algorithm The Division Algorithm is merely long division restated as an equation. For example, the division 29 r. 20 32 948

More information

Lecture 3: Finding integer solutions to systems of linear equations

Lecture 3: Finding integer solutions to systems of linear equations Lecture 3: Finding integer solutions to systems of linear equations Algorithmic Number Theory (Fall 2014) Rutgers University Swastik Kopparty Scribe: Abhishek Bhrushundi 1 Overview The goal of this lecture

More information

Factoring of Prime Ideals in Extensions

Factoring of Prime Ideals in Extensions Chapter 4 Factoring of Prime Ideals in Extensions 4. Lifting of Prime Ideals Recall the basic AKLB setup: A is a Dedekind domain with fraction field K, L is a finite, separable extension of K of degree

More information

= 2 + 1 2 2 = 3 4, Now assume that P (k) is true for some fixed k 2. This means that

= 2 + 1 2 2 = 3 4, Now assume that P (k) is true for some fixed k 2. This means that Instructions. Answer each of the questions on your own paper, and be sure to show your work so that partial credit can be adequately assessed. Credit will not be given for answers (even correct ones) without

More information

JUST THE MATHS UNIT NUMBER 1.8. ALGEBRA 8 (Polynomials) A.J.Hobson

JUST THE MATHS UNIT NUMBER 1.8. ALGEBRA 8 (Polynomials) A.J.Hobson JUST THE MATHS UNIT NUMBER 1.8 ALGEBRA 8 (Polynomials) by A.J.Hobson 1.8.1 The factor theorem 1.8.2 Application to quadratic and cubic expressions 1.8.3 Cubic equations 1.8.4 Long division of polynomials

More information

Settling a Question about Pythagorean Triples

Settling a Question about Pythagorean Triples Settling a Question about Pythagorean Triples TOM VERHOEFF Department of Mathematics and Computing Science Eindhoven University of Technology P.O. Box 513, 5600 MB Eindhoven, The Netherlands E-Mail address:

More information

Applications of Fermat s Little Theorem and Congruences

Applications of Fermat s Little Theorem and Congruences Applications of Fermat s Little Theorem and Congruences Definition: Let m be a positive integer. Then integers a and b are congruent modulo m, denoted by a b mod m, if m (a b). Example: 3 1 mod 2, 6 4

More information

LEARNING OBJECTIVES FOR THIS CHAPTER

LEARNING OBJECTIVES FOR THIS CHAPTER CHAPTER 2 American mathematician Paul Halmos (1916 2006), who in 1942 published the first modern linear algebra book. The title of Halmos s book was the same as the title of this chapter. Finite-Dimensional

More information

DIVISIBILITY AND GREATEST COMMON DIVISORS

DIVISIBILITY AND GREATEST COMMON DIVISORS DIVISIBILITY AND GREATEST COMMON DIVISORS KEITH CONRAD 1 Introduction We will begin with a review of divisibility among integers, mostly to set some notation and to indicate its properties Then we will

More information

CHAPTER II THE LIMIT OF A SEQUENCE OF NUMBERS DEFINITION OF THE NUMBER e.

CHAPTER II THE LIMIT OF A SEQUENCE OF NUMBERS DEFINITION OF THE NUMBER e. CHAPTER II THE LIMIT OF A SEQUENCE OF NUMBERS DEFINITION OF THE NUMBER e. This chapter contains the beginnings of the most important, and probably the most subtle, notion in mathematical analysis, i.e.,

More information

CHAPTER SIX IRREDUCIBILITY AND FACTORIZATION 1. BASIC DIVISIBILITY THEORY

CHAPTER SIX IRREDUCIBILITY AND FACTORIZATION 1. BASIC DIVISIBILITY THEORY January 10, 2010 CHAPTER SIX IRREDUCIBILITY AND FACTORIZATION 1. BASIC DIVISIBILITY THEORY The set of polynomials over a field F is a ring, whose structure shares with the ring of integers many characteristics.

More information

A simple criterion on degree sequences of graphs

A simple criterion on degree sequences of graphs Discrete Applied Mathematics 156 (2008) 3513 3517 Contents lists available at ScienceDirect Discrete Applied Mathematics journal homepage: www.elsevier.com/locate/dam Note A simple criterion on degree

More information

NOTES ON LINEAR TRANSFORMATIONS

NOTES ON LINEAR TRANSFORMATIONS NOTES ON LINEAR TRANSFORMATIONS Definition 1. Let V and W be vector spaces. A function T : V W is a linear transformation from V to W if the following two properties hold. i T v + v = T v + T v for all

More information

TAKE-AWAY GAMES. ALLEN J. SCHWENK California Institute of Technology, Pasadena, California INTRODUCTION

TAKE-AWAY GAMES. ALLEN J. SCHWENK California Institute of Technology, Pasadena, California INTRODUCTION TAKE-AWAY GAMES ALLEN J. SCHWENK California Institute of Technology, Pasadena, California L INTRODUCTION Several games of Tf take-away?f have become popular. The purpose of this paper is to determine the

More information

Lecture 13 - Basic Number Theory.

Lecture 13 - Basic Number Theory. Lecture 13 - Basic Number Theory. Boaz Barak March 22, 2010 Divisibility and primes Unless mentioned otherwise throughout this lecture all numbers are non-negative integers. We say that A divides B, denoted

More information

A number field is a field of finite degree over Q. By the Primitive Element Theorem, any number

A number field is a field of finite degree over Q. By the Primitive Element Theorem, any number Number Fields Introduction A number field is a field of finite degree over Q. By the Primitive Element Theorem, any number field K = Q(α) for some α K. The minimal polynomial Let K be a number field and

More information

9. POLYNOMIALS. Example 1: The expression a(x) = x 3 4x 2 + 7x 11 is a polynomial in x. The coefficients of a(x) are the numbers 1, 4, 7, 11.

9. POLYNOMIALS. Example 1: The expression a(x) = x 3 4x 2 + 7x 11 is a polynomial in x. The coefficients of a(x) are the numbers 1, 4, 7, 11. 9. POLYNOMIALS 9.1. Definition of a Polynomial A polynomial is an expression of the form: a(x) = a n x n + a n-1 x n-1 +... + a 1 x + a 0. The symbol x is called an indeterminate and simply plays the role

More information

Zeros of Polynomial Functions

Zeros of Polynomial Functions Zeros of Polynomial Functions The Rational Zero Theorem If f (x) = a n x n + a n-1 x n-1 + + a 1 x + a 0 has integer coefficients and p/q (where p/q is reduced) is a rational zero, then p is a factor of

More information

3 Factorisation into irreducibles

3 Factorisation into irreducibles 3 Factorisation into irreducibles Consider the factorisation of a non-zero, non-invertible integer n as a product of primes: n = p 1 p t. If you insist that primes should be positive then, since n could

More information

Primality - Factorization

Primality - Factorization Primality - Factorization Christophe Ritzenthaler November 9, 2009 1 Prime and factorization Definition 1.1. An integer p > 1 is called a prime number (nombre premier) if it has only 1 and p as divisors.

More information

1 Homework 1. [p 0 q i+j +... + p i 1 q j+1 ] + [p i q j ] + [p i+1 q j 1 +... + p i+j q 0 ]

1 Homework 1. [p 0 q i+j +... + p i 1 q j+1 ] + [p i q j ] + [p i+1 q j 1 +... + p i+j q 0 ] 1 Homework 1 (1) Prove the ideal (3,x) is a maximal ideal in Z[x]. SOLUTION: Suppose we expand this ideal by including another generator polynomial, P / (3, x). Write P = n + x Q with n an integer not

More information

LINEAR ALGEBRA W W L CHEN

LINEAR ALGEBRA W W L CHEN LINEAR ALGEBRA W W L CHEN c W W L Chen, 1997, 2008 This chapter is available free to all individuals, on understanding that it is not to be used for financial gain, and may be downloaded and/or photocopied,

More information

SOLUTIONS TO EXERCISES FOR. MATHEMATICS 205A Part 3. Spaces with special properties

SOLUTIONS TO EXERCISES FOR. MATHEMATICS 205A Part 3. Spaces with special properties SOLUTIONS TO EXERCISES FOR MATHEMATICS 205A Part 3 Fall 2008 III. Spaces with special properties III.1 : Compact spaces I Problems from Munkres, 26, pp. 170 172 3. Show that a finite union of compact subspaces

More information

Group Theory. Contents

Group Theory. Contents Group Theory Contents Chapter 1: Review... 2 Chapter 2: Permutation Groups and Group Actions... 3 Orbits and Transitivity... 6 Specific Actions The Right regular and coset actions... 8 The Conjugation

More information

k, then n = p2α 1 1 pα k

k, then n = p2α 1 1 pα k Powers of Integers An integer n is a perfect square if n = m for some integer m. Taking into account the prime factorization, if m = p α 1 1 pα k k, then n = pα 1 1 p α k k. That is, n is a perfect square

More information

Notes on Determinant

Notes on Determinant ENGG2012B Advanced Engineering Mathematics Notes on Determinant Lecturer: Kenneth Shum Lecture 9-18/02/2013 The determinant of a system of linear equations determines whether the solution is unique, without

More information

EMBEDDING COUNTABLE PARTIAL ORDERINGS IN THE DEGREES

EMBEDDING COUNTABLE PARTIAL ORDERINGS IN THE DEGREES EMBEDDING COUNTABLE PARTIAL ORDERINGS IN THE ENUMERATION DEGREES AND THE ω-enumeration DEGREES MARIYA I. SOSKOVA AND IVAN N. SOSKOV 1. Introduction One of the most basic measures of the complexity of a

More information

Lecture Notes for MA 132 Foundations

Lecture Notes for MA 132 Foundations Lecture Notes for MA 132 Foundations D. Mond 1 Introduction Alongside the subject matter of this course is the overriding aim of introducing you to university mathematics. Mathematics is, above all, the

More information