(Received 5 February 2007; accepted 25 July 2007)

Size: px
Start display at page:

Download "(Received 5 February 2007; accepted 25 July 2007)"

Transcription

1 Geol. Mag.: page 1 of 18. c 2008 Cambridge University Press 1 doi: /s Styles and regimes of orogenic thickening in the Peloritani Mountains (Sicily, Italy): new constraints on the tectono-metamorphic evolution of the Apennine belt GIANLUCA VIGNAROLI, FEDERICO ROSSETTI, THOMAS THEYE &CLAUDIO FACCENNA Dipartimento di Scienze Geologiche, Università di Roma Tre, L.go S. L. Murialdo 1, Roma, Italy Institut für Mineralogie und Kristallchemie der Universität, Azenbergstr. 18, Stuttgart, Germany (Received 5 February 2007; accepted 25 July 2007) Abstract The Peloritani Mountains constitute the Sicilian portion of the Calabria Peloritani Arc (Italy), a tectono-metamorphic edifice recording the history of the subduction exhumation cycle during Tertiary convergence between the African and European plates. Here, we describe the kinematic and the petrological characteristics of the major shear zones bounding the lowermost continental-derived metamorphic units cropping out in the eastern portion of the Peloritani Mountains. Both mesoand micro-scale shear sense criteria indicate a top-to-the-sse tectonic transport, during a general evolution from ductile to brittle deformation conditions. Quantitative thermobarometry on texturally equilibrated phengite chlorite pairs crystallized along the shear bands indicates pressure of 6 8 kbar at temperatures of C for the structurally highest units and 3 4 kbar at Cforthe lowest ones. This documents an overall inverse-type nappe arrangement within the tectonic edifice and a transition from an Alpine- (13 18 Ckm 1 ) to a Barrovian-type (28 36 Ckm 1 ) geothermal gradient during the progress of the Alpine orogenic metamorphism in the Peloritani Mountains. The integration of these results allows the Peloritani Mountains to be considered as a constituent element of the Apennine orogenic domain formed during the progressive space time transition from oceanic to continental subduction at the active convergent margin. Keywords: Alpine metamorphism, metamorphic petrology, continental subduction, Peloritani Mountains, Calabria Peloritani Arc. 1. Introduction The Peloritani Mountains constitute the westward termination of the Calabria Peloritani Arc (CPA) of southern Italy, an orogenic segment connecting the dominantly sedimentary thrust systems of the Apennines and the Maghrebides of the central Mediterranean region (Fig. 1a). Polymetamorphic oceanicand continental-derived units are stacked in the tectonic edifice of the Calabria Peloritani Arc (e.g. Ogniben, 1969; Amodio Morelli et al. 1976; Bonardi et al. 1976, 2001; Bouillin, 1984; Rossetti et al. 2001, 2004). These metamorphic rocks record the history of subduction and exhumation during the Tertiary Alpine convergence between the African and European plates and the consumption of the intervening Tethyan oceanic domain (e.g. Dewey et al. 1989; Faccenna et al. 2004). As such, they offer the possibility of studying the deformational and metamorphic recrystallization processes operating at depth during growth of the Alpine orogenic system. In particular, since most of the units involved in orogenic accretion are continentalderived, the Calabria Peloritani Arc constitutes a key area for studying how buoyant continental material can Author for correspondence: be subducted at depth and accreted to form an orogenic wedge. The tectono-metamorphic evolution of the continental-derived units of the Calabria Peloritani Arc are the subject of continuous debate, and open questions remain on: (i) their palaeotectonic attribution, ascribed either to the European (Ogniben, 1969, 1973; Bouillin, 1984; Rossetti et al. 2004) or the African (Haccard, Lorenz & Grandjacquet, 1972; Alvarez, Cocozza & Wezel, 1974; Amodio Morelli et al. 1976; Bonardi et al. 2001) plates; and (ii) their kinematic and tectonic evolution (Haccard, Lorenz & Grandjacquet, 1972; Amodio Morelli et al. 1976; Knott, 1987; Dietrich, 1988; Platt & Compagnoni, 1990; Wallis, Platt & Knott, 1993; Bonardi et al. 1994, 2001; Rossetti et al. 2001, 2004; Iannace et al. 2005). Furthermore, both Alpine- (Dubois, 1970; Piccarreta, 1981; Rossetti et al. 2001, 2004) and Barrovian-type (Messina et al. 1990; Bonardi et al. 1992) metamorphic gradients are reported for these continental-derived units. In this study, based on new field mapping and structural investigations, we first revise the nappe architecture of the eastern portion of the Peloritani Mountains and then describe the characteristics (in terms of structure and metamorphism) of the major

2 2 G. VIGNAROLI AND OTHERS Figure 1. (a) Synthetic tectonic map of the Tyrrhenian Apennine system in the framework of the central Mediterranean region (modified after Jolivet et al. 1998). (b) Geological sketch map of the Calabria Peloritani Arc. Black and white arrows indicate, respectively, the reverse and the extensional ductile-to-brittle shear senses (hanging wall movement) detected in the basement units piled up in the Calabria Peloritani Arc nappe stack (data from: Knott, 1987; Dietrich, 1988; Wallis, Platt & Knott, 1993; Rossetti et al. 2001, 2004; Langone et al. 2006; this study). shear zones bounding the exposed tectonic units. We provide evidence for progressive ductile-to-brittle, top-to-the-sse shearing developed during HP to LP greenschist metamorphic conditions that we attribute to orogenic construction during active Apennine continental subduction. The results are then integrated with the existing background from the adjoining areas and are used (i) to present a new geodynamic model for the tectonic evolution of the Peloritani Mountains and (ii) to provide new constraints on the tectonometamorphic evolution of the entire Apennine belt. 2. Geological background The Alpine Peloritani belt consists of a series of southverging continental-derived tectonic slices overlying the Apennine Maghrebian domain (Lentini, Catalano & Carbone, 2000; Bonardi et al. 2001). The geological mapping of this area is described in detail in Lentini, Catalano & Carbone (2000) and Messina et al. (2004) and it will be summarized here. The tectonic edifice is structurally arranged in a reverse-order metamorphic stack, with the highest-grade metamorphic rocks above the lowest-grade ones. The main tectonic units are, from top to bottom: the Aspromonte unit, the Mela unit, the Mandanici unit, the Alì unit, the San Marco d Alunzio unit, the Longi Taormina unit and the Capo Sant Andrea unit. The Aspromonte unit is made of Hercynian highgrade metamorphic and intrusive rocks locally showing an Alpine metamorphic overprinting equilibrated in greenschist facies conditions (Messina et al. 1990; Bonardi et al. 1992). The Mela unit consists of Hercynian medium-grade gneisses, micaschists and amphibolites with eclogite relicts. This tectonic unit is affected by a penetrative ductile-to-brittle fabric, synkinematic with a Variscan low-pressure amphibolite metamorphism (Messina et al. 1997). The Mandanici unit consists of a Palaeozoic basement (low-grade metaclastic rocks involving lenses of quartzites and metabasites) and a Jurassic Oligocene sedimentary cover (e.g. Bonardi et al. 2001). The metamorphic evolution of the Mandanici unit is still under debate. One group of authors refers the development of the polyphase metamorphic fabric to a Variscan orogenic event (Messina et al. 2004; Somma, Messina & Mazzoli, 2005), whereas a second group recognizes the overprinting of an Alpine syn-greenschist metamorphic stage (Bonardi et al. 1976; Zuppetta & Sava, 1987; Cirrincione & Pezzino, 1991, 1994; Atzori et al. 1994). The Alì unit consists of a Permo-Triassic arenaceous conglomeratic basement ( Verrucano - type for the oldest terrains) covered by a Lias Cretaceous sequence, affected by a very low-grade metamorphic overprint (Bonardi et al. 1976; Ferla & Azzaro, 1978; Cirrincione & Pezzino, 1991, 1994; Giunta & Somma, 1996). Some questions remain on the structural position of the Alì unit within the Peloritani edifice, as it crops out at both the bottom and the top of the Mandanici unit. Cirrincione & Pezzino (1994) interpret the nature of the contact between the Alì unit and the Mandanici unit as stratigraphic, claiming the south-verging folding of the Mandanici unit. On the other hand, Ferla & Azzaro (1978) propose that this contact is defined by southverging thrust planes developed during the nappe stacking. The lowermost tectonic units (i.e. the San Marco d Alunzio, the Longi Taormina and the Capo

3 Orogenic thickening in the Peloritani Mountains 3 Sant Andrea units) show a similar stratigraphic succession, made of a Devonian polymetamorphic basement with a Mesozoic Cenozoic sedimentary cover. Only pre-alpine (Variscan in age) metamorphism has been reported from these units (e.g. Cirrincione, Atzori & Pezzino, 1999; Bonardi et al. 2001). The whole Peloritani tectonic edifice is unconformably covered by a late-orogenic sedimentary sequence of the Stilo Capo d Orlando Formation (Bonardi et al. 1980), whose basal deposits have been attributed a Burdigalian age (Bonardi et al. 2002). Most of the previous studies have been devoted to the definition of the deformational phases affecting the Peloritani units (Amodio Morelli et al. 1976; Bonardi et al. 1976; Ferla & Azzaro, 1978; Zuppetta & Sava, 1987; Messina et al. 1990, 2004; Cirrincione & Pezzino, 1991, 1994; Atzori et al. 1994; Giunta & Somma, 1996; Somma, Messina & Mazzoli, 2005). Structural data for the Mandanici and the Alì units show an overall south-verging deformational process, attributed either (i) two main folding events developed under epidiagenetic conditions (e.g. Cirrincione & Pezzino, 1991, 1994), or (ii) Late Oligocene piggy-back thrusting (Giunta & Somma, 1996; Giunta & Nigro, 1999) controlling the terrigenous facies evolution and the stacking of the basement rocks. Recently, the tectonic contact between the Mandanici and the Alì units has been re-interpreted as a syn-orogenic extensional shear zone, considering the Mandanici metamorphism as pre-alpine (Somma, Messina, & Mazzoli, 2005). The age of the Alpine deformation in the Peloritani Mountains is commonly referred to the Oligocene Early Miocene (e.g. Amodio-Morelli et al. 1976; Bonardi et al. 1976; Cirrincione & Pezzino, 1994; Giunta & Somma, 1996; De Capoa et al. 1997; Giunta & Nigro, 1999; Lentini, Catalano & Carbone, 2000). The available biostratigraphic data, derived from the Stilo Capo d Orlando Formation (Bonardi et al. 2002, 2003) and the sedimentary cover of the Longi Taormina unit (De Capoa et al. 1997), constrain the age of the late-stage stacking process to the Aquitanian Burdigalian boundary. Radiometric analyses have been performed on the Mandanici and Aspromonte rocks. Rb Sr analysis on phengite from the Mandanici unit (Atzori et al. 1994) gives a mean value of 26 ± 1Ma, interpreted by the authors as the age of the Alpine metamorphism climax reached during the Peloritani stacking. On the other hand, De Gregorio, Rotolo & Villa (2003) performed 39 Ar 40 Ar dating of muscovite and biotite from pervasive shear zones at the base of the Aspromonte unit and obtained ages spanning from 61 to 29 Ma. Finally, fission track apatite thermochronology from the Mandanici unit constrains timing of the final exhumation of the continental-derived basement units to the Early Miocene (21.1 ± 5.2 Ma; Thomson, 1994). 3. Structural analysis Structural investigations were primarily addressed to define the kinematics of the major shear zones bounding the tectonic units piled up in the eastern portion of the Peloritani Mountains. The main Alpine plano-linear fabric of each unit is described in terms of strike and dip of the foliation (S A ), and trend and plunge of the stretching lineation (L A ). These data are integrated together with the direction of tectonic transport (defined as the movement of the hanging wall block) obtained by the analysis of the meso- and the micro-scale kinematic indicators (e.g. Passchier & Trouw, 1996) in sections oriented orthogonal to the main foliation and parallel to the main stretching lineation (X Z sections of the finite strain ellipsoid). The results are presented in the structural geological map of Figure 2, together with indication of the main Alpine mineralogical assemblages found in each tectonic unit (see also Table 1). The structural architecture of the Peloritani nappe edifice in the study Table 1. Relationships between metamorphism and deformation in the tectono-metamorphic units of the Peloritani orogenic belt Pre-Alpine fabric Mineral assemblage Mandanici unit magnetite, calcite, ilmenite, actinolite (1) San Marco d Alunzio unit Longi Taormina unit Capo Sant Andrea unit Alì unit graphite, ilmenite, white mica (1) graphite, hematite, calcite (1) graphite, hematite, calcite (1) not present Structural features transposed transposed transposed transposed not present Alpine fabric Mineral assemblage Structural features phengite, chlorite, quartz, calcite, albite SL-tectonites; NW-SE stretching lineation; top-tothe-se shearing Ductile features (1) after this work and Messina et al phengite, chlorite, graphite, ilmenite, quartz, albite, calcite SL-tectonites; N/NNW S/SSE stretching lineation; top-to-the-s/sse shearing Ductile-to-brittle features phengite, chlorite, quartz, calcite, talc, albite SL-tectonites; NW SE stretching lineation; top-to-the-se shearing Ductile-to-brittle features phengite, chlorite, quartz, calcite, talc, albite SL-tectonites; NW SE stretching lineation; top-to-the-se shearing Ductile-to-brittle features chlorite, quartz, graphite SL-tectonites; top-to-the-se shearing Brittle features

4 4 G. VIGNAROLI AND OTHERS Figure 2. Synthetic geological map of the eastern Peloritani Mountains (modified and readapted after Lentini, Catalano & Carbone, 2000). The Alpine SL-fabric is shown together with the associated sense of shear (arrows). Representative stereoplots (Schmidt net, lower hemisphere projection) are also given. area is then synthesized in the cross-sections shown in Figure 3. 3.a. The Aspromonte Mandanici contact The Aspromonte unit consists of a tectonic megaslice made of dominant paragneisses and subordinate orthogneisses and amphibolites, Hercynian in age. In the study area, we did not recognize the eclogite relicts of the Mela unit (e.g. Messina et al. 2004). According to many authors (e.g. Bonardi et al. 1976; Messina et al. 2004), the occurrence of the Alpine metamorphic overprint in the Aspromonte unit is poorly developed and limited to narrow semi-brittle shear zones occurring at the contact with the underlying Mandanici unit. This tectonic contact consists of flat-lying cataclastic shear surfaces (see also Lentini, Catalano & Carbone, 2000) (Figs 2, 3). Kinematic analysis documented dominant top-to-the-s/se shearing features, such as SC-structures and C -type shear planes. Post-orogenic N S-striking, high-angle extensional faults (Fig. 4) dissect the Aspromonte Mandanici contact. 3.b. The Mandanici-Alì contact Detailed observations of this contact were done in the area near Alì village (Fig. 2). The contact is marked by a gently NW-dipping, top-to-the-se

5 Orogenic thickening in the Peloritani Mountains 5 Figure 3. Schematic cross-sections showing the structural relationships between the main tectonic units that made up the eastern Peloritani nappe stack (see Fig. 2 for cross-section locations and the legend). In the cross-section e f, the vertical scale is doubled. The stereoplots (Schmidt net, lower hemisphere projection) show the attitude of the Alpine plano-linear (S A L A ) fabric in the different tectonic units.

6 6 G. VIGNAROLI AND OTHERS Figure 4. Late high-dipping normal faults occurring in the Aspromonte unit. The collected structural data represented in the steroplot (Schmidt net, lower hemisphere projection) document a general E W-trending maximum extension direction. shear zone, in which a metre-thick graphitic fault gouge occurs (cross-section a b in Fig. 3). Much of the shear deformation is accommodated within the Mandanici unit that indeed consists of an SLtectonite. The S A foliation in the Mandanici unit is generally flat-lying, with a mean dip towards the WNW. It is defined by the mineralogical assemblage made of phengite (Si 4+ = atoms per unit formula, a.p.u.f.) + chlorite (Mg/[Mg+Fe 2+ ] = ) + albite + quartz. The L A stretching lineation is marked by quartz phengite composite associations, showing a main NW SE to NNW SSE trend (stereoplots in Figs 2, 3). In sections parallel to L A and perpendicular to S A, various types of kinematic indicators were observed at any scale. In particular, at the meso-scale, SC-fabric and C -type shear bands provide a general top-to-the-se/sse shear sense (Fig. 5a). Texturally late, high-angle, NW-dipping crenulation cleavage overprints the ductile shear feature, attesting for the progressive evolution of shearing towards brittle-dominated conditions (Fig. 5b). At the micro-scale, oblique foliation, SC-fabric and micafish are always coherent with the top-to-the-se sense Figure 5. The Alpine fabric in the Mandanici unit. (a) SC-structures and C -type shear bands indicating top-to-the-se sense of shear. (b) Texturally late folding of the Alpine mylonitic fabric (Ax = axial surface). (c) Thin section and (d) interpretative line drawing showing the growth of chlorite white mica composite associations along the C-surfaces and around ductile-to-cataclastic deformed quartz grains (natural light). qtz = quartz.

7 Orogenic thickening in the Peloritani Mountains 7 Figure 6. The Alpine fabric in the Alì unit. (a) The Alpine foliation (S A ) overprinting the pristine sedimentary layering (S 0 ). (b) Boudinage and transposition of S 0 during formation of S A. (c) SE-verging thrust fault systems affecting the upper portions of the unit. The steroplot (Schmidt net, lower hemisphere projection) illustrates the collected structural data. (d) and (e) Synthetic C -type shear bands overprinting the early thrust contact, indicating top-to-the-se shearing. of shear (Fig. 5c, d). An increased deformation was noted in the Mandanici unit approaching the boundary with the underlying San Marco d Alunzio unit, where diffuse mylonitization occurs. In the Alì unit, the S A foliation transposes the primary sedimentary layering during boudinage of the most competent layers (Fig. 6a, b). At the meso-scale, this unit consists of the coalescence of

8 8 G. VIGNAROLI AND OTHERS of deformation into mica layers is also observed, with dissolution of quartz enhanced along quartz mica interfaces (Fig. 8c). Coarse-grained quartz crystals show dissolution seams at the grain edges and the diffuse presence of healed micro-fractures (Fig. 8d). Ductile shearing progressively evolves towards more brittle conditions with the development of top-to-the- SSE/S cataclastic shear zones, dominantly assisted by dissolution precipitation creep (Fig. 8e, f). Figure 7. The Alpine foliation (S A ) obliterating the pre-alpine metamorphic fabric (S A 1 ) in the San Marco d Alunzio unit. imbricated shear lenses along NW-dipping, semibrittle, metre-thick shear zones (Fig. 6c). A marked textural reorganization occurs along these shear zones, and calcite + albite associations define the main NW SE stretching lineation. The S A foliation is penetrative within the shear domains and is defined by chlorite calcite albite composite associations. SC-fabric with associated C -type shear bands systematically indicate a top-to-the-se/sse sense of shear (Fig. 6d, e). 3.c. The Mandanici San Marco d Alunzio contact This tectonic contact is well exposed along the stream cuts of the Pagliara and Savoca rivers (Fig. 2), where it consists of a flat-lying ductile-to-brittle shear zone (cross-section c d in Fig. 3). The ductile deformational fabric in the San Marco d Alunzio unit is defined by a penetrative plano-linear fabric (SL-tectonite) that reworks and transposes an early one (possibly pre- Alpine), preserved as rootless folds within the S A main foliation (Fig. 7). The Alpine mineralogical assemblage is defined by the crystallization of phengite (Si 4+ = a.p.u.f.) + chlorite (X Mg = ) + quartz + albite. The main stretching lineation is mostly provided by quartz + phengite associations and generally trends from NNW SSE to N S. Development of a mylonitic fabric is observed in the San Marco d Alunzio unit at both micro- and mesoscale. Shear sense criteria (as provided by SC-fabric and C -type shear bands and mica-fish structures) are always consistent with a top-to-the-sse/s tectonic transport (Fig. 8a c). At the micro-scale, shearing is systematically associated with the crystallization of phengite chlorite pairs along the C-surfaces (Fig. 8b, c). Quartz microfabric shows evidence of ductile deformation that is highly inhomogeneous at the thin section scale. Crystal plastic deformation of quartz is mainly indicated by patchy undulose extinction, whereas subgrain boundaries are poorly developed. Inhomogeneity of deformation is documented by the presence of diffuse deformation bands and the effects of dissolution precipitation creep. Local concentration 3.d. The San Marco d Alunzio Longi Taormina contact This tectonic contact is marked by N S-striking ductile-to-brittle shear zones, often reworked by late sinistral transpressive and normal fault systems. In the Longi Taormina unit the main Alpine mineralogical assemblage is composed by phengite (Si 4+ = a.p.u.f.) and chlorite (X Mg = ) along the S A foliation, seldom in association with quartz, albite and minor calcite and hematite (Fig. 9a). The deformational fabric consists of plano-linear structures, developed under non-coaxial (top-to-the-se) shearing. Fluid-assisted pressure-solution was recognized as the main operative deformational mechanism. 3.e. The Longi Taormina Capo Sant Andrea contact Located in the southeastern portion of the study area, this tectonic contact is represented by a roughly N Sstriking ductile-to-brittle shear zone, often dissected by late normal and transcurrent faults. The attitude of the tectonic contact is sub-horizontal or gently dipping towards the WNW, always parallel to the S A foliation attitude in both the tectonic units. The Alpine fabric in the Capo Sant Andrea unit consists of semibrittle deformational structures developed under topto-the-se shearing as attested by the oblique foliation (Fig. 9b). The main Alpine mineralogical assemblage is represented by phengite (Si 4+ = a.p.u.f.), chlorite (X Mg = 0.50), quartz, calcite and albite. Near Forza d Agrò (Fig. 2), the turbiditic sequences of the Stilo Capo d Orlando Formation include megablocks of Mesozoic limestones, commonly interpreted as olistoliths (Bonardi et al and references therein). The limestone blocks are systematically bounded by N/NW-dipping tectonic surfaces that determine an overall imbricate fan structure (crosssection e f in Fig. 3). Kinematic criteria are dominantly provided by SC-structures and indicate top-to-the-s/se shearing (Fig. 10). 4. P T conditions during the Alpine shearing In this study, relationships between the Alpine shearing and the associated P T evolution were estimated by considering the chemical equilibria of coexisting mineral phases at the thin section scale. In particular, the P T estimates were based on the chlorite white

9 Orogenic thickening in the Peloritani Mountains 9 Figure 8. The Alpine fabric in the San Marco d Alunzio unit. (a) Meso-scale top-to-the-s kinematic indicators. (b) Micro-scale top-to-the-s kinematic indicators (oblique foliation; C -type shear bands). Thin section is in natural light. (c) Thin section (crossed polars) showing the inhomogeneous character of the Alpine deformation. Ductile flow is mainly accommodated at the quartz mica interface. Quartz crystal shows moderate patchy undulose extinction and minor fracturing. C -type shear bands indicate top-to-the-s shearing. (d) Enlargement of the quartz grains in (c), showing structures typical of pressure-solution creep. (e) Thin section (natural light) and (f) interpretative line drawing attesting to predominant pressure-solution deformation associated with top-to-the-s shearing. phe = phengite; qtz = quartz. mica local equilibrium method (Parra, Vidal & Jolivet, 2002) by choosing texturally equilibrated chlorite mica pairs growing along the Alpine shear bands in the different tectonic units of the Peloritani nappe edifice (Figs 8b, 11). The consistency of the obtained petrological data is given by the application of the same method of calculation applied to the same mineralogical assemblage in all the tectonic units showing an Alpine overprint. The sample locations for P T estimates are shown in Figure 3. Representative analyses and structural formulae of phengite and chlorite are reported in Table 2. Details of the analytical method are listed in the Appendix.

10 10 G. VIGNAROLI AND OTHERS Figure 9. (a) BSE image showing phengite chlorite composite associations and quartz grains defining the Alpine S A foliation in the Longi Taormina unit. (b) Photomicrograph (crossed polars) showing the Alpine semi-brittle deformational fabric in the Capo Sant Andrea unit attesting to top-to-the-se shearing. ab = albite; cc = calcite; chl = chlorite; hmt = hematite; qtz = quartz; phe = phengite. Figure 10. Brittle deformation features recorded in the Mesozoic limestone tectonic slices enclosed within the sedimentary sequence of the Stilo Capo d Orlando Formation. Kinematic indicators (oblique pressure-solution cleavage defining a SC-fabric) are coherent with a top-to-the-sse sense of shear. The stereoplot shows the collected structural data (Schmidt net, lower hemisphere projection). Figure 11. Enlargement of Figure 8b showing locations of representative microprobe analyses carried out on phengite chlorite pairs used for P T calculations. Thin section is in natural light. Ab = albite; Ilm = ilmenite; qtz = quartz. To evaluate the metamorphic P T conditions, we applied the thermodynamic dataset of Berman (1990) delivered with TWQv2.02 software (Berman, 1991). In addition, for chlorite and white mica, the nonideal solution models of Vidal, Parra & Trotet (2001) and Parra, Vidal & Agard (2002) have been used. The thermobarometric estimates were defined by considering the intersection of 19 calculated univariant equilibria in the P T field, with a set of four of them being linearly independent. The considered endmember components of both chlorite and white mica and the list of the univariant equilibria are given in the Appendix. In the ideal case, all equilibria (1) to (19) should intersect in a single point defining the P T conditions of the metamorphic equilibration of the rock specimen. Scattering of the intersection is due to poorly known thermodynamic properties as well as due to nonequilibrium compositions of the minerals used for the calculation. The latter case becomes obvious when the

11 Table 2. Representative electron microprobe analyses of phengite and chlorite Mineral Phengite ( ) Chlorite ( ) Unit Mandanici S. M. d Alunzio Longi Taormina Capo S. Andrea Mandanici S. M. d Alunzio Longi Taormina Capo S. Andrea Sample no Loc1-p1 Loc2-p3 B3 16 B4 5 P15 4 P Loc1-c1 Loc2-c3 B3 6 B4 6 P15 1 P15 3 SiO TiO Al 2 O Cr 2 O FeO MnO MgO CaO n.d. n.d Na 2 O n.d. n.d K 2 O n.d. n.d Total Si Ti Al Cr Fe Mn Mg Ca n.d. n.d Na n.d. n.d K n.d. n.d Total All iron considered as FeO. n.d. = not detected. ( ) Amounts of cations are based on 11 oxygens. ( ) Amounts of cations are based on 14 oxygens. Orogenic thickening in the Peloritani Mountains 11

12 12 G. VIGNAROLI AND OTHERS Figure 12. P T estimates of the Alpine metamorphic overprint as recorded in the Mandanici, San Marco d Alunzio, Longi Taormina and Capo Sant Andrea units. The inset boxes show (a) the trend of the 19 calculated univariant equilibria for the chlorite white mica mineralogical equilibria, and (b) the trend of the geothermal gradients obtained from the P T estimates. See text for further details. And = andalusite; Kln = kaolinite; Ky = kyanite; Prl = pyrophyllite; Qtz = quartz; W = water. range of scattering of the intersections is large, i.e. > 60 C. Consequently, such chlorite muscovite pairs have not been further considered. The overall error 1σ of P T conditions for samples with well-defined equilibria intersections is estimated to be ± 30 C and ± 2 kbar. In Figure 12, each symbol represents the centre of equilibrium curve intersections. For samples belonging to the Mandanici and the San Marco d Alunzio units, P T conditions were obtained by the intersections of all 19 univariant equilibria listed in the Appendix. Chlorite phengite pairs from the Mandanici unit indicate pressure in the range of kbar at 375 < T < 440 C. Similarly, chlorite phengite equilibria from the San Marco d Alunzio unit result in 5 < P < 7.5 kbar and 360 < T < 430 C (Fig. 12). For samples belonging to the Longi Taormina and the Capo Sant Andrea units, the thermobarometric conditions were defined by the intersections of the univariant equilibria (1), (2), (4), (5), (7) and (8), which provide P values in the order of 3 4 kbar and 380 < T < 440 C and kbar and 375 < T < 420 C, respectively (Fig. 12). Two major points can be extracted from these data: (i) the Alpine shearing was equilibrated within the HP (Mandanici and San Marco D Alunzio units) or the LP (Longi Taormina and Capo Sant Andrea units) greenschist facies field; and (ii) a progressive increase in the pressure conditions can be observed when moving from the lowermost tectonic units (the Longi Taormina and the Capo Sant Andrea units) to the overlying ones (the Mandanici and the San Marco d Alunzio units). The estimated P T metamorphic conditions conform to distinctly different geothermal gradients during progress of the Alpine orogenic metamorphism in the Peloritani Mountains (Fig. 12). In particular, assuming a lithostatic thermobaric gradient of 27 MPa km 1, a geothermal gradient of Ckm 1 and Ckm 1 can be calculated for the HP and LP groups of units, respectively. This metamorphic configuration refers to the tectonic processes through which the nappe stacking of the Peloritani units occurred. 5. Discussion 5.a. Structural interpretation With the exception of the main body of the Aspromonte unit, our meso- and micro-scale structural observations document the development of a penetrative Alpine

13 Orogenic thickening in the Peloritani Mountains 13 syn-metamorphic plano-linear fabric associated with ductile-to-brittle top-to-the-s/se shearing in the all of the continental-derived units that make up the Peloritani nappe stack. The analysis of the kinematic indicators at any scale indicates that there is not a structural break in terms of shearing and kinematic features inside the tectonic edifice. A systematic top-to-the-s/se (i.e. towards the Apennine Maghrebian foreland) shearing is observed when moving from the ductile-dominated domain (mylonites of the Mandanici and the San Marco d Alunzio units) to the brittle-dominated domain (discrete reverse fault systems in the Alì unit). The estimates of P T conditions during the Alpine shearing document an overall inverse-type nappe arrangement within the Peloritani tectonic edifice, when moving from the structurally highest tectonic unit (the Mandanici unit) to the lowermost ones (the Longi Taormina and the Capo Sant Andrea units). As documented in several orogenic domains, the juxtaposition of tectonic units in an inverse-order metamorphic sequence can be framed in a tectonic scenario dominated by orogenic thickening and nappe emplacement of rootless metamorphic and non-metamorphic rocks along major reverse-sense shear zones (e.g. England & Thompson, 1984; Spear, Hickmott & Selverstone, 1990; Srivastava & Mitra, 1996). These findings therefore constrain the tectonic evolution of the Peloritani Mountains in a scenario of a continuous stacking of crustal units. In this sense, we found no evidence of extensional processes active during convergence as proposed by Somma, Messina & Mazzoli (2005). Taking into account (i) the general northwestern dipping attitude of the S A foliation at regional scale (Fig. 2 and cross-section a b in Fig. 3), (ii) the sub-horizontal attitude of the gneissic mega-slices of the Aspromonte unit lying on top of the whole nappe edifice, and (iii) the lack of evidence for the Alpine overprint in the Aspromonte unit itself, it is reasonable to consider the eastern Peloritani Mountains as a S/SE-vergent antiformal stack (e.g. Butler, 2004) in which the Aspromonte unit defines the roof thrust of the entire tectonic edifice (Fig. 13). Our structural and kinematic data also document that the top-to-the-s/se compressional shearing involved the sedimentary sequences of the Stilo Capo d Orlando Formation. The deformational structures then attest that nappe stacking evolved in time and space towards more superficial crustal levels. The piggy-back model proposed by Giunta & Somma (1996) and Giunta & Nigro (1999) is considered here as the most appropriate one to explain the latest deformational structures recognized in the study area. 5.b. Tectonic synthesis The collected structural data have documented that the Alpine orogenic construction involved a significant component of S/SE-directed non-coaxial flow in the Figure 13. Schematic structural model for the nappe stacking order in the eastern Peloritani Mountains. The structural architecture is interpreted in terms of a S/SE-verging nappe stack. Au: Alì unit; Asu: Aspromonte unit; CSAu: Capo Sant Andrea unit; LTu: Longi Taormina unit; Mu: Mandanici unit; SMAu: San Marco d Alunzio unit. Not to scale. Peloritani region. This shear sense is globally compatible with the polarity of subduction and nappe emplacement during the Apennine orogeny. P T estimates attest that this non-coaxial shearing took place at a maximum depth of about 20 km (Mandanici unit). Deformation at the metamorphic climax continued during exhumation and progressed toward more brittle conditions with the same kinematics. The thermobarometric estimates indicate that orogenic thickening did not occur under the suppressed geothermal conditions typical of subduction-zone metamorphism (i.e. metamorphic gradients 10 Ckm 1 ; e.g. Spear, 1993). Rather, they conform to a Barrovian metamorphic gradient (with values up to 35 Ckm 1 ) that is instead distinctive of a continental subduction setting (e.g. Thompson & England, 1984; Spear, 1993; Goffé et al. 2003). Furthermore, the lack of HP ophiolitic units in the Peloritani nappe edifice suggests that the oceanic subduction was probably very limited in this area with respect to other sectors of the Calabria Peloritani Arc (i.e. in the Coastal Chain and Sila Massif of Calabria; Rossetti et al. 2004). The age of the continental subduction in the Peloritani Mountains can be constrained by using the geochronological data from Atzori et al. (1994) and De Gregorio, Rotolo & Villa (2003), which allow inference of a Late Oligocene age for the Alpine metamorphism in the Peloritani region. The latest stage of deformation can be placed in the Aquitanian Burdigalian interval, based on apatite fission track thermochronology (Thomson, 1994) and the age of the sedimentary deposits involved in the stacking process (De Capoa et al. 1997). Based on these arguments, the orogenic evolution of the Peloritani Mountains has to be referred to a geodynamic scenario dominated by continental subduction framed within the Tertiary convergence between the African and European plates after the consumption of the intervening Liguro-Piemontese oceanic domain during the building up of the Apennine chain (e.g.

14 14 G. VIGNAROLI AND OTHERS Figure 14. Two-stage synthetic geodynamic scenario for possible tectonic evolution of the Peloritani Mountains in the framework of the Apennine orogeny. The formation of the Peloritani wedge occurred by the continuous accretion of continental-derived material during progressive outward migration of the accretionary front, passing from a subduction-type (a) to a Barrovian-type (b) metamorphic gradient. Abbreviations for the tectonic units as in Figure 13. Not to scale; locations of the main tectonic structures are only indicative. Faccenna et al. 2004). We propose a model of subduction and exhumation where the continental units were dragged downward along with the subducting lithosphere and were accreted to the upper plate in a hinterland-dipping backstop configuration in a period spanning from Late Oligocene to Early Miocene time (Fig. 14). In particular, kinematics reconstructed within the nappe edifice suggest that the structural architecture may correspond to shearing within the inner portions of the orogenic wedge in the region, delimited by the subducting African plate at depth and by the European rigid backstop at the rear. The way back to the surface for the subducted material was controlled by (i) buoyancy forces, (ii) forces due to shearing and (iii) the geometry of the backstop (e.g. Cloos, 1982), concomitant with the erosion process at the top of the stack (e.g. Platt, 1993). In this scenario, the Peloritani continental units affected by pervasive Alpine tectono-metamorphic overprint (Mandanici, San Marco d Alunzio, Longi Taormina and Capo Sant Andrea units) are placed on the subducting plate, whereas the Aspromonte unit is considered as a remnant of the European backstop (Fig. 14a). During the early stages of continental subduction, orogenic accretion occurred under relatively suppressed geothermal conditions (metamorphic gradients of Ckm 1 ) and the accretionary wedge grew at the expense of the continental sectors proximal to the collisional front (from which the Mandanici and the San Marco d Alunzio units originated). The active front then migrated towards the SE, with the involvement of the more external tectonic units (i.e. the Longi Taormina and the Capo Sant Andrea units) in a regime of higher geothermal gradient conditions (in the order of 30 Ckm 1 ). The underthrusting of new tectonic slices was accompanied by the nearly isothermal exhumation of the earlier buried ones that constituted the new backstop of the orogenic system (Fig. 14b). Assembly of the tectonic units occurred under Barrovian-type metamorphic conditions, resulting in a SE-verging antiformal stack. The units belonging to the more external portions of the African margin were, instead, progressively scraped off from the downgoing subducting plate and accreted under brittle conditions to form a thrust-and-fold belt (Giunta & Somma, 1996; Giunta & Nigro, 1999). The in-sequence thrust front migration in the proximal foreland caused the final exhumation of the Peloritani metamorphic edifice and its tectonic juxtaposition onto the Maghrebian domain (Maghrebian flysch units and external Panormide units; Bonardi et al. 2001), with the deformation of the intervening Stilo Capo d Orlando Formation occurred at the Aquitanian Burdigalian boundary (e.g. Bonardi et al. 1980, 2002). 5.c. Regional implications The P T deformational history reconstructed for the orogenic segment of the Peloritani Mountains can be

15 Orogenic thickening in the Peloritani Mountains 15 framed with the tectonic evolution of the Calabria Peloritani Arc and the Apennine belt as a whole. In the eastern portions of the Sila Massif (Fig. 1b), Hercynian granitoid rocks of the Aspromonte unit are involved in a top-to-the-ne thrusting onto the Mesozoic sequences of the Longobucco Group with deformation of the intervening Late Oligocene Aquitanian Paludi Formation (Bonardi et al. 2005). Similarly, in the Serre Massif (Fig. 1b), the Hercynian basement is sliced into three nappes emplaced during the Alpine orogeny (Langone et al. 2006). The contacts between the Alpine nappes are outlined by mylonitic rocks in which the kinematic indicators are mostly consistent with a topto-the-se shear sense. This suggests continuity of the Early Miocene Africa-verging compressional front all along the external domains of the Calabria Peloritani Arc. Timing of the orogenic accretion can be tentatively correlated with the activation of the Early Miocene extensional detachment tectonics exposed westward in the Sila Massif and Coastal Chain (Rossetti et al. 2004; Fig. 1b). In this view, the Calabria extensional domain should have corresponded to an orogenic sector located in an internal position with respect to the position of the Apennine subduction front. This argues for the compression extension pair being active on the growing Calabria Peloritani orogen since at least Early Miocene time. Neogene crustal thinning and the subsequent continental break-up in the southern Tyrrhenian area (e.g. Faccenna et al. 1997) might have erased post-orogenic extensional features in the hinterland domain of the Peloritani area. In the inner sectors of the northern Apennine chain (the northern Tyrrhenian Sea; Fig. 1a), a similar coexistence of the compression extension pair has been documented (Jolivet et al. 1998). There, the continental-derived metamorphic sequences record P T conditions documenting both Alpine- and Barroviantype metamorphic gradients. In particular, the data show an eastward increase in the metamorphic gradient that occurs concomitant with the change from oceanic (c. 7 Ckm 1 ) to continental (15 20 Ckm 1 ) subduction (Jolivet et al. 1998). Similarly, in northern Calabria, Alpine metamorphism is recorded in both oceanic- and continental-derived units, but Barroviantype metamorphic gradients are also reported from some continental-derived tectonic slices within the orogenic pile (Piccarreta, 1981; Bonardi et al. 1992; Rossetti et al. 2004; Langone et al. 2006). Based on the available geochronological data, the oceanic subduction occurred in Paleocene Eocene times, whereas transition to continental subduction can be placed at the Eocene Oligocene boundary. Continental subduction then continued up to the Early Miocene during the progressive eastward retreat of the Apennine subduction boundary (Jolivet et al. 1998; Rossetti et al. 2001, 2004; Brunet et al. 2000). The results from this study allow the proposition of a common tectonic context for the evolution of the Apennine belt, dominated by (i) the transition from oceanic to continental subduction and, hence, from Alpine- to Barrovian-type metamorphic gradient and (ii) the progressive eastward migration of the compression extension pair. In a scenario dominated by continental subduction, the increase of geothermal gradient can be explained by difficult deepening of the geotherms during tectonic coupling between the continental upper and lower plates (Goffé et al. 2003). Nevertheless, in the Mediterranean area, the transition from oceanic to continental subduction was synchronous with the fast retreat of the subducting plates and the onset of back-arc extension at c. 30Ma (Jolivet & Faccenna, 2000; Faccenna et al. 2004). In this sense, lithospheric delamination (Bird, 1979) has been claimed as a feasible mechanism to allow significant portions of the crust to be subducted into the mantle and to generate upper-plate back-arc extension synchronously with the outward migration of the compressional fronts and the exhumation of deepseated units in the Mediterranean hinterland (Jolivet et al. 2003). As a result, we argue that lithospheric delamination may have contributed to the efficiency of the continental subduction during the eastward retreat of the Apennine front and the concomitant extension (Channel & Mareshall, 1989) and magmatism (Serri, Innocenti & Manetti, 1993) in the Tyrrhenian region. 6. Conclusions The structural architecture of the Peloritani Mountains of eastern Sicily provides an outstanding example of an orogenic segment developed during continental subduction. The recognized top-to-the-se nappe stacking is here framed within the continuous underthrusting of continental material at the Apennine subduction front. Correlations with the adjoining areas allow re-interpretation of the whole Calabria Peloritani Arc as a constitutent element of the Africaverging Apennine orogeny. These new findings attest that: (i) the continental-derived metamorphic units recording different P T histories were assembled to form the Apennine orogenic wedge: (ii) the contrasting metamorphic signatures were probably linked to the mode of subduction (oceanic or continental) and, hence, the palaeogeographic configuration of the active margin; (iii) lithospheric delamination facilitated the underthrusting of continental material during the retreat of the Apennine front. Acknowledgements. We are grateful to R. Funiciello for the continuous support and encouragement. M. Serracino is thanked for technical assistance during microprobe analyses. The accurate reviews and the constructive criticism of J. Imber and an anonymous reviewer helped to improve the manuscript. The editorial handling of M. Allen and J. Holland is also thanked.

16 16 G. VIGNAROLI AND OTHERS References ALVAREZ,W.,COCOZZA,T.&WEZEL, F. C Fragmentation of the Alpine orogenic belt by microplate dispersal. Nature 248, AMODIO MORELLI, L., BONARDI, G., COLONNA, V., DIETRICH, D.,GIUNTA, G.,IPPOLITO, F.,LIGUORI, V., LORENZONI, S., PAGLIONICO, A., PERRONE, V., PICCARRETA,G.,RUSSO, M., SCANDONE,P.,ZANETTIN- LORENZONI,E.&ZUPPETTA, A L Arco Calabro- Peloritano nell orogene Appenninico-Maghrebide. Memorie della Società Geologica Italiana 17, ATZORI, P.,CIRRINCIONE, R.,DEL MORO, A.&PEZZINO, A Structural, metamorphic and geochronologic features of the Alpine event in the south-eastern sector of the Peloritani mountains (Sicily). Periodico di Mineralogia 63, BERMAN, R. G Mixing properties of Ca Mg Fe Mn garnets. American Mineralogist 75, BERMAN, R. G Thermobarometry using multiequilibrium calculations: a new technique, with petrological applications. Canadian Mineralogist 29, BIRD, P Continental delamination of the Colorado Plateau. Journal of Geophysical Research 84, BONARDI, G.,CAVAZZA,W.,PERRONE, V.&ROSSI, S Calabria Peloritani terrane and northern Ionian Sea. In Anatomy of an Orogen: the Apennines and Adjacent Mediterranean Basins (eds G. B. Vai & I. P. Martini), pp Kluwer Academic Publishers. BONARDI, G.,COMPAGNONI, R.,MESSINA, A.,PERRONE, V., RUSSO, S., DE FRANCESCO, A. M., DEL MORO, A. & PLATT, J Sovrimpronta metamorfica alpina nell Unità dell Aspromonte (settore meridionale dell Arco Calabro-Peloritano). Bollettino della Società Geologica Italiana 111, BONARDI,G.,DE CAPOA,P.,DI STASO,A.,MARTÌN-MARTÌN, M., MARTÌN-ROJAS,I.,PERRONE,V.&TENT-MANCLÙS, J. E New constraints to the geodynamic evolution of the southern sector of the Calabria Peloritani Arc. Comptes Rendus Geoscience 334, BONARDI, G., DE CAPOA, P., DI STASO, A., ESTÉVEZ, A., MARTÍN-MARTÍN, M., MARTÍN-ROJAS, I., PERRONE, V. & T ENT-MANCLÚS, J. E Oligocene-to-Early Miocene depositional and structural evolution of the Calabria Peloritani Arc southern terrane (Italy) and geodynamic correlations with the Spain Betics and Morocco Rif. Geodinamica Acta 16, BONARDI, G.,DE CAPOA, P.,DI STASO, A.,PERRONE, V., SONNINO,M.&TRAMONTANA, M The age of the Paludi Formation: a major constraint to the beginning of the Apulia-verging orogenic transport in the northern sector of the Calabria Peloritani Arc. Terra Nova 17, BONARDI, G.,DE CAPOA, P.,FIORETTI, B.&PERRONE, V Some remarks on the Calabria Peloritani Arc and its relationships with the southern Apennines. Bollettino di Geofisica Teorica e Applicata 36, BONARDI,G.,GIUNTA,G.,LIGUORI,V.,PERRONE,V.,RUSSO, M. & ZUPPETTA, A Schema geologico dei Monti Peloritani. Bollettino della Società Geologica Italiana 95, BONARDI, G., GIUNTA, G., PERRONE, V., RUSSO, M., ZUPPETTA, A. & CIAMPO, G Osservazioni sull evoluzione dell Arco Calabro-Peloritano nel Miocene Inferiore: la Formazione di Stilo Capo d Orlando. Bollettino della Società Geologica Italiana 99, BOUILLIN, J. P Nouvelle interprétation de la liason Apennin-Maghrébides en Calabre: consequences sur la paléogéographie téthysienne entre Gibraltar et les Alpes. Révue de Géologie Dynamique et de Géographie Physique 25, BRUNET, C., MONIÉ, P., JOLIVET, L. & CADET, J. P Migration of compression and extension in the Tyrrhenian Sea, insights from 40Ar/39Ar ages on micas along a transect from Corsica to Tuscany. Tectonophysics 321, BUTLER, R. W. H The nature of roof thrusts in the Moine Thrust Belt, NW Scotland: implications for the structural evolution of thrust belts. Journal of the Geological Society, London 161, CHANNELL, J. E. T.& MARESCHAL, J. C Delamination and asymmetric lithospheric thickening in the development of the Tyrrhenian Rift. In Alpine Tectonics (eds M. P. Coward, D. Dietrich & R. G. Park), pp Geological Society of London, Special Publication no. 45. CIRRINCIONE, R.,ATZORI, P.&PEZZINO, A Subgreenschist facies assemblages of metabasites from south-eastern Peloritani range (NE-Sicily). Mineralogy and Petrology 67, CIRRINCIONE, R.& PEZZINO, A Caratteri strutturali dell evento Alpino nella serie mesozoica di Alì e nella unità metamorfica di Mandanici (Peloritani orientali). Memorie della Società Geologica Italiana 47, CIRRINCIONE,R.&PEZZINO, A Nuovi dati strutturali sulle successioni mesozoiche metamorfiche dei M. Peloritani orientali. Bollettino della Società Geologica Italiana 113, CLOOS, M Flow melanges: numerical modeling and geologic constraints on their origin in the Franciscan subduction complex, California. Geological Society of America Bulletin 93, DE CAPOA, P., GUERRERA, F., PERRONE, V., SERRANO- LOZANO, F New biostratigraphic data on the Frazzanò Formation (Longi Taormina Unit): consequences on the deformation age of the Calabria Peloritani Arc Southern Sector. Rivista Italiana di Paleontologia e Stratigrafia 103, DE GREGORIO,S.,ROTOLO,S.G.&VILLA, I. M Geochronology of the medium to high-grade metamorphic units of the Peloritani Mts., Italy. International Journal of Earth Sciences 92, DEWEY,J.F.,HELMAN,M.L.,TURCO,E.,HUTTON,D.H.W. & KNOTT, S. D Kinematics of the Western Mediterranean. In Alpine Tectonics (eds M. P. Coward, D. Dietrich & R. G. Park), pp Geological Society Special Publication no. 45. DIETRICH, D Sense of overthrust shear in the Alpine nappes of Calabria (southern Italy), Journal of Structural Geology 10, DUBOIS, R Phases de serrage, nappes de socle et métamorphisme alpin à la junction Calabre-Apennin: Sur la suture calabro-apenninique. Révue de Géologie Dynamique et de Géographie Physique 12, ENGLAND, P. C. & THOMPSON, A. B Pressure Temperature Time paths of regional metamorphism I. Heat transfer during the evolution of regions of thickened continental crust. Journal of Petrology 25, FACCENNA, C., PIROMALLO, C., CRESPO-BLANC, A., JOLIVET, L. & ROSSETTI, F Lateral slab

17 Orogenic thickening in the Peloritani Mountains 17 deformation and the origin of the western Mediterranean arcs. Tectonics 23, TC1012, 21 pp. doi: /2002tc FACCENNA, C.,MATTEI, M., FUNICIELLO, R.&JOLIVET, L Styles of back-arc extension in the Central Mediterranean. Terra Nova 9, FERLA, P.& AZZARO, E Il metamorfismo Alpino nella serie mesozoica di Alì (M. Peloritani, Sicilia). Bollettino della Società Geologica Italiana 97, GIUNTA, G.&NIGRO, F Tectono-sedimentary constraints to the Oligocene-to-Miocene evolution of the Peloritani thrust belt (NE Sicily). Tectonophysics 315, GIUNTA, G.& SOMMA, R Nuove osservazioni sulla struttura dell Unità di Alì (M.ti Peloritani, Sicilia). Bollettino della Società Geologica Italiana 115, GOFFÉ,B.,BOUSQUET,R.,HENRY,P.&LE PICHON, X Effect of the chemical composition of the crust on the metamorphic evolution of orogenic wedges. Journal of Metamorphic Geology 21, HACCARD, D.C.,LORENZ, C.&GRANDJACQUET, C Essai sur l évolution tectogénétique de la liasion Alpes Apennines (de la Ligurie a la Calabre). Memorie della Società Geologica Italiana 11, IANNACE, A., BONARDI, G., D ERRICO, M., MAZZOLI, S., PERRONE, V.& VITALE, S Structural setting and tectonic evolution of the Apennine Units of northern Calabria. Comptes Rendus Geoscience 337, JOLIVET,L.&FACCENNA, C Mediterranean extension and the Africa Eurasia collision. Tectonics 19, JOLIVET,L.,FACCENNA,C.,GOFFÉ,B.,BUROV,E.&AGARD, P Subduction tectonics and exhumation of high-pressure metamorphic rocks in the Mediterranean orogens. American Journal of Science 303, JOLIVET, L., FACCENNA, C., GOFFÉ, B., MATTEI, M., ROSSETTI, F., BRUNET, C., STORTI, F., FUNICIELLO, R., CADET, J. P., D AGOSTINO, N.& PARRA, T Midcrustal shear zones in post-orogenic extension: example from the northern Tyrrhenian Sea (Italy). Journal of Geophysical Research 103, KNOTT, S. D The Liguride Complex of southern Italy. A Cretaceous to Paleogene accretionary wedge, Tectonophysics 142, LANGONE,A.,GUEGUEN,E.,PROSSER,G.,CAGGIANELLI,A. &ROTTURA, A The Curinga Girifalco fault zone (northern Serre, Calabria) and its significance within the Alpine tectonic evolution of the western Mediterranean. Journal of Geodynamics 42, LENTINI, F.,CATALANO, S.&CARBONE, S Carta geologica della Provincia di Messina (scala 1:50000). Florence: Società Elaborazioni Cartografiche. MESSINA, A.,COMPAGNONI, R.,RUSSO, S.,DE FRANCESCO, A. M. & GIACOBBE, A Alpine metamorphic overprint in the Aspromonte nappe of the northeastern Peloritani Mts (Calabria Peloritani Arc, southern Italy). Bollettino della Società Geologica Italiana 109, MESSINA,A.,PERRONE,V.,GIACOBBE,A.&DE FRANCESCO, A. M The Mela Unit: a medium grade metamorphic unit in the Peloritani Mountains (Calabria Peloritani Arc, Italy). Bollettino della Società Geologica Italiana 116, MESSINA, A.,SOMMA, R.,MACAIONE, E.,CARBONE, G. & CARERI, G Peloritani continental crust composition (southern Italy): geological and petrochemical evidence. Bollettino della Società Geologica Italiana 123, OGNIBEN, L Schema introduttivo alla geologia del confine calabro-lucano, Memorie della Società Geologica Italiana 8, OGNIBEN, L Schema geologico della Calabria in base ai dati odierni. Geologica Romana 12, PARRA, T.,VIDAL, O.&AGARD, P A thermodynamic model for Fe Mg dioctahedral K white micas using data from phase-equilibrium experiments and natural pelitic assemblages. Contributions to Mineralogy and Petrology 143, PARRA, T., VIDAL, O. & JOLIVET, L Relation between the intensity of deformation and retrogression in blueschist metapelites of Tinos Island (Greece) evidenced by chlorite mica local equilibria. Lithos 63, PASSCHIER, C.W.&TROUW, R. A. J Microtectonics. Berlin: Springer-Verlag, 325p. PICCARRETA, G Deep-rooted overthrusting and blueschist metamorphism in compressive continental margins: An example from Calabria (southern Italy). Geological Magazine 118, PLATT, J. P Exhumation of high-pressure metamorphic rocks: a review of concepts and processes. Terra Nova 4, PLATT, J. P. & COMPAGNONI, R Alpine ductile deformation and metamorphism in a Calabria basement nappe (Aspromonte, South Italy). Eclogae Geologicae Helvetiae 83, ROSSETTI, F., FACCENNA, C., GOFFÉ, B., MONIÉ, P., ARGENTIERI, A.,FUNICIELLO, R.&MATTEI, M Alpine structural and metamorphic signature of the Sila Piccola Massif nappe stack (Calabria, Italy): Insights for the tectonic evolution of the Calabrian Arc. Tectonics 20, ROSSETTI, F., GOFFÉ, B., MONIÉ, P., FACCENNA, C. & VIGNAROLI, G Alpine orogenic PTt deformation history of the Catena Costiera area and surrounding regions (Calabrian Arc, southern Italy): the nappe edifice of Northern Calabria revised with insights on the Tyrrhenian Apennine system formation. Tectonics 23, SERRI,G.,INNOCENTI,F.&MANETTI, P Geochemical and petrological evidence of the subduction of delaminated Adriatic continental lithosphere in the genesis of the Neogene Quaternary magmatism of central Italy. Tectonophysics 223, SOMMA,R.,MESSINA,A.&MAZZOLI, S Syn-orogenic extension in the Peloritani Alpine thrust belt (NE Sicily, Italy): evidence from the Alì Unit. Comptes Rendus Geosciences 337, SPEAR, F. S Metamorphic Phase Equilibria and Pressure Temperature Time Paths, Washington, D. C.: Mineralogical Society of America, 799p. SPEAR, F.S.,HICKMOTT, D.D.&SELVERSTONE, J Metamorphic consequence of thrust emplacement, Fall Mountain, New Hampshire. Geological Society of America Bulletin 102, SRIVASTAVA, P.& MITRA, G Deformation mechanisms and inverted thermal profile in the North Almora Thrust mylonite zone, Kumaon Lesser Himalaya, India. Journal of Structural Geology 18, THOMPSON, A. B. & ENGLAND, P. C Pressure Temperature time paths of regional metamorphism II.

18 18 Orogenic thickening in the Peloritani Mountains Their interference and interpretation using mineral assemblages in metamorphic rocks. Journal of Petrology 25, THOMSON, S. N Fission track analysis of the crystalline basement rocks of the Calabrian Arc, southern Italy: evidence of Oligo-Miocene late orogenic extension and erosion. Tectonophysics 238, VIDAL, O.,PARRA, T.&TROTET, F A thermodynamic model for Fe Mg aluminous chlorite using data from phase equilibrium experiments and natural pelitic assemblages in the C, 1 25 kbar range. American Journal of Science 6, WALLIS, S. R., PLATT, J. P.& KNOTT, S. D Recognition of syn-convergence extension in accretionary wedges with examples from the Calabrian Arc and the eastern Alps. American Journal of Science 293, ZUPPETTA, A.& SAVA, A Nuovi dati sulla geologia dei dintorni di Mandanici (Monti Peloritani Sicilia). Bollettino della Società Geologica Italiana 106, Appendix Mineral compositions for samples belonging to the San Marco d Alunzio unit were measured with a CAMECA SX 50 electron microprobe at the CNR laboratories of the University of Rome La Sapienza. Samples from the Mandanici, Longi Taormina and the Capo Sant Andrea units were measured with a CAMECA SX100 electron microprobe at the University of Stuttgart. Both sets of analyses were performed in static beam mode (focussed or 5 µm in size) at 15 kv and 15 na, using natural minerals and synthetic phases as standards. Raw data have been processed with the PAP software module delivered by CAMECA. Chlorite end-members: daphnite (Daph: Fe 5 Al[AlSi 3 O 10 ] (OH) 8 ), Fe-amesite (FeAm: Fe 4 Al 2 [Al 2 Si 2 O 10 ](OH) 8 ), Mg- Table A1. List of chosen univariant equilibria obtained from the chlorite white mica association, in addition to quartz (Qtz) and water (W) Reaction 4Dph+ 6Prl= 26 Qtz + 5 Fe-Am + 2W (1) 6Prl+ 20 Fe-Cel + 4Chl= 5 Fe-Am + 20 Al-Cel (2) + 26 Qtz + 2W 4 Al-Cel + Fe-Am = Al-Am + 4Fe-Cel (3) 4Fe-Cel+ 6Prl= 26 Qtz + 4Ms+ Fe-Am + 2W (4) Dph + 5 Al-Cel = 5Fe-Cel+ Chl (5) 4Dph+ 20 Al-Cel + 6Prl= 26 Qtz + 20 Fe-Cel (6) + 5 Al-Am + 2W Fe-Cel + Fe-Am = Dph + Ms (7) 5Fe-Cel+ 6Prl= 26 Qtz + 5Ms+ Dph + 2W (8) 6Prl+ 4Chl= 5 Al-Am + 26 Qtz + 2W (9) 5 Al-Cel + Fe-Am = Chl + 4Fe-Cel+ Ms (10) 5 Al-Cel + 6Prl= 26 Qtz + 5Ms+ Chl + 2 W (11) 4 Al-Cel + 6Prl= 26 Qtz + 4Ms+ Al-Am + 2 W (12) 4Chl+ 5 Fe-Am = 4Dph+ 5 Al-Am (13) 5 Al-Cel + 5 Fe-Am = 4Dph+ Chl + 5 Ms (14) 4 Al-Cel + 5 Fe-Am = 4Dph+ Al-Am + 4 Ms (15) Ms + 4 Al-Cel + Dph = Al-Am + 5 Fe-Cel (16) 4Fe-Cel+ 5 Al-Am = Fe-Am + 4Chl+ 4 Ms (17) Al-Cel + Al-Am = Chl + Ms (18) 5Fe-Cel+ 5 Al-Am = Dph + 4Chl+ 5 Ms (19) Abbreviations: Al-Am: Al-amesite; Al-Cel: Al-celadonite; Chl: clinochlore; Dph: daphnite; Fe-Am: Fe-amesite; Fe-Cel: Fe-celadonite; Ms: muscovite; Prl: pyrophyllite amesite (Am: Mg 4 Al 2 [Al 2 Si 2 O 10 ](OH) 8 ), and clinochlore (Chl: Mg 5 Al[AlSi 3 O 10 ](OH) 8 ). White mica end-members: Fe-celadonite (FeCel: KFe 2+ Al[Si 4 O 10 ](OH) 2 ), Mg-celadonite (MgCel: KMgAl [Si 4 O 10 ](OH) 2 ), muscovite (Ms: KAl 2 [AlSi 3 O 10 ](OH) 2 ), and pyrophyllite (Prl: Al 2 [Si 4 O 10 ](OH) 2 ). The list of the chlorite white mica univariant equilibria considered for P T estimates is given in Table A1. no.

Current position: full professor in Structural Geology, University of Toirno (Italy)

Current position: full professor in Structural Geology, University of Toirno (Italy) PROF. RODOLFO CAROSI Curriculum Vitae Current position: full professor in Structural Geology, University of Toirno (Italy) Dipartimento di Scienze della Terra - Università di Torino Via Valperga Caluso,

More information

O.Jagoutz. We know from ~ 20.000 borehole measurements that the Earth continuously emits ~ 44TW

O.Jagoutz. We know from ~ 20.000 borehole measurements that the Earth continuously emits ~ 44TW Lecture Notes 12.001 Metamorphic rocks O.Jagoutz Metamorphism Metamorphism describes the changes a rock undergoes with changing P, T and composition (X). For simplistic reasons we will focus here in the

More information

Metamorphic Rocks Practice Questions and Answers Revised October 2007

Metamorphic Rocks Practice Questions and Answers Revised October 2007 Metamorphic Rocks Practice Questions and Answers Revised October 2007 1. Metamorphism is a that involves no melt phase. 2. The protolith of a metamorphic rock is the (a) sibling (b) brother (c) parent

More information

Metamorphic rocks are rocks changed from one form to another by intense heat, intense pressure, and/or the action of hot fluids.

Metamorphic rocks are rocks changed from one form to another by intense heat, intense pressure, and/or the action of hot fluids. Metamorphic Rocks, Processes, and Resources Metamorphic rocks are rocks changed from one form to another by intense heat, intense pressure, and/or the action of hot fluids. Protolith or parent rock is

More information

Le rocce erciniche nella Zona brianzonese ligure

Le rocce erciniche nella Zona brianzonese ligure Le rocce erciniche nella Zona brianzonese ligure Matteo Maino Dipartimento di Scienze della Terra e dell Ambiente, Università degli Studi di Pavia Pre-alpine basements of the Ligurian Alps Working group:

More information

How Did These Ocean Features and Continental Margins Form?

How Did These Ocean Features and Continental Margins Form? 298 10.14 INVESTIGATION How Did These Ocean Features and Continental Margins Form? The terrain below contains various features on the seafloor, as well as parts of three continents. Some general observations

More information

Rocks & Minerals. 10. Which rock type is most likely to be monomineralic? 1) rock salt 3) basalt 2) rhyolite 4) conglomerate

Rocks & Minerals. 10. Which rock type is most likely to be monomineralic? 1) rock salt 3) basalt 2) rhyolite 4) conglomerate 1. Of the Earth's more than 2,000 identified minerals, only a small number are commonly found in rocks. This fact indicates that most 1) minerals weather before they can be identified 2) minerals have

More information

Dip is the vertical angle perpendicular to strike between the imaginary horizontal plane and the inclined planar geological feature.

Dip is the vertical angle perpendicular to strike between the imaginary horizontal plane and the inclined planar geological feature. Geological Visualization Tools and Structural Geology Geologists use several visualization tools to understand rock outcrop relationships, regional patterns and subsurface geology in 3D and 4D. Geological

More information

Minerals and Rocks C) D)

Minerals and Rocks C) D) Minerals and Rocks Name 1. Base your answer to the following question on the map and cross section below. The shaded areas on the map represent regions of the United States that have evaporite rock layers

More information

Continental Drift, Sea Floor Spreading and Plate Tectonics

Continental Drift, Sea Floor Spreading and Plate Tectonics Page 1 of 13 EENS 1110 Tulane University Physical Geology Prof. Stephen A. Nelson Continental Drift, Sea Floor Spreading and Plate Tectonics This page last updated on 26-Aug-2015 Plate Tectonics is a theory

More information

The Aegean: plate tectonic evolution in Mediterranean

The Aegean: plate tectonic evolution in Mediterranean The Aegean: plate tectonic evolution in Mediterranean Written by: Martin Reith Field course Naxos in September 2014, Group B Abstract The Mediterranean Sea, as known today, resulted from various geological

More information

Rocks and Plate Tectonics

Rocks and Plate Tectonics Name: Class: _ Date: _ Rocks and Plate Tectonics Multiple Choice Identify the choice that best completes the statement or answers the question. 1. What is a naturally occurring, solid mass of mineral or

More information

Plate Tectonics. Introduction. Boundaries between crustal plates

Plate Tectonics. Introduction. Boundaries between crustal plates Plate Tectonics KEY WORDS: continental drift, seafloor spreading, plate tectonics, mid ocean ridge (MOR) system, spreading center, rise, divergent plate boundary, subduction zone, convergent plate boundary,

More information

Questions & Answers Proposed for Exam #3

Questions & Answers Proposed for Exam #3 Questions & Answers Proposed for Exam #3 GE50 Introduction to Physical Geology (Geology for Engineers) Missouri University of Science and Technology Fall Semester 2007, Leslie Gertsch (GertschL@mst.edu)

More information

REGULATIONS FOR THE POSTGRADUATE DIPLOMA IN EARTH SCIENCES (PGDES)

REGULATIONS FOR THE POSTGRADUATE DIPLOMA IN EARTH SCIENCES (PGDES) REGULATIONS FOR THE POSTGRADUATE DIPLOMA IN EARTH SCIENCES (PGDES) (See also General Regulations) The Postgraduate Diploma in Earth Sciences is a postgraduate diploma awarded for the satisfactory completion

More information

REGULATIONS FOR THE POSTGRADUATE DIPLOMA IN EARTH SCIENCES (PGDES)

REGULATIONS FOR THE POSTGRADUATE DIPLOMA IN EARTH SCIENCES (PGDES) REGULATIONS FOR THE POSTGRADUATE DIPLOMA IN EARTH SCIENCES (PGDES) (See also General Regulations) The Postgraduate Diploma in Earth Sciences is a postgraduate diploma awarded for the satisfactory completion

More information

Brian A. Hampton 1. Search and Discovery Article #30100 (2009) Posted September 8, Abstract

Brian A. Hampton 1. Search and Discovery Article #30100 (2009) Posted September 8, Abstract Oblique Convergence as a Driving Mechanism for Protracted Exhumation, Basin Development, and Sedimentation during Island Arc Collision: A Case Study from Southern Alaska* Brian A. Hampton 1 Search and

More information

Late tectonic evolution of the Northern Apennines: the role of contractional tectonics in the exhumation of the tuscan units

Late tectonic evolution of the Northern Apennines: the role of contractional tectonics in the exhumation of the tuscan units Geodinamica Acta 17 (2004) 253 273 Late tectonic evolution of the Northern Apennines: the role of contractional tectonics in the exhumation of the tuscan units Rodolfo Carosi a, b, Chiara Montomoli a,

More information

Progressive orogenic deformation and metamorphism along the Combin Fault and Dent Blanche Basal Thrust in the Swiss-Italian Western Alps

Progressive orogenic deformation and metamorphism along the Combin Fault and Dent Blanche Basal Thrust in the Swiss-Italian Western Alps Progressive orogenic deformation and metamorphism along the Combin Fault and Dent Blanche Basal Thrust in the Swiss-Italian Western Alps Dissertation zur Erlangung des Doktorgrades (Dr. rer. nat.) der

More information

MINES AND ENERGY MINISTRY OF COLOMBIA. Geological Survey of Colombia National Mineral Agency of Colombia

MINES AND ENERGY MINISTRY OF COLOMBIA. Geological Survey of Colombia National Mineral Agency of Colombia MINES AND ENERGY MINISTRY OF COLOMBIA Geological Survey of Colombia National Mineral Agency of Colombia STRATEGIC MINING AREAS AN OPPORTUNITY TO INVEST IN COLOMBIA Toronto, March 2013 AGENDA 1. GEOLOGICAL

More information

DEEP AZIMUTHAL SEISMIC ANISOTROPY IN THE WESTERNANATOLIA AND AEGEAN SUBDUCTION ZONE

DEEP AZIMUTHAL SEISMIC ANISOTROPY IN THE WESTERNANATOLIA AND AEGEAN SUBDUCTION ZONE DEEP AZIMUTHAL SEISMIC ANISOTROPY IN THE WESTERNANATOLIA AND AEGEAN SUBDUCTION ZONE G. Polat -1 and M.N. Ozel -1 Adress: 1- Boğaziçi University, Kandilli Observatory and Earthquake Research Institution,

More information

Giancarlo Molli. Dipartimento Scienze della Terra Università di Pisa Via S.Maria 53, 56126 Pisa (Italia) Key words main topics:

Giancarlo Molli. Dipartimento Scienze della Terra Università di Pisa Via S.Maria 53, 56126 Pisa (Italia) Key words main topics: Giancarlo Molli Dipartimento Scienze della Terra Università di Pisa Via S.Maria 53, 56126 Pisa (Italia) Key words main topics: tectonics orogenic processes deformation structures and kinematics Regional

More information

Plate Tectonics: Big Ideas. Plate Tectonics. Plate Tectonics. The unifying concept of the Earth sciences.

Plate Tectonics: Big Ideas. Plate Tectonics. Plate Tectonics. The unifying concept of the Earth sciences. Plate Tectonics: Big Ideas Our understanding of Earth is continuously refined. Earth s systems are dynamic; they continually react to changing influences from geological, hydrological, physical, chemical,

More information

ES Chapter 10 Review. Name: Class: Date: Multiple Choice Identify the choice that best completes the statement or answers the question.

ES Chapter 10 Review. Name: Class: Date: Multiple Choice Identify the choice that best completes the statement or answers the question. Name: Class: Date: ES Chapter 10 Review Multiple Choice Identify the choice that best completes the statement or answers the question. 1. Scientists used the pattern of alternating normal and reversed

More information

Geol 101: Physical Geology PAST EXAM QUESTIONS LECTURE 4: PLATE TECTONICS II

Geol 101: Physical Geology PAST EXAM QUESTIONS LECTURE 4: PLATE TECTONICS II Geol 101: Physical Geology PAST EXAM QUESTIONS LECTURE 4: PLATE TECTONICS II 4. Which of the following statements about paleomagnetism at spreading ridges is FALSE? A. there is a clear pattern of paleomagnetic

More information

Plate Tectonics. Plate Tectonics The unifying concept of the Earth sciences. Continental Drift

Plate Tectonics. Plate Tectonics The unifying concept of the Earth sciences. Continental Drift Plate Tectonics The unifying concept of the Earth sciences. The outer portion of the Earth is made up of about 20 distinct plates (~ 100 km thick), which move relative to each other This motion is what

More information

Chapter 4. Metamorphic Rocks. 4.1 Types of Metamorphism

Chapter 4. Metamorphic Rocks. 4.1 Types of Metamorphism Chapter 4 Metamorphic Rocks Metamorphic rocks are rocks that have undergone a change in texture and/or mineralogy due to high temperature or pressure, or through the action of chemical alteration induced

More information

Laboratory #8: Structural Geology Thinking in 3D

Laboratory #8: Structural Geology Thinking in 3D Name: Lab day: Tuesday Wednesday Thursday ENVG /SC 10110-20110L Planet Earth Laboratory Laboratory #8: Structural Geology Thinking in 3D http://www.nd.edu/~cneal/physicalgeo/lab-structural/index.html Readings:

More information

Continental Drift. Alfred Wegener (1880-1930) Proposed that all of the continents were once part of a large supercontinent - Pangaea Based on:

Continental Drift. Alfred Wegener (1880-1930) Proposed that all of the continents were once part of a large supercontinent - Pangaea Based on: Plate Tectonics and Continental Drift Continental Drift Alfred Wegener (1880-1930) Proposed that all of the continents were once part of a large supercontinent - Pangaea Based on: Similarities in shorelines

More information

Structural Geology Laboratory 9 (Name)

Structural Geology Laboratory 9 (Name) Structural Geology Laboratory 9 (Name) Geologic maps show the distribution of different types of structures and rock stratigraphic units generally on a topographic base such as a quadrangle map. Key structures

More information

Geology Laboratory: Metamorphic Rocks

Geology Laboratory: Metamorphic Rocks OBJECTIVES Learn to identify metamorphic rocks by structure and mineralogy. Identify major minerals contained within a metamorphic rock. Distinguish between foliated and non-foliated metamorphic rocks.

More information

Proponent: Prof. Gianreto Manatschal; IPG-EOST/UdS-CNRS. In collaboration with: Patrick Unternehr (TOTAL)

Proponent: Prof. Gianreto Manatschal; IPG-EOST/UdS-CNRS. In collaboration with: Patrick Unternehr (TOTAL) THE TECTONO-STRATIGRAPHIC EVOLUTION OF BASEMENT HIGHS IN HYPER-EXTENDED DEEP-WATER RIFTED MARGINS: THE EXAMPLE OF THE BRIANÇONNAIS DOMAIN IN THE ALPS AND COMPARISONS WITH MODERN ANALOGUES Proponent: Prof.

More information

Plate Tectonics Practice Questions and Answers Revised August 2007

Plate Tectonics Practice Questions and Answers Revised August 2007 Plate Tectonics Practice Questions and Answers Revised August 2007 1. Please fill in the missing labels. 2. Please fill in the missing labels. 3. How many large plates form the outer shell of the earth?

More information

Crust: low density rocks. Mantle: high density rocks. Core: very high density metal. core

Crust: low density rocks. Mantle: high density rocks. Core: very high density metal. core Crust: low density rocks Mantle: high density rocks Core: very high density metal core mechanical) layering mechanical layers lithosphere: rigid & strong asthenosphere: plastic & weak mesosphere: plastic

More information

SGL 101: MATERIALS OF THE EARTH Lecture 7 C.M. NYAMAI LECTURE 7 7.0 NATURE AND CLASSIFICATION OF METAMORPHIC ROCKS

SGL 101: MATERIALS OF THE EARTH Lecture 7 C.M. NYAMAI LECTURE 7 7.0 NATURE AND CLASSIFICATION OF METAMORPHIC ROCKS LECTURE 7 7.0 NATURE AND CLASSIFICATION OF METAMORPHIC ROCKS 7.1 INTRODUCTION Welcome to lecture 7. In the previous two lectures we covered the nature and classification of igneous and sedimentary rocks.

More information

FROM SEDIMENT INTO SEDIMENTARY ROCK. Objectives. Sediments and Sedimentation

FROM SEDIMENT INTO SEDIMENTARY ROCK. Objectives. Sediments and Sedimentation FROM SEDIMENT INTO SEDIMENTARY ROCK Objectives Identify three types of sediments. Explain where and how chemical and biogenic sediments form. Explain three processes that lead to the lithification of sediments.

More information

GY 112 Lecture Notes Western North America Tectonics

GY 112 Lecture Notes Western North America Tectonics GY 112 Lecture Notes D. Haywick (2006) 1 Lecture Goals: A) The Triassic B) The Jurassic C) The Cretaceous GY 112 Lecture Notes Western North America Tectonics Textbook reference: Levin (2003) 7 th edition,

More information

6.E.2.2 Plate Tectonics, Earthquakes and Volcanoes

6.E.2.2 Plate Tectonics, Earthquakes and Volcanoes Name: Date: 1. The road shown below was suddenly broken by a natural event. 3. The convergence of two continental plates would produce Which natural event most likely caused the crack in the road? island

More information

1. Foliation or schistose textures are easily seen in rocks consisting of. 2. Which of these tectonic settings will be hottest at 20km depth?

1. Foliation or schistose textures are easily seen in rocks consisting of. 2. Which of these tectonic settings will be hottest at 20km depth? 2nd Midterm Questions Metamorphic Rocks 1. Foliation or schistose textures are easily seen in rocks consisting of. a. framework silicates (quartz, feldspar) b. platy minerals (micas) c. chain-silicates

More information

1. The diagram below shows a cross section of sedimentary rock layers.

1. The diagram below shows a cross section of sedimentary rock layers. 1. The diagram below shows a cross section of sedimentary rock layers. Which statement about the deposition of the sediments best explains why these layers have the curved shape shown? 1) Sediments were

More information

Geological Field T rips

Geological Field T rips Geological Field T rips Società Geologica Italiana ISPRA Istituto Superiore per la Protezione e la Ricerca Ambientale 2013 Vol. 5 (1.2) SERVIZIO GEOLOGICO D ITALIA Organo Cartografico dello Stato (legge

More information

Earth s Crust and Interior

Earth s Crust and Interior Student: Date received: Handout 6 of 14 (Topic 2.1) Earth s Crust and Interior Seafloor topography around Iceland in the North Atlantic Ocean (http://en.wikipedia.org/wiki/image:n-atlantic-topo.png). Iceland

More information

Geologic Setting and Evolution of Latin America

Geologic Setting and Evolution of Latin America Geologic Setting and Evolution of Latin America Important events in the Geologic Evolution of Latin America Formation of the Continental Crust (3.5-0.5Ga) Formation of Gondwana (~600 Ma) Break-up of Pangea

More information

Unit 4: The Rock Cycle

Unit 4: The Rock Cycle Unit 4: The Rock Cycle Objective: E 3.1A Discriminate between igneous, metamorphic, and sedimentary rocks and describe the processes that change one kind of rock into another. E 3.1B Explain the relationship

More information

Metamorphic rocks from the middle of the crust Quad Creek area, MT. Image: Darrell Henry

Metamorphic rocks from the middle of the crust Quad Creek area, MT. Image: Darrell Henry Introduction to Metamorphism (Chapter 21) Metamorphic rocks from the middle of the crust Quad Creek area, MT. Image: Darrell Henry IUGS-SCMR SCMR definition n of metamorphism Folded marble in the Campolungo

More information

1. Base your answer to the following question on on the photographs and news article below. Old Man s Loss Felt in New Hampshire

1. Base your answer to the following question on on the photographs and news article below. Old Man s Loss Felt in New Hampshire UNIT 3 EXAM ROCKS AND MINERALS NAME: BLOCK: DATE: 1. Base your answer to the following question on on the photographs and news article below. Old Man s Loss Felt in New Hampshire FRANCONIA, N.H. Crowds

More information

Igneous rocks: : Rock that forms when hot molten rock (magma or lava) cools and

Igneous rocks: : Rock that forms when hot molten rock (magma or lava) cools and Igneous rocks: : Rock that forms when hot molten rock (magma or lava) cools and freezes solid. Can be intrusive (formed deep in the earth) or extrusive (formed at the surface of the earth). Magma: : Molten

More information

TECTONICS ASSESSMENT

TECTONICS ASSESSMENT Tectonics Assessment / 1 TECTONICS ASSESSMENT 1. Movement along plate boundaries produces A. tides. B. fronts. C. hurricanes. D. earthquakes. 2. Which of the following is TRUE about the movement of continents?

More information

II. Earth Science (Geology) Section (9/18/2013)

II. Earth Science (Geology) Section (9/18/2013) EAPS 100 Planet Earth Lecture Topics Brief Outlines II. Earth Science (Geology) Section (9/18/2013) 1. Interior of the Earth Learning objectives: Understand the structure of the Earth s interior crust,

More information

Geodynamics Lecture 2 Kinematics of plate tectonics

Geodynamics Lecture 2 Kinematics of plate tectonics Geodynamics Lecture 2 Kinematics of plate tectonics Lecturer: David Whipp david.whipp@helsinki.fi! 4.9.2013 Geodynamics www.helsinki.fi/yliopisto 1 Goals of this lecture Present the three types of plate

More information

Georgia Performance Standards Framework for Science Grade 6. Unit Organizer: Geology: Inside the Earth (Approximate Time: 7 Weeks)

Georgia Performance Standards Framework for Science Grade 6. Unit Organizer: Geology: Inside the Earth (Approximate Time: 7 Weeks) The following instructional plan is part of a GaDOE collection of Unit Frameworks, Performance Tasks, examples of Student Work, and Teacher Commentary. Many more GaDOE approved instructional plans are

More information

Curriculum Vitae_Dr. Shuyun CAO - CV

Curriculum Vitae_Dr. Shuyun CAO - CV Curriculum Vitae_Dr. Shuyun CAO - CV Dept. Geography and Geology Phone: ++43 664 8525489 University of Salzburg Hellbrunner Strasse 34 Fax: ++43 662 8044-621 A-5020 Salzburg, E-mail: Shuyun.cao@sbg.ac.at

More information

Chapter 2. Plate Tectonics. Plate Tectonics: Learning Goals

Chapter 2. Plate Tectonics. Plate Tectonics: Learning Goals Plate Tectonics Chapter 2 Interactions at depend on the direction of relative plate motion and the type of crust. Which kind of plate boundary is associated with Earthquake activity? A. Divergent Boundary

More information

4. Plate Tectonics II (p. 46-67)

4. Plate Tectonics II (p. 46-67) 4. Plate Tectonics II (p. 46-67) Seafloor Spreading In the early 1960s, samples of basaltic ocean crust were dredged up from various locations across the ocean basins. The samples were then analyzed to

More information

Rocks & Minerals 1 Mark Place, www.learnearthscience.com

Rocks & Minerals 1 Mark Place, www.learnearthscience.com Name: KEY Rocks & Minerals 1 KEY CONCEPT #1: What is a mineral? It is a naturally occurring, inorganic substance which has a definite chemical composition What would be the opposite of this? man-made,

More information

Igneous Geochemistry. What is magma? What is polymerization? Average compositions (% by weight) and liquidus temperatures of different magmas

Igneous Geochemistry. What is magma? What is polymerization? Average compositions (% by weight) and liquidus temperatures of different magmas 1 Igneous Geochemistry What is magma phases, compositions, properties Major igneous processes Making magma how and where Major-element variations Classification using a whole-rock analysis Fractional crystallization

More information

GEL 113 Historical Geology

GEL 113 Historical Geology GEL 113 Historical Geology COURSE DESCRIPTION: Prerequisites: GEL 111 Corequisites: None This course covers the geological history of the earth and its life forms. Emphasis is placed on the study of rock

More information

AN OVERVIEW OF ANDALUSITE IN SOUHERN AFRICA: GEOLOGY AND MINERALOGY. B W Botha Imerys South Africa

AN OVERVIEW OF ANDALUSITE IN SOUHERN AFRICA: GEOLOGY AND MINERALOGY. B W Botha Imerys South Africa AN OVERVIEW OF ANDALUSITE IN SOUHERN AFRICA: GEOLOGY AND MINERALOGY Imerys South Africa Abstract Andalusite is part of the sillimanite-group minerals, as well as sillimanite and kyanite, which are all

More information

What is a rock? How are rocks classified? What does the texture of a rock reveal about how it was formed?

What is a rock? How are rocks classified? What does the texture of a rock reveal about how it was formed? CHAPTER 4 1 The Rock Cycle SECTION Rocks: Mineral Mixtures BEFORE YOU READ After you read this section, you should be able to answer these questions: What is a rock? How are rocks classified? What does

More information

EARTH SCIENCE 110 INTRODUCTION to GEOLOGY MINERALS & ROCKS LABORATORY

EARTH SCIENCE 110 INTRODUCTION to GEOLOGY MINERALS & ROCKS LABORATORY EARTH SCIENCE 110 INTRODUCTION to GEOLOGY DR. WOLTEMADE NAME: SECTION: MINERALS & ROCKS LABORATORY INTRODUCTION The identification of minerals and rocks is an integral part of understanding our physical

More information

There are numerous seams on the surface of the Earth

There are numerous seams on the surface of the Earth Plate Tectonics and Continental Drift There are numerous seams on the surface of the Earth Questions and Topics 1. What are the theories of Plate Tectonics and Continental Drift? 2. What is the evidence

More information

Field Trip Guide Book - P66

Field Trip Guide Book - P66 32 nd INTERNATIONAL GEOLOGICAL CONGRESS Field Trip Guide Book - P66 GEOTRAVERSE ACROSS THE CALABRIA-PELORITANI TERRANE (SOUTHERN ITALY) Leader: G. Bonardi Associate Leaders: A. Caggianelli, S. Critelli,

More information

Regents Questions: Plate Tectonics

Regents Questions: Plate Tectonics Earth Science Regents Questions: Plate Tectonics Name: Date: Period: August 2013 Due Date: 17 Compared to the oceanic crust, the continental crust is (1) less dense and more basaltic (3) more dense and

More information

Tectonic plates push together at convergent boundaries.

Tectonic plates push together at convergent boundaries. KEY CONCEPT Plates converge or scrape past each other. BEFORE, you learned Plates move apart at divergent boundaries In the oceans, divergent boundaries mark where the sea floor spreads apart On land,

More information

LANDFORMS OF THE EARTH STD VIII

LANDFORMS OF THE EARTH STD VIII LANDFORMS OF THE EARTH STD VIII 1) What do you understand by the term geomorphology? A) Geomorphology is the systematic study of the Earth s relief features. Geo means earth; morph meaning form and ology

More information

Chapter 2 Tectonic history of the Transverse Ranges: Rotation and deformation on the plate boundary

Chapter 2 Tectonic history of the Transverse Ranges: Rotation and deformation on the plate boundary Chapter 2 Tectonic history of the Transverse Ranges: Rotation and deformation on the plate boundary ELEANOR S. BARTOLOMEO A* AND NICOLE LONGINOTTI B A CIVIL & ENVIRONMENTAL ENGINEERING B DEPARTMENT OF

More information

principles of stratigraphy: deposition, succession, continuity and correlation

principles of stratigraphy: deposition, succession, continuity and correlation Relative Age Dating Comparative Records of Time Nature of the rock record principles of stratigraphy: deposition, succession, continuity and correlation Stratigraphic tools biological succession of life:

More information

Plate Tectonics Lab. Continental Drift. The Birth of Plate Tectonics

Plate Tectonics Lab. Continental Drift. The Birth of Plate Tectonics Plate Tectonics Lab Continental Drift Take a look at a globe sometime and observe the remarkable fit between South America and Africa. Could they have, in fact, been connected? During the 19th and early

More information

89.215 - FORENSIC GEOLOGY GEOLOGIC TIME AND GEOLOGIC MAPS

89.215 - FORENSIC GEOLOGY GEOLOGIC TIME AND GEOLOGIC MAPS NAME 89.215 - FORENSIC GEOLOGY GEOLOGIC TIME AND GEOLOGIC MAPS I. Introduction There are two types of geologic time, relative and absolute. In the case of relative time geologic events are arranged in

More information

Earthquakes and Plate Boundaries Deborah Jordan and Samuel Spiegel

Earthquakes and Plate Boundaries Deborah Jordan and Samuel Spiegel Earthquakes and Plate Boundaries Deborah Jordan and Samuel Spiegel Jordan, Deborah and Spiegel, Samuel: Learning Research Development Center, University of Pittsburgh. Earthquakes and Plate Boundaries.

More information

Plate tectonics states that the Earth's crust and upper mantle are broken into sections, called plates.

Plate tectonics states that the Earth's crust and upper mantle are broken into sections, called plates. Notes on Plate Tectonics Plate tectonics states that the Earth's crust and upper mantle are broken into sections, called plates. These plates move around the mantle. Plates are composed of the crust and

More information

GEOL 2311 Midquarter Exam I Name Crystal Chemistry Score: / 100

GEOL 2311 Midquarter Exam I Name Crystal Chemistry Score: / 100 GEOL 2311 Midquarter Exam I Name Crystal Chemistry Score: / 100 1. Chose a subdiscipline of geology and describe how mineralogy plays a central role in that field. (2 pts) Looking for reasonable answers

More information

P1: Rock identification (I)

P1: Rock identification (I) P1: Rock identification (I) Examine the rocks specimens provided with the aid of these notes. All the rocks come from Ireland, as detailed on the attached map. Answer the short question on each specimen

More information

Earthquake: A vibration caused by the sudden breaking or frictional sliding of rock in the Earth. Fault: A fracture on which one body of rock slides

Earthquake: A vibration caused by the sudden breaking or frictional sliding of rock in the Earth. Fault: A fracture on which one body of rock slides Earthquake: A vibration caused by the sudden breaking or frictional sliding of rock in the Earth. Fault: A fracture on which one body of rock slides past another. Focus: The location where a fault slips

More information

Sedimentary Basins. Revision Material. Introduction. CE3A8 SMJ Geology for Engineers 1

Sedimentary Basins. Revision Material. Introduction. CE3A8 SMJ Geology for Engineers 1 CE3A8 SMJ Geology for Engineers 1 Sedimentary Basins Revision Material This handout lists the topics covered in the two lectures on sedimentary basins and provides a few key diagrams. Either of the following

More information

Geol 101: Physical Geology Summer 2007 EXAM 2

Geol 101: Physical Geology Summer 2007 EXAM 2 Geol 101: Physical Geology Summer 2007 EXAM 2 Write your name out in full on the scantron form and fill in the corresponding ovals to spell out your name. Also fill in your student ID number in the space

More information

MINERAL COMPOSITION OF THE AVERAGE SHALE

MINERAL COMPOSITION OF THE AVERAGE SHALE MINERAL COMPOSITION OF THE AVERAGE SHALE By D. H. YAAtON Department of Geology, The Hebrew University, Jerusalem. [Received 7th October, 1961] ABSTRACT Mineralogical compositions have been calculated from

More information

Investigation 6: What happens when plates collide?

Investigation 6: What happens when plates collide? Tectonics Investigation 6: Teacher Guide Investigation 6: What happens when plates collide? In this activity, students will use the distribution of earthquakes and volcanoes in a Web GIS to learn about

More information

Composition. Physical Properties

Composition. Physical Properties Composition Physical Properties Summary The Earth is a layered planet The layers represent changes in composition and physical properties The compositional layers are the Crust, Mantle and Core The physical

More information

Geologic History Review

Geologic History Review 1. The climate that existed in an area during the early Paleozoic Era can best be determined by studying (1) the present climate of the area (2) recorded climate data of the area since 1700 (3) present

More information

1. You are about to begin a unit on geology. Can anyone tell me what geology is? The study of the physical earth I.

1. You are about to begin a unit on geology. Can anyone tell me what geology is? The study of the physical earth I. PLATE TECTONICS ACTIVITY The purpose of this lab is to introduce the concept of plate tectonics and the formation of mountains. Students will discuss the properties of the earth s crust and plate tectonics.

More information

Geological Maps 1: Horizontal and Inclined Strata

Geological Maps 1: Horizontal and Inclined Strata Geological Maps 1: Horizontal and Inclined Strata A well-rounded geologist must be familiar with the processes that shape the Earth as well as the rocks and minerals that comprise it. These processes cover

More information

Plate Tectonics Chapter 2

Plate Tectonics Chapter 2 Plate Tectonics Chapter 2 Does not include complete lecture notes. Continental drift: An idea before its time Alfred Wegener First proposed his continental drift hypothesis in 1915 Published The Origin

More information

Neogene-Quaternary strike-slip tectonics in the central Calabrian Arc (southern Italy)

Neogene-Quaternary strike-slip tectonics in the central Calabrian Arc (southern Italy) Journal of Geodynamics 43 (2007) 393 414 Neogene-Quaternary strike-slip tectonics in the central Calabrian Arc (southern Italy) Carlo Tansi a,, Francesco Muto b, Salvatore Critelli b, Giulio Iovine a a

More information

Stability Assessment of Chamshir Dam Based on DEM, South West Zagros

Stability Assessment of Chamshir Dam Based on DEM, South West Zagros 2015 2nd International Conference on Geological and Civil Engineering IPCBEE vol. 80 (2015) (2015) IACSIT Press, Singapore DOI: 10.7763/IPCBEE. 2015. V80. 13 Stability Assessment of Chamshir Dam Based

More information

Southern Apennines: structural setting and tectonic evolution

Southern Apennines: structural setting and tectonic evolution Southern Apennines: structural setting and tectonic evolution Davide Scrocca Journal of the Virtual Explorer, Electronic Edition, ISSN 1441-8142, volume 36, paper 13 In: (Eds.) Marco Beltrando, Angelo

More information

Introduction to Structural Geology. Patrice F. Rey

Introduction to Structural Geology. Patrice F. Rey Introduction to Structural Geology Patrice F. Rey CHAPTER 1 Introduction The Place of Structural Geology in Sciences Science is the search for knowledge about the Universe, its origin, its evolution, and

More information

Plate Tectonics Short Study Guide

Plate Tectonics Short Study Guide Name: Class: Date: Plate Tectonics Short Study Guide Multiple Choice Identify the letter of the choice that best completes the statement or answers the question. 1. The existence of coal beds in Antarctica

More information

Field T rips. Geological. 2010 Vol. 2 (1)

Field T rips. Geological. 2010 Vol. 2 (1) Geological Field T rips Società Geologica Italiana ISPRA Istituto Superiore per la Protezione e la Ricerca Ambientale 2010 Vol. 2 (1) SERVIZIO GEOLOGICO D ITALIA Organo Cartografico dello Stato (legge

More information

Georgia Performance Standards Framework for Shaky Ground 6 th Grade

Georgia Performance Standards Framework for Shaky Ground 6 th Grade The following instructional plan is part of a GaDOE collection of Unit Frameworks, Performance Tasks, examples of Student Work, and Teacher Commentary. Many more GaDOE approved instructional plans are

More information

7) A clastic sedimentary rock composed of rounded to subrounded gravel is called a A) coal. B) shale. C) breccia.

7) A clastic sedimentary rock composed of rounded to subrounded gravel is called a A) coal. B) shale. C) breccia. Please read chapters 10 and 5 CHAPTER 5 Sedimentary Rocks 1) Sedimentary rocks A) form by compaction and cementation of loose sediment. B) are widespread on the continents and ocean floor. C) are common

More information

Transform Boundaries

Transform Boundaries Lecture 7 Plates and Mantle Plumes Transform Boundaries Transform boundaries occur where one segment of rigid lithosphere slides horizontally past another in response to stresses in the lithosphere. The

More information

Mapping the Tyrrhenian and Adriatic Mohos across the northern and central Apennine chain through teleseismic receiver functions

Mapping the Tyrrhenian and Adriatic Mohos across the northern and central Apennine chain through teleseismic receiver functions Mapping the Tyrrhenian and Adriatic Mohos across the northern and central Apennine chain through teleseismic receiver functions Giuliana Mele Istituto Nazionale di Geofisica e Vulcanologia - Roma, Italy

More information

Location and Distance on Earth (Chapter 22 part 1)

Location and Distance on Earth (Chapter 22 part 1) GEOLOGY 306 Laboratory Instructor: TERRY J. BOROUGHS NAME: Location and Distance on Earth (Chapter 22 part 1) For this assignment you will require: a calculator, protractor, and a metric ruler, and an

More information

College of Science and Health ENVIRONMENTAL SCIENCE & GEOGRAPHY Course Outline

College of Science and Health ENVIRONMENTAL SCIENCE & GEOGRAPHY Course Outline College of Science and Health ENVIRONMENTAL SCIENCE & GEOGRAPHY Course Outline 1. TITLE OF COURSE AND COURSE NUMBER: General Geology ENV 115, 4 credits 2. DESCRIPTION OF THE COURSE: Includes the study

More information

Leapfrog : new software for faster and better 3D geological modelling

Leapfrog : new software for faster and better 3D geological modelling Leapfrog : new software for faster and better 3D geological modelling Paul Hodkiewicz, Principal Consultant (Geology), SRK Consulting, 10 Richardson Street, West Perth WA 6005, Australia, phodkiewicz@srk.com.au

More information

Stop 2 hannukainen, kolari. Tero Niiranen Northland Exploration Finland Oy, Rovaniemi, Finland. Pasi Eilu Geological Survey of Finland, Espoo, Finland

Stop 2 hannukainen, kolari. Tero Niiranen Northland Exploration Finland Oy, Rovaniemi, Finland. Pasi Eilu Geological Survey of Finland, Espoo, Finland Stop 2 hannukainen, kolari Tero Niiranen Northland Exploration Finland Oy, Rovaniemi, Finland Pasi Eilu Geological Survey of Finland, Espoo, Finland introduction The Kolari region is in the western part

More information

1 Exploring Earth s Interior

1 Exploring Earth s Interior 1 Exploring Earth s Interior Crust Mantle Outer Core Crust-to-Mantle Inner Core Cross Section From Surface to Center SCIENCE EXPLORER Focus on Earth Science Prentice-Hall, Inc. 2 Evidence for Continental

More information

Hot Spots & Plate Tectonics

Hot Spots & Plate Tectonics Hot Spots & Plate Tectonics Activity I: Hawaiian Islands Procedures: Use the map and the following information to determine the rate of motion of the Pacific Plate over the Hawaiian hot spot. The volcano

More information

Plate Tectonics: Ridges, Transform Faults and Subduction Zones

Plate Tectonics: Ridges, Transform Faults and Subduction Zones Plate Tectonics: Ridges, Transform Faults and Subduction Zones Goals of this exercise: 1. review the major physiographic features of the ocean basins 2. investigate the creation of oceanic crust at mid-ocean

More information