Factoring polynomials over finite fields


 Aubrey Glenn
 3 years ago
 Views:
Transcription
1 Factoring polynomials over finite fields Summary and et questions 12 octobre Finite fields Let p an odd prime and let F p = Z/pZ the (unique up to automorphism) field with pelements. We want to classify finite fields up to automorphism. Question 1 Give a field with 4 elements. Is there any field with 6 elements? Let K be a finite field. Its characteristic p is finite. Otherwise K would contain Q. So K contains a subfield isomorphic to F p. So K is a vector space over F p. Let d be its dimension. The cardinality of K is p d. Let Φ : K K be the map defined by Φ(x) = x p. It is an F p linear map. It is even a ring homomorphism. It is called the Frobenius endomorphism. The multiplicative group K is cyclic. More generally, any finite subgroup in the multiplicative group of a field is cyclic. A primitive element of K is by definition a generator of the group K. Be carefull : some people call primitive any element that generates K as an F p algebra. Question 2 Find a primitive element in F 101. How many primitive elements do we have in F p? How can we find such an element in general? Let F (x) F p [x] be a degree d irreducible polynomial. Then F p [x]/f (x) is a finite field with cardinality p d. Question 3 Is every finite field isomorphic to such a quotient? We prove that for any positive integer d there exists a degree d irreducible polynomial in F p [x]. This finishes the classification of finite fields. To prove the existence of irreducible polynomial for every degree we first prove the following identity in F p [x] x pd x = f(x) (1) where f(x) runs over the set of irreducible polynomials with degree dividing d. We deduce that 1
2 p d = e d en(e) (2) where N(e) is the number of monic irreducible polynomials of degree e in F p [x]. Using Mœbius inversion formula we deduce dn(d) = e d µ( d e )pe (3) To prove the existence of a degree d irreducible polynomial it suffices to prove that the sum e d µ( d e )pe is positive. Indeed if d 2 then µ( d e )pe p d e d e d et e d p e p d 1 e d/2 p e p d p d/ So there exists a field with cardinality p d. It is easy to see that two finite fields with the same cardinality are isomorphic. We write F q for the field with q elements. This is a questionable notation because this field is only defined up to isomorphism, unless we have fixed one algebraic closure Ω for F p. In this text we are interesed in the following problem : given a polynomial A(x) in F p [x], find the decomposition of A(x) as a product of irreducible factors. The algorithm we present decomposes in three steps. There are variants for the third step. We only present one of them. Question 4 About the various meanings of primitive element. How many primitive elements do we have in F 256? How many generators of the group F 256? How many generators of the F 2 algebra F 256? Deduce the number of degree 8 irreducible polynomials in F 2 [x]. 2 Berlekamp s algorithm, first step We want to factor A(x) F p [x]. Assume A is monic. Let A(x) = f e i i (x) 1 i I be the prime decomposition. The integer e i 1 is the multiplicity of f i (x) in A. The goal of this first step is to reduce to the case where A is squarefree (i.e. all multiplicities are 0 or 1). The squarefree case will be treated in steps 2 and 3. The multiplicity of f i (x) in the derivative A (x) is e i 1 if e i is nonzero modulo p. Otherwise it is e i. Set B = pgcd(a, A ). If B = A then p divides all e i so A is a pth power. One easily finds an R(x) such that R p = A. We reduce to factoring R. 2
3 If B A then we set C = A/B and we reduce to factoring C and B. We note that C is squarefree. An example with Mupad : R := Dom :: IntegerMod(5); A := poly((x1)*(x2)^2*(x3)^6,r); We obtain a degree 9 polynomial to be factored. B := gcd(a,diff(a,x)); C := A/B; The equivalent commands in Maple are A:=(x1)*(x2)^2*(x3)^6; A:=expand(A); B:=Gcd(A,diff(A,x)) mod 5; Rem(A,B,x) mod 5; C:=Quo(A,B,x) mod 5; it. The polynomial C has degree 3 and is squarefree, so we are content with The polynomial B has degree 6. We continue. F := gcd(b,diff(b,x)); G := B/F; F. The polynomial G has degree 1. We are content with it. We continue with H := gcd(f,diff(f,x)); We find H = F. This is not a surprise because H = x is a 5th power. Indeed H(x) = (x + 2) 5. 3 Second step Thanks to the first step we now have squarefree polynomials to factor. We use the identity (1). If A(x) is squarefree we set A 1 (x) = pgcd(a(x), x p x). We check the A 1 is the product of all degree 1 irreducible factors of A(x). We set A 2 (x) = pgcd(a/a 1, x p2 x). This is the product of all degree 2 irreducible factors of A. We continue and compute A 3 (x) = pgcd(a/(a 1 A 2 ), x p3 x)... In the end we have decomposed A as a product of polynomials A 1, A 2, A 3,..., where A i is squarefree and has only degree i irreductible factors. Factoring such polynomials will be the purpose of the third step. An example of the second step treated in Mupad : 3
4 R := Dom :: IntegerMod(2); A := poly(x^9+x^8+x^7+x^2+x+1,[x],r); B := gcd(a,diff(a,x)); We obtain poly(1, [x], Dom::IntegerMod(2)) Then A1 := gcd(a,poly(x^2x,[x],r)); C1 := A/A1; We obtain A 1 = x + 1. Then A2 := gcd(c1,poly(x^4x,[x],r)); C2 := C1/A2; A3 := gcd(c2,poly(x^8x,[x],r)); We obtain A 2 = x 2 + x + 1 et A 3 = C 2. Question 5 What can we deduce about the factors of A? We now treat an example with p = 101. Let A(x) = x 4 + x + 7 F 101 [x] the polynomial to be factored. We don t want to compute the gcd of x 101 x and A(x) directly. Even less the gcd with x 1012 x. We work in the ring R = F p [x]/a(x) and set α = x mod A(x). We compute α p = U(x) mod A(x) with deg(u) < deg(a). We check that pgcd(x p x, A(x)) = pgcd(u(x) x, A(x)). This way we avoid dealing with big polynomials. Note that α p R can be computed using the fast exponentiation algorithm. Another example of the second step in Mupad : R := Dom :: IntegerMod(101); A := poly(x^4+x+7,[x],r); B := gcd(a,diff(a,x)); U := powermod(x,101,a); We obtain B = 1 and U = 21x x x Equivalent instructions in Maple are A := x^4+x+7; B := Gcd(A,diff(A,x)) mod 101; U:=Powmod(x,101,A,x) mod 101; We continue 4
5 C := gcd(poly(ux,r),a); We find C = x x Question 6 What can we deduce about the irreducible factors of A? Question 7 Give an estimate for the number of elementary operations required by the second step of Berlekamp s algorithm. 4 Third step After the second step we find ourselves with squarefree polynomials having equal degree irreducible factors. So let A F p [x] be such a polynomial and let k be the degree of all its irreducible factors. Let I be the number of these factors. So deg(a) = Ik. We assume the characteristic p is odd. We come back to equation (1). We set r d = pd 1 2. We find (x r d 1)(x r d + 1)x = f(x) (4) where the product is over all irreducible monic polynomials in F p [x] having degree dividing d. We set A 1 = pgcd(a, x r k 1), A 1 = pgcd(a, x r k +1), and A 0 = pgcd(a, x). So A = A 0 A 1 A 1. If f is an irreducible factor of A and α F p k a root of f, then f divides A 1 if and only if α is a nonzero square in F p k. More generally, let U(x) be a polynomial in F p [x] and set A U 1 = pgcd(a, U(x)r k 1), A U 1 = pgcd(a, U(x)r k+1), and A U 0 = pgcd(a, U(x)). So A = A U 0 AU 1 AU 1. If f is an irreducible factor of A and α F pk a root of f, then f divides A U 1 if and only if U(α) is a nonzero square in F p k. Question 8 Pick a random (with uniform distribution) U(x) among all polynomials F p [x] having degree deg(a) 1. What is the probability that one of polynomials A U 0, AU 1, AU 1 be a nontrivial factor of A? How many trials do we need on average to find such a nontrivial factor? Question 9 Give an upper bound for the number of elementary operations that are necessary to compute A U 0, AU 1 and AU 1. Deduce an estimate for the complexity of the third step as a function of log p, k and deg(a). We come back to the example in the previous section. So let C = x 2 +38x+11 and F = A/C = x x F := A/C; V := powermod(x,50,c); W := gcd(poly(v1,r),c); K := C/W; 5
6 We obtain V = 89x + 75 and W = x + 78 and K = x Question 10 Deduce the factorisation of A. Question 11 Give the structure of the multiplicative group (Z/107Z). Give an adapted generating set. Same question with (Z/10807Z). Same question with (F 2 [x]/a(x)) where A(x) = x 7 + x 6 + x 5 + x + 1. Question 12 Let p be a prime and let d be a positive integer. Set T d (x) = x + x p + x p2 + + x pd 1. Let q = p d. Prove that x q x = a F p (T d (x) a). Deduce a variant of the third step that is valid for p = 2. 6
minimal polyonomial Example
Minimal Polynomials Definition Let α be an element in GF(p e ). We call the monic polynomial of smallest degree which has coefficients in GF(p) and α as a root, the minimal polyonomial of α. Example: We
More informationcalculating the result modulo 3, as follows: p(0) = 0 3 + 0 + 1 = 1 0,
Homework #02, due 1/27/10 = 9.4.1, 9.4.2, 9.4.5, 9.4.6, 9.4.7. Additional problems recommended for study: (9.4.3), 9.4.4, 9.4.9, 9.4.11, 9.4.13, (9.4.14), 9.4.17 9.4.1 Determine whether the following polynomials
More informationCHAPTER SIX IRREDUCIBILITY AND FACTORIZATION 1. BASIC DIVISIBILITY THEORY
January 10, 2010 CHAPTER SIX IRREDUCIBILITY AND FACTORIZATION 1. BASIC DIVISIBILITY THEORY The set of polynomials over a field F is a ring, whose structure shares with the ring of integers many characteristics.
More informationModern Algebra Lecture Notes: Rings and fields set 4 (Revision 2)
Modern Algebra Lecture Notes: Rings and fields set 4 (Revision 2) Kevin Broughan University of Waikato, Hamilton, New Zealand May 13, 2010 Remainder and Factor Theorem 15 Definition of factor If f (x)
More informationThe Dirichlet Unit Theorem
Chapter 6 The Dirichlet Unit Theorem As usual, we will be working in the ring B of algebraic integers of a number field L. Two factorizations of an element of B are regarded as essentially the same if
More informationIntroduction to Finite Fields (cont.)
Chapter 6 Introduction to Finite Fields (cont.) 6.1 Recall Theorem. Z m is a field m is a prime number. Theorem (Subfield Isomorphic to Z p ). Every finite field has the order of a power of a prime number
More information7. Some irreducible polynomials
7. Some irreducible polynomials 7.1 Irreducibles over a finite field 7.2 Worked examples Linear factors x α of a polynomial P (x) with coefficients in a field k correspond precisely to roots α k [1] of
More informationFactoring Polynomials over Finite Fields
Enver Ozdemir 1 F p, p is an odd prime. 2 f (x) F p [x] 3 The Problem: Find f i (x) F p [x], f (x) = f 1 (x)... f n (x), f i (x) irreducible and coprime. 1 F p, p is an odd prime. 2 f (x) F p [x] 3 The
More informationit is easy to see that α = a
21. Polynomial rings Let us now turn out attention to determining the prime elements of a polynomial ring, where the coefficient ring is a field. We already know that such a polynomial ring is a UF. Therefore
More informationH/wk 13, Solutions to selected problems
H/wk 13, Solutions to selected problems Ch. 4.1, Problem 5 (a) Find the number of roots of x x in Z 4, Z Z, any integral domain, Z 6. (b) Find a commutative ring in which x x has infinitely many roots.
More information10 Splitting Fields. 2. The splitting field for x 3 2 over Q is Q( 3 2,ω), where ω is a primitive third root of 1 in C. Thus, since ω = 1+ 3
10 Splitting Fields We have seen how to construct a field K F such that K contains a root α of a given (irreducible) polynomial p(x) F [x], namely K = F [x]/(p(x)). We can extendthe procedure to build
More information1 = (a 0 + b 0 α) 2 + + (a m 1 + b m 1 α) 2. for certain elements a 0,..., a m 1, b 0,..., b m 1 of F. Multiplying out, we obtain
Notes on realclosed fields These notes develop the algebraic background needed to understand the model theory of realclosed fields. To understand these notes, a standard graduate course in algebra is
More information3 1. Note that all cubes solve it; therefore, there are no more
Math 13 Problem set 5 Artin 11.4.7 Factor the following polynomials into irreducible factors in Q[x]: (a) x 3 3x (b) x 3 3x + (c) x 9 6x 6 + 9x 3 3 Solution: The first two polynomials are cubics, so if
More informationON GALOIS REALIZATIONS OF THE 2COVERABLE SYMMETRIC AND ALTERNATING GROUPS
ON GALOIS REALIZATIONS OF THE 2COVERABLE SYMMETRIC AND ALTERNATING GROUPS DANIEL RABAYEV AND JACK SONN Abstract. Let f(x) be a monic polynomial in Z[x] with no rational roots but with roots in Q p for
More informationFactorization Algorithms for Polynomials over Finite Fields
Degree Project Factorization Algorithms for Polynomials over Finite Fields Sajid Hanif, Muhammad Imran 20110503 Subject: Mathematics Level: Master Course code: 4MA11E Abstract Integer factorization is
More informationFactoring of Prime Ideals in Extensions
Chapter 4 Factoring of Prime Ideals in Extensions 4. Lifting of Prime Ideals Recall the basic AKLB setup: A is a Dedekind domain with fraction field K, L is a finite, separable extension of K of degree
More informationQuotient Rings and Field Extensions
Chapter 5 Quotient Rings and Field Extensions In this chapter we describe a method for producing field extension of a given field. If F is a field, then a field extension is a field K that contains F.
More information1 Lecture: Integration of rational functions by decomposition
Lecture: Integration of rational functions by decomposition into partial fractions Recognize and integrate basic rational functions, except when the denominator is a power of an irreducible quadratic.
More informationPrimality  Factorization
Primality  Factorization Christophe Ritzenthaler November 9, 2009 1 Prime and factorization Definition 1.1. An integer p > 1 is called a prime number (nombre premier) if it has only 1 and p as divisors.
More informationr + s = i + j (q + t)n; 2 rs = ij (qj + ti)n + qtn.
Chapter 7 Introduction to finite fields This chapter provides an introduction to several kinds of abstract algebraic structures, particularly groups, fields, and polynomials. Our primary interest is in
More informationEXERCISES FOR THE COURSE MATH 570, FALL 2010
EXERCISES FOR THE COURSE MATH 570, FALL 2010 EYAL Z. GOREN (1) Let G be a group and H Z(G) a subgroup such that G/H is cyclic. Prove that G is abelian. Conclude that every group of order p 2 (p a prime
More informationModule MA3411: Abstract Algebra Galois Theory Appendix Michaelmas Term 2013
Module MA3411: Abstract Algebra Galois Theory Appendix Michaelmas Term 2013 D. R. Wilkins Copyright c David R. Wilkins 1997 2013 Contents A Cyclotomic Polynomials 79 A.1 Minimum Polynomials of Roots of
More informationA number field is a field of finite degree over Q. By the Primitive Element Theorem, any number
Number Fields Introduction A number field is a field of finite degree over Q. By the Primitive Element Theorem, any number field K = Q(α) for some α K. The minimal polynomial Let K be a number field and
More informationp e i 1 [p e i i ) = i=1
Homework 1 Solutions  Sri Raga Velagapudi Algebra Section 1. Show that if n Z then for every integer a with gcd(a, n) = 1, there exists a unique x mod n such that ax = 1 mod n. By the definition of gcd,
More informationFACTORING AFTER DEDEKIND
FACTORING AFTER DEDEKIND KEITH CONRAD Let K be a number field and p be a prime number. When we factor (p) = po K into prime ideals, say (p) = p e 1 1 peg g, we refer to the data of the e i s, the exponents
More informationThe van Hoeij Algorithm for Factoring Polynomials
The van Hoeij Algorithm for Factoring Polynomials Jürgen Klüners Abstract In this survey we report about a new algorithm for factoring polynomials due to Mark van Hoeij. The main idea is that the combinatorial
More informationPolynomial Factoring. Ramesh Hariharan
Polynomial Factoring Ramesh Hariharan The Problem Factoring Polynomials overs Integers Factorization is unique (why?) (x^2 + 5x +6) (x+2)(x+3) Time: Polynomial in degree A Related Problem Factoring Integers
More informationGalois representations with open image
Galois representations with open image Ralph Greenberg University of Washington Seattle, Washington, USA May 7th, 2011 Introduction This talk will be about representations of the absolute Galois group
More informationFACTORING POLYNOMIALS IN THE RING OF FORMAL POWER SERIES OVER Z
FACTORING POLYNOMIALS IN THE RING OF FORMAL POWER SERIES OVER Z DANIEL BIRMAJER, JUAN B GIL, AND MICHAEL WEINER Abstract We consider polynomials with integer coefficients and discuss their factorization
More informationOSTROWSKI FOR NUMBER FIELDS
OSTROWSKI FOR NUMBER FIELDS KEITH CONRAD Ostrowski classified the nontrivial absolute values on Q: up to equivalence, they are the usual (archimedean) absolute value and the padic absolute values for
More informationUnique Factorization
Unique Factorization Waffle Mathcamp 2010 Throughout these notes, all rings will be assumed to be commutative. 1 Factorization in domains: definitions and examples In this class, we will study the phenomenon
More informationFactorization Methods: Very Quick Overview
Factorization Methods: Very Quick Overview Yuval Filmus October 17, 2012 1 Introduction In this lecture we introduce modern factorization methods. We will assume several facts from analytic number theory.
More informationPROBLEM SET 6: POLYNOMIALS
PROBLEM SET 6: POLYNOMIALS 1. introduction In this problem set we will consider polynomials with coefficients in K, where K is the real numbers R, the complex numbers C, the rational numbers Q or any other
More informationTHE FUNDAMENTAL THEOREM OF ALGEBRA VIA PROPER MAPS
THE FUNDAMENTAL THEOREM OF ALGEBRA VIA PROPER MAPS KEITH CONRAD 1. Introduction The Fundamental Theorem of Algebra says every nonconstant polynomial with complex coefficients can be factored into linear
More informationALGEBRA HW 5 CLAY SHONKWILER
ALGEBRA HW 5 CLAY SHONKWILER 510.5 Let F = Q(i). Prove that x 3 and x 3 3 are irreducible over F. Proof. If x 3 is reducible over F then, since it is a polynomial of degree 3, it must reduce into a product
More informationPartial Fractions. Combining fractions over a common denominator is a familiar operation from algebra:
Partial Fractions Combining fractions over a common denominator is a familiar operation from algebra: From the standpoint of integration, the left side of Equation 1 would be much easier to work with than
More informationSOLUTIONS TO PROBLEM SET 3
SOLUTIONS TO PROBLEM SET 3 MATTI ÅSTRAND The General Cubic Extension Denote L = k(α 1, α 2, α 3 ), F = k(a 1, a 2, a 3 ) and K = F (α 1 ). The polynomial f(x) = x 3 a 1 x 2 + a 2 x a 3 = (x α 1 )(x α 2
More informationLecture 10: Distinct Degree Factoring
CS681 Computational Number Theory Lecture 10: Distinct Degree Factoring Instructor: Piyush P Kurur Scribe: Ramprasad Saptharishi Overview Last class we left of with a glimpse into distant degree factorization.
More informationI. GROUPS: BASIC DEFINITIONS AND EXAMPLES
I GROUPS: BASIC DEFINITIONS AND EXAMPLES Definition 1: An operation on a set G is a function : G G G Definition 2: A group is a set G which is equipped with an operation and a special element e G, called
More informationLecture 13  Basic Number Theory.
Lecture 13  Basic Number Theory. Boaz Barak March 22, 2010 Divisibility and primes Unless mentioned otherwise throughout this lecture all numbers are nonnegative integers. We say that A divides B, denoted
More informationFINITE FIELDS KEITH CONRAD
FINITE FIELDS KEITH CONRAD This handout discusses finite fields: how to construct them, properties of elements in a finite field, and relations between different finite fields. We write Z/(p) and F p interchangeably
More informationChapter 4, Arithmetic in F [x] Polynomial arithmetic and the division algorithm.
Chapter 4, Arithmetic in F [x] Polynomial arithmetic and the division algorithm. We begin by defining the ring of polynomials with coefficients in a ring R. After some preliminary results, we specialize
More informationABSTRACT ALGEBRA: A STUDY GUIDE FOR BEGINNERS
ABSTRACT ALGEBRA: A STUDY GUIDE FOR BEGINNERS John A. Beachy Northern Illinois University 2014 ii J.A.Beachy This is a supplement to Abstract Algebra, Third Edition by John A. Beachy and William D. Blair
More informationFACTORING IN QUADRATIC FIELDS. 1. Introduction. This is called a quadratic field and it has degree 2 over Q. Similarly, set
FACTORING IN QUADRATIC FIELDS KEITH CONRAD For a squarefree integer d other than 1, let 1. Introduction K = Q[ d] = {x + y d : x, y Q}. This is called a quadratic field and it has degree 2 over Q. Similarly,
More informationPUTNAM TRAINING POLYNOMIALS. Exercises 1. Find a polynomial with integral coefficients whose zeros include 2 + 5.
PUTNAM TRAINING POLYNOMIALS (Last updated: November 17, 2015) Remark. This is a list of exercises on polynomials. Miguel A. Lerma Exercises 1. Find a polynomial with integral coefficients whose zeros include
More informationMonogenic Fields and Power Bases Michael Decker 12/07/07
Monogenic Fields and Power Bases Michael Decker 12/07/07 1 Introduction Let K be a number field of degree k and O K its ring of integers Then considering O K as a Zmodule, the nicest possible case is
More informationFactoring Polynomials
Factoring Polynomials Factoring Factoring is the process of writing a polynomial as the product of two or more polynomials. The factors of 6x 2 x 2 are 2x + 1 and 3x 2. In this section, we will be factoring
More informationU.C. Berkeley CS276: Cryptography Handout 0.1 Luca Trevisan January, 2009. Notes on Algebra
U.C. Berkeley CS276: Cryptography Handout 0.1 Luca Trevisan January, 2009 Notes on Algebra These notes contain as little theory as possible, and most results are stated without proof. Any introductory
More informationCopy in your notebook: Add an example of each term with the symbols used in algebra 2 if there are any.
Algebra 2  Chapter Prerequisites Vocabulary Copy in your notebook: Add an example of each term with the symbols used in algebra 2 if there are any. P1 p. 1 1. counting(natural) numbers  {1,2,3,4,...}
More information(0, 0) : order 1; (0, 1) : order 4; (0, 2) : order 2; (0, 3) : order 4; (1, 0) : order 2; (1, 1) : order 4; (1, 2) : order 2; (1, 3) : order 4.
11.01 List the elements of Z 2 Z 4. Find the order of each of the elements is this group cyclic? Solution: The elements of Z 2 Z 4 are: (0, 0) : order 1; (0, 1) : order 4; (0, 2) : order 2; (0, 3) : order
More informationA NOTE ON FINITE FIELDS
A NOTE ON FINITE FIELDS FATEMEH Y. MOKARI The main goal of this note is to study finite fields and their Galois groups. Since I define finite fields as subfields of algebraic closure of prime fields of
More informationPolynomial Factorization Algorithms over Number Fields
J. Symbolic Computation (2002) 11, 1 14 Polynomial Factorization Algorithms over Number Fields XavierFrançois Roblot roblot@euler.univlyon1.fr Institut Girard Desargues, Université Claude Bernard, Lyon,
More information9. POLYNOMIALS. Example 1: The expression a(x) = x 3 4x 2 + 7x 11 is a polynomial in x. The coefficients of a(x) are the numbers 1, 4, 7, 11.
9. POLYNOMIALS 9.1. Definition of a Polynomial A polynomial is an expression of the form: a(x) = a n x n + a n1 x n1 +... + a 1 x + a 0. The symbol x is called an indeterminate and simply plays the role
More informationGalois Theory. Richard Koch
Galois Theory Richard Koch April 2, 2015 Contents 1 Preliminaries 4 1.1 The Extension Problem; Simple Groups.................... 4 1.2 An Isomorphism Lemma............................. 5 1.3 Jordan Holder...................................
More informationEMBEDDING DEGREE OF HYPERELLIPTIC CURVES WITH COMPLEX MULTIPLICATION
EMBEDDING DEGREE OF HYPERELLIPTIC CURVES WITH COMPLEX MULTIPLICATION CHRISTIAN ROBENHAGEN RAVNSHØJ Abstract. Consider the Jacobian of a genus two curve defined over a finite field and with complex multiplication.
More informationQUADRATIC RECIPROCITY IN CHARACTERISTIC 2
QUADRATIC RECIPROCITY IN CHARACTERISTIC 2 KEITH CONRAD 1. Introduction Let F be a finite field. When F has odd characteristic, the quadratic reciprocity law in F[T ] (see [4, Section 3.2.2] or [5]) lets
More informationOn the generation of elliptic curves with 16 rational torsion points by Pythagorean triples
On the generation of elliptic curves with 16 rational torsion points by Pythagorean triples Brian Hilley Boston College MT695 Honors Seminar March 3, 2006 1 Introduction 1.1 Mazur s Theorem Let C be a
More informationA New Generic Digital Signature Algorithm
Groups Complex. Cryptol.? (????), 1 16 DOI 10.1515/GCC.????.??? de Gruyter???? A New Generic Digital Signature Algorithm Jennifer Seberry, Vinhbuu To and Dongvu Tonien Abstract. In this paper, we study
More information15. Symmetric polynomials
15. Symmetric polynomials 15.1 The theorem 15.2 First examples 15.3 A variant: discriminants 1. The theorem Let S n be the group of permutations of {1,, n}, also called the symmetric group on n things.
More informationArithmetic algorithms for cryptology 5 October 2015, Paris. Sieves. Razvan Barbulescu CNRS and IMJPRG. R. Barbulescu Sieves 0 / 28
Arithmetic algorithms for cryptology 5 October 2015, Paris Sieves Razvan Barbulescu CNRS and IMJPRG R. Barbulescu Sieves 0 / 28 Starting point Notations q prime g a generator of (F q ) X a (secret) integer
More informationFactoring Multivariate Polynomials over Finite Fields
Chapter 5 Factoring Multivariate Polynomials over Finite Fields Summary: We consider the deterministic complexity of the problem of polynomial factorization over finite fields  given a finite field F
More informationBasics of Polynomial Theory
3 Basics of Polynomial Theory 3.1 Polynomial Equations In geodesy and geoinformatics, most observations are related to unknowns parameters through equations of algebraic (polynomial) type. In cases where
More informationINTRODUCTION TO ARITHMETIC GEOMETRY (NOTES FROM 18.782, FALL 2009)
INTRODUCTION TO ARITHMETIC GEOMETRY (NOTES FROM 18.782, FALL 2009) BJORN POONEN (Please clear your browser s cache before reloading to make sure that you are always getting the current version.) 1. What
More informationAn Overview of Integer Factoring Algorithms. The Problem
An Overview of Integer Factoring Algorithms Manindra Agrawal IITK / NUS The Problem Given an integer n, find all its prime divisors as efficiently as possible. 1 A Difficult Problem No efficient algorithm
More informationModélisation et résolutions numérique et symbolique
Modélisation et résolutions numérique et symbolique via les logiciels Maple et Matlab Jeremy Berthomieu Mohab Safey El Din Stef Graillat Mohab.Safey@lip6.fr Outline Previous course: partial review of what
More informationMath 34560 Abstract Algebra I Questions for Section 23: Factoring Polynomials over a Field
Math 34560 Abstract Algebra I Questions for Section 23: Factoring Polynomials over a Field 1. Throughout this section, F is a field and F [x] is the ring of polynomials with coefficients in F. We will
More informationThe Division Algorithm for Polynomials Handout Monday March 5, 2012
The Division Algorithm for Polynomials Handout Monday March 5, 0 Let F be a field (such as R, Q, C, or F p for some prime p. This will allow us to divide by any nonzero scalar. (For some of the following,
More information6. Fields I. 1. Adjoining things
6. Fields I 6.1 Adjoining things 6.2 Fields of fractions, fields of rational functions 6.3 Characteristics, finite fields 6.4 Algebraic field extensions 6.5 Algebraic closures 1. Adjoining things The general
More informationSUM OF TWO SQUARES JAHNAVI BHASKAR
SUM OF TWO SQUARES JAHNAVI BHASKAR Abstract. I will investigate which numbers can be written as the sum of two squares and in how many ways, providing enough basic number theory so even the unacquainted
More informationShort Programs for functions on Curves
Short Programs for functions on Curves Victor S. Miller Exploratory Computer Science IBM, Thomas J. Watson Research Center Yorktown Heights, NY 10598 May 6, 1986 Abstract The problem of deducing a function
More informationFactoring pq 2 with Quadratic Forms: Nice Cryptanalyses
Factoring pq 2 with Quadratic Forms: Nice Cryptanalyses Phong Nguyễn http://www.di.ens.fr/~pnguyen & ASIACRYPT 2009 Joint work with G. Castagnos, A. Joux and F. Laguillaumie Summary Factoring A New Factoring
More informationMath 4310 Handout  Quotient Vector Spaces
Math 4310 Handout  Quotient Vector Spaces Dan Collins The textbook defines a subspace of a vector space in Chapter 4, but it avoids ever discussing the notion of a quotient space. This is understandable
More informationLinear Maps. Isaiah Lankham, Bruno Nachtergaele, Anne Schilling (February 5, 2007)
MAT067 University of California, Davis Winter 2007 Linear Maps Isaiah Lankham, Bruno Nachtergaele, Anne Schilling (February 5, 2007) As we have discussed in the lecture on What is Linear Algebra? one of
More informationMATH PROBLEMS, WITH SOLUTIONS
MATH PROBLEMS, WITH SOLUTIONS OVIDIU MUNTEANU These are free online notes that I wrote to assist students that wish to test their math skills with some problems that go beyond the usual curriculum. These
More information11 Ideals. 11.1 Revisiting Z
11 Ideals The presentation here is somewhat different than the text. In particular, the sections do not match up. We have seen issues with the failure of unique factorization already, e.g., Z[ 5] = O Q(
More informationAlex, I will take congruent numbers for one million dollars please
Alex, I will take congruent numbers for one million dollars please Jim L. Brown The Ohio State University Columbus, OH 4310 jimlb@math.ohiostate.edu One of the most alluring aspectives of number theory
More informationField Fundamentals. Chapter 3. 3.1 Field Extensions. 3.1.1 Definitions. 3.1.2 Lemma
Chapter 3 Field Fundamentals 3.1 Field Extensions If F is a field and F [X] is the set of all polynomials over F, that is, polynomials with coefficients in F, we know that F [X] is a Euclidean domain,
More information8430 HANDOUT 3: ELEMENTARY THEORY OF QUADRATIC FORMS
8430 HANDOUT 3: ELEMENTARY THEORY OF QUADRATIC FORMS PETE L. CLARK 1. Basic definitions An integral binary quadratic form is just a polynomial f = ax 2 + bxy + cy 2 with a, b, c Z. We define the discriminant
More informationSOLVING QUADRATIC EQUATIONS OVER POLYNOMIAL RINGS OF CHARACTERISTIC TWO
Publicacions Matemàtiques, Vol 42 (1998), 131 142. SOLVING QUADRATIC EQUATIONS OVER POLYNOMIAL RINGS OF CHARACTERISTIC TWO Jørgen Cherly, Luis Gallardo, Leonid Vaserstein and Ethel Wheland Abstract We
More informationFACTORING. n = 2 25 + 1. fall in the arithmetic sequence
FACTORING The claim that factorization is harder than primality testing (or primality certification) is not currently substantiated rigorously. As some sort of backward evidence that factoring is hard,
More informationELEMENTARY THOUGHTS ON DISCRETE LOGARITHMS. Carl Pomerance
ELEMENTARY THOUGHTS ON DISCRETE LOGARITHMS Carl Pomerance Given a cyclic group G with generator g, and given an element t in G, the discrete logarithm problem is that of computing an integer l with g l
More informationThe finite field with 2 elements The simplest finite field is
The finite field with 2 elements The simplest finite field is GF (2) = F 2 = {0, 1} = Z/2 It has addition and multiplication + and defined to be 0 + 0 = 0 0 + 1 = 1 1 + 0 = 1 1 + 1 = 0 0 0 = 0 0 1 = 0
More informationMath 231b Lecture 35. G. Quick
Math 231b Lecture 35 G. Quick 35. Lecture 35: Sphere bundles and the Adams conjecture 35.1. Sphere bundles. Let X be a connected finite cell complex. We saw that the Jhomomorphism could be defined by
More informationThe cyclotomic polynomials
The cyclotomic polynomials Notes by G.J.O. Jameson 1. The definition and general results We use the notation e(t) = e 2πit. Note that e(n) = 1 for integers n, e(s + t) = e(s)e(t) for all s, t. e( 1 ) =
More informationComputing Cubic Fields in QuasiLinear Time
Computing Cubic Fields in QuasiLinear Time K. Belabas Département de mathématiques (A2X) Université Bordeaux I 351, cours de la Libération, 33405 Talence (France) belabas@math.ubordeaux.fr Cubic fields
More informationRSA Question 2. Bob thinks that p and q are primes but p isn t. Then, Bob thinks Φ Bob :=(p1)(q1) = φ(n). Is this true?
RSA Question 2 Bob thinks that p and q are primes but p isn t. Then, Bob thinks Φ Bob :=(p1)(q1) = φ(n). Is this true? Bob chooses a random e (1 < e < Φ Bob ) such that gcd(e,φ Bob )=1. Then, d = e 1
More informationAlgebra I Vocabulary Cards
Algebra I Vocabulary Cards Table of Contents Expressions and Operations Natural Numbers Whole Numbers Integers Rational Numbers Irrational Numbers Real Numbers Absolute Value Order of Operations Expression
More informationFactoring Polynomials
Factoring Polynomials Sue Geller June 19, 2006 Factoring polynomials over the rational numbers, real numbers, and complex numbers has long been a standard topic of high school algebra. With the advent
More informationThe Sieve ReImagined: Integer Factorization Methods
The Sieve ReImagined: Integer Factorization Methods by Jennifer Smith A research paper presented to the University of Waterloo in partial fulfillment of the requirement for the degree of Master of Mathematics
More informationMA3D5 Galois theory. Miles Reid. Jan Mar 2004 printed Jan 2014
MA3D5 Galois theory Miles Reid Jan Mar 2004 printed Jan 2014 Contents 1 The theory of equations 3 1.1 Primitive question........................ 3 1.2 Quadratic equations....................... 3 1.3 The
More informationChapter 1. Search for Good Linear Codes in the Class of QuasiCyclic and Related Codes
Chapter 1 Search for Good Linear Codes in the Class of QuasiCyclic and Related Codes Nuh Aydin and Tsvetan Asamov Department of Mathematics, Kenyon College Gambier, OH, USA 43022 {aydinn,asamovt}@kenyon.edu
More informationMOP 2007 Black Group Integer Polynomials Yufei Zhao. Integer Polynomials. June 29, 2007 Yufei Zhao yufeiz@mit.edu
Integer Polynomials June 9, 007 Yufei Zhao yufeiz@mit.edu We will use Z[x] to denote the ring of polynomials with integer coefficients. We begin by summarizing some of the common approaches used in dealing
More informationALGEBRAIC NUMBER THEORY AND QUADRATIC RECIPROCITY
ALGEBRAIC NUMBER THEORY AND QUADRATIC RECIPROCITY HENRY COHN, JOSHUA GREENE, JONATHAN HANKE 1. Introduction These notes are from a series of lectures given by Henry Cohn during MIT s Independent Activities
More informationMATRIX ALGEBRA AND SYSTEMS OF EQUATIONS
MATRIX ALGEBRA AND SYSTEMS OF EQUATIONS Systems of Equations and Matrices Representation of a linear system The general system of m equations in n unknowns can be written a x + a 2 x 2 + + a n x n b a
More informationSOLVING POLYNOMIAL EQUATIONS
C SOLVING POLYNOMIAL EQUATIONS We will assume in this appendix that you know how to divide polynomials using long division and synthetic division. If you need to review those techniques, refer to an algebra
More informationGalois Theory III. 3.1. Splitting fields.
Galois Theory III. 3.1. Splitting fields. We know how to construct a field extension L of a given field K where a given irreducible polynomial P (X) K[X] has a root. We need a field extension of K where
More informationCyclotomic Extensions
Chapter 7 Cyclotomic Extensions A cyclotomic extension Q(ζ n ) of the rationals is formed by adjoining a primitive n th root of unity ζ n. In this chapter, we will find an integral basis and calculate
More informationa 11 x 1 + a 12 x 2 + + a 1n x n = b 1 a 21 x 1 + a 22 x 2 + + a 2n x n = b 2.
Chapter 1 LINEAR EQUATIONS 1.1 Introduction to linear equations A linear equation in n unknowns x 1, x,, x n is an equation of the form a 1 x 1 + a x + + a n x n = b, where a 1, a,..., a n, b are given
More informationContinued Fractions and the Euclidean Algorithm
Continued Fractions and the Euclidean Algorithm Lecture notes prepared for MATH 326, Spring 997 Department of Mathematics and Statistics University at Albany William F Hammond Table of Contents Introduction
More informationGALOIS THEORY AT WORK: CONCRETE EXAMPLES
GALOIS THEORY AT WORK: CONCRETE EXAMPLES KEITH CONRAD 1. Examples Example 1.1. The field extension Q(, 3)/Q is Galois of degree 4, so its Galois group has order 4. The elements of the Galois group are
More information