Factoring pq 2 with Quadratic Forms: Nice Cryptanalyses


 Angelina Summers
 2 years ago
 Views:
Transcription
1 Factoring pq 2 with Quadratic Forms: Nice Cryptanalyses Phong Nguyễn & ASIACRYPT 2009 Joint work with G. Castagnos, A. Joux and F. Laguillaumie
2 Summary Factoring A New Factoring Method for N=pq 2 Binary Quadratic Forms Coppersmith s rootfinding method Breaking NICE Cryptosystems
3 In a Nutshell Castagnos and Laguillaumie broke the main NICE cryptosystem at EUROCRYPT Here, a new keyrecovery attack on the whole NICE family: a factoring algorithm for N=pq 2.
4 Factoring
5 Factoring Perhaps the most famous computational problem in cryptology. Input: an integer N Output: the prime factors of N Any breakthrough could kill RSA.
6 Main Factoring Algorithms Exponential Methods Bruteforce: Õ(N 1/2 ) Pollard s p1, etc. : Õ(N 1/4 ) SchoofShanks: Õ(N 1/5 ) Subexponential Methods based on smoothness ECM, Quadratic Sieve: L(1/2) = eõ( log N) Number Field Sieve: L(1/3) = eõ( log N)
7 Crypto Modulus N=pq like RSA N=pq 2 for efficiency or special properties ESIGN (1980s). NICE (1990s), based on quadratic fields. OkamotoUchiyama s homomorphic encryption (1998).
8 Is N=pq 2 easier? No breakthrough: Linear speedup of ECM [PO96, Per01]. Õ(N 1/9 ) if p and q are balanced [BDH99] Math. Significance: finding the squarefree part is polytime equivalent to determining the ring of integers of a number field.
9 This Talk A New Factoring Method for N=pq 2 Exponential in the worst case: Õ(N 1/6 ) if p and q are balanced. Polytime if the regulator of Q( p) is unusually small, or if one is given a good quadratic form.
10 Overview We combine two methods: Lagrange s reduction of binary quadratic forms, to find a good form. A new homogeneous variant of Coppersmith s rootfinding methods [Cop96]: applied to any good form, it discloses the prime factor q.
11 Concretely We first find three integers a,b,c s.t. there exist small coprime integers x and y with q 2 =ax 2 +bxy+cy 2. Then we recover such integers x and y, which discloses the prime q.
12 Binary Quadratic Forms
13 Binary Quadratic Forms It s a triplet [a,b,c] of integers, which corresponds to F(x,y) = ax 2 +bxy+cy 2 over Z 2. Its discriminant is Δ=b 24ac: Δ<0: imaginary case, F definite F constant sign Δ>0: real case, F indefinite F s sign varies
14 Representation by Quadratic Forms Recall F(x,y) = ax 2 +bxy+cy 2 over Z 2 An integer k is (properly) represented by [a,b,c] if coprime (x,y) Z 2 s.t. F(x,y)=k. Ex: Any prime 1 mod 4 is represented by x 2 +y 2 (Fermat).
15 Factoring N=pq 2 by Representation Find a form F (with Δ=±N) that represents q 2 with small coefficients: q 2 =F(x,y) with x and y coprime and small. Then recover q 2 by finding x and y using a homogeneous gcd variant of Coppersmith s theorem on small roots.
16 Reduction of Binary Quadratic Forms Input: Form [a,b,c] of disc. Δ. Output: A reduced form [a,b,c ] of disc. Δ it represents the same integers as [a,b,c] a,b and usually c are small, say Δ. Lagrange s algorithm finds a reduced form in quadratic time.
17 Unicity of Reduction? Two cases: Imaginary: reduced forms are essentially unique. Real: there are many reduced forms, but they form a cycle.
18 Factoring pq 2 with Quadratic Forms
19 Representing q 2 Let N=pq 2. Among the forms with Δ=±N, some represent q 2 : for any odd integer k, consider [q 2,kq,(k 2 ±p)/4] with x=1,y=0: Δ=(kq) 24q 2 (k 2 ±p)/4 = ±pq 2
20 Size of Representation Assume one has a reduced form [a,b,c] with Δ=±N representing q 2. Then: q 2 =ax 2 +bxy+cy 2 where heuristically, a,b,c = Θ( Δ ) = Θ(N 1/2 ) And q 2 =Θ(N 2/3 ): if we re lucky, then x and y are O((N 2/3 /N 1/2 ) 1/2 ) = O(N 1/12 )
21 New Problem Now, we know N=pq 2 and [a,b,c] s.t. q 2 =ax 2 +bxy+cy 2 for some small coprime integers x and y: maybe as small as O(N 1/12 ). Can we find x and y, and therefore q?
22 Finding Small Roots using Lattices
23 Coppersmith s Small Roots In 1996, Coppersmith solved two problems in polynomial time: Given a monic polynomial F Z[X] and N Z, find all small x Z s.t. F(x) 0 (mod N). Given an irreducible polynomial F Z[X,Y], find all small (x,y) Z 2 s.t. P(x,y) = 0.
24 Yet a New Variant We developed another provable variant: Given a homogeneous bivariate F Z[X,Y] and N Z, find all small coprime x and y such that gcd(f(x,y),n) is large. For F(x,y)=ax 2 +bxy+cy 2 and gcd(f(x,y),n)=q 2, we obtain the bound N 1/9 for x and y, while we only needed N 1/12.
25 The Trick Very similar to the univariate case, because a homogeneous bivariate polynomial can be written as y d f(x/y).
26 Applications to NICE Cryptosystems
27 Something Missing How do we find a form representing q 2? This is related to NICE cryptosystems, which use quadratic fields, either imaginary or real.
28 ImaginaryNICE We obtain an attack different from [CL09]. The public key discloses a reduced form [a,b,c] with Δ=pq 2 that represents q 2, and with high proba, coprime x and y s.t. q 2 =ax 2 +bxy+cy 2 and x, y O(N 1/12+ε ). Such x and y can be recovered by our homogeneous variant.
29 RealNICE The public key is N=pq 2, but p is special: the regulator of Q( p) is unusually small. reg. = log of the smallest nontrivial unit (of the ring of integers). See Pell s equation: x 2 py 2 =1. Instead of Θ( p log p), it is poly(log p).
30 Attacking RealNICE There is a trivial form representing q 2 : the principal form [1, N,( N 2 N)/4]. But its representation coeffs won t be small. So, we walk along its cycle of reduced forms: all such forms represent q 2, and hopefully, some with small coeffs. But how many?
31 Attacking RealNICE reduction [q 2,kq,(k 2 p)/4] reduction [q 2,k q,(k 2 p)/4] Principal cycle good reduced form On the cycle, we expect at least q reduced forms to be good the density is Ω(1/R) where R = regulator of Q( p).
32 Experiments The attack works very well in practice for both imaginarynice and real NICE. Ex: a 768bit realnice modulus is factored in 1 min... faster than key generation.
33 CONCLUSION
34 Conclusion We presented a new factoring method tailored to N=pq 2. In the general case, it is exponential but rather different from other methods. In presence of hints, it becomes polynomial. This provides the first full cryptanalysis of NICE.
35 Heuristics? The method works in practice, but it was initially heuristic. Now fully provable thanks to good bounds on the coefficients of the representation of q 2. See [FullVersion] for the imaginary case. Recently announced by [BeGa09] for the real case.
36 Factoring N=pq 2 The general algorithm has complexity O(regulator of Q( p))*polytime. This regulator is usually Θ( p log p) but can be small: poly(log p) for RealNICE. The CohenLenstra heuristics predict that such p s with small regulator are negligible.
37 Open Problem Generalize the factoring algorithm: Can we factor more numbers of the form N=pq 2? Can we factor all of them (ESIGN)?
38 Thank you for your attention... Any question(s)?
RSA Attacks. By Abdulaziz Alrasheed and Fatima
RSA Attacks By Abdulaziz Alrasheed and Fatima 1 Introduction Invented by Ron Rivest, Adi Shamir, and Len Adleman [1], the RSA cryptosystem was first revealed in the August 1977 issue of Scientific American.
More informationFactoring pq 2 with Quadratic Forms: Nice Cryptanalyses
Factoring pq 2 with Quadratic Forms: Nice Cryptanalyses Guilhem Castagnos 1, Antoine Joux 2,3, Fabien Laguillaumie 4, and Phong Q. Nguyen 5 1 Institut de Mathématiques de Bordeaux Université Bordeaux 1
More informationRSA Question 2. Bob thinks that p and q are primes but p isn t. Then, Bob thinks Φ Bob :=(p1)(q1) = φ(n). Is this true?
RSA Question 2 Bob thinks that p and q are primes but p isn t. Then, Bob thinks Φ Bob :=(p1)(q1) = φ(n). Is this true? Bob chooses a random e (1 < e < Φ Bob ) such that gcd(e,φ Bob )=1. Then, d = e 1
More informationFaster deterministic integer factorisation
David Harvey (joint work with Edgar Costa, NYU) University of New South Wales 25th October 2011 The obvious mathematical breakthrough would be the development of an easy way to factor large prime numbers
More information(x + a) n = x n + a Z n [x]. Proof. If n is prime then the map
22. A quick primality test Prime numbers are one of the most basic objects in mathematics and one of the most basic questions is to decide which numbers are prime (a clearly related problem is to find
More informationFactoring. Factoring 1
Factoring Factoring 1 Factoring Security of RSA algorithm depends on (presumed) difficulty of factoring o Given N = pq, find p or q and RSA is broken o Rabin cipher also based on factoring Factoring like
More informationFactorization Methods: Very Quick Overview
Factorization Methods: Very Quick Overview Yuval Filmus October 17, 2012 1 Introduction In this lecture we introduce modern factorization methods. We will assume several facts from analytic number theory.
More informationArithmetic algorithms for cryptology 5 October 2015, Paris. Sieves. Razvan Barbulescu CNRS and IMJPRG. R. Barbulescu Sieves 0 / 28
Arithmetic algorithms for cryptology 5 October 2015, Paris Sieves Razvan Barbulescu CNRS and IMJPRG R. Barbulescu Sieves 0 / 28 Starting point Notations q prime g a generator of (F q ) X a (secret) integer
More informationQUANTUM COMPUTERS AND CRYPTOGRAPHY. Mark Zhandry Stanford University
QUANTUM COMPUTERS AND CRYPTOGRAPHY Mark Zhandry Stanford University Classical Encryption pk m c = E(pk,m) sk m = D(sk,c) m??? Quantum Computing Attack pk m aka Postquantum Crypto c = E(pk,m) sk m = D(sk,c)
More information3 1. Note that all cubes solve it; therefore, there are no more
Math 13 Problem set 5 Artin 11.4.7 Factor the following polynomials into irreducible factors in Q[x]: (a) x 3 3x (b) x 3 3x + (c) x 9 6x 6 + 9x 3 3 Solution: The first two polynomials are cubics, so if
More informationPrimality Testing and Factorization Methods
Primality Testing and Factorization Methods Eli Howey May 27, 2014 Abstract Since the days of Euclid and Eratosthenes, mathematicians have taken a keen interest in finding the nontrivial factors of integers,
More informationElementary factoring algorithms
Math 5330 Spring 013 Elementary factoring algorithms The RSA cryptosystem is founded on the idea that, in general, factoring is hard. Where as with Fermat s Little Theorem and some related ideas, one can
More informationMATH 168: FINAL PROJECT Troels Eriksen. 1 Introduction
MATH 168: FINAL PROJECT Troels Eriksen 1 Introduction In the later years cryptosystems using elliptic curves have shown up and are claimed to be just as secure as a system like RSA with much smaller key
More informationFactoring Algorithms
Institutionen för Informationsteknologi Lunds Tekniska Högskola Department of Information Technology Lund University Cryptology  Project 1 Factoring Algorithms The purpose of this project is to understand
More informationAn Overview of Integer Factoring Algorithms. The Problem
An Overview of Integer Factoring Algorithms Manindra Agrawal IITK / NUS The Problem Given an integer n, find all its prime divisors as efficiently as possible. 1 A Difficult Problem No efficient algorithm
More informationOn the coefficients of the polynomial in the number field sieve
On the coefficients of the polynomial in the number field sieve Yang Min a, Meng Qingshu b,, Wang Zhangyi b, Li Li a, Zhang Huanguo b a International School of Software, Wuhan University, Hubei, China,
More informationFactoring N = p r q for Large r
Factoring N = p r q for Large r Dan Boneh 1,GlennDurfee 1, and Nick HowgraveGraham 2 1 Computer Science Department, Stanford University, Stanford, CA 943059045 {dabo,gdurf}@cs.stanford.edu 2 Mathematical
More informationLecture 13  Basic Number Theory.
Lecture 13  Basic Number Theory. Boaz Barak March 22, 2010 Divisibility and primes Unless mentioned otherwise throughout this lecture all numbers are nonnegative integers. We say that A divides B, denoted
More informationStudy of algorithms for factoring integers and computing discrete logarithms
Study of algorithms for factoring integers and computing discrete logarithms First IndoFrench Workshop on Cryptography and Related Topics (IFW 2007) June 11 13, 2007 Paris, France Dr. Abhijit Das Department
More informationElements of Applied Cryptography Public key encryption
Network Security Elements of Applied Cryptography Public key encryption Public key cryptosystem RSA and the factorization problem RSA in practice Other asymmetric ciphers Asymmetric Encryption Scheme Let
More informationAdvanced Cryptography
Family Name:... First Name:... Section:... Advanced Cryptography Final Exam July 18 th, 2006 Start at 9:15, End at 12:00 This document consists of 12 pages. Instructions Electronic devices are not allowed.
More informationThe Quadratic Sieve Factoring Algorithm
The Quadratic Sieve Factoring Algorithm Eric Landquist MATH 488: Cryptographic Algorithms December 14, 2001 1 Introduction Mathematicians have been attempting to find better and faster ways to factor composite
More informationThe van Hoeij Algorithm for Factoring Polynomials
The van Hoeij Algorithm for Factoring Polynomials Jürgen Klüners Abstract In this survey we report about a new algorithm for factoring polynomials due to Mark van Hoeij. The main idea is that the combinatorial
More informationFinding Small Roots of Bivariate Integer Polynomial Equations Revisited
Finding Small Roots of Bivariate Integer Polynomial Equations Revisited JeanSébastien Coron Gemplus Card International 34 rue Guynemer, 92447 IssylesMoulineaux, France jeansebastien.coron@gemplus.com
More informationPublicKey Cryptanalysis 1: Introduction and Factoring
PublicKey Cryptanalysis 1: Introduction and Factoring Nadia Heninger University of Pennsylvania July 21, 2013 Adventures in Cryptanalysis Part 1: Introduction and Factoring. What is publickey crypto
More informationInteger Factorization using the Quadratic Sieve
Integer Factorization using the Quadratic Sieve Chad Seibert* Division of Science and Mathematics University of Minnesota, Morris Morris, MN 56567 seib0060@morris.umn.edu March 16, 2011 Abstract We give
More informationLecture 10: Distinct Degree Factoring
CS681 Computational Number Theory Lecture 10: Distinct Degree Factoring Instructor: Piyush P Kurur Scribe: Ramprasad Saptharishi Overview Last class we left of with a glimpse into distant degree factorization.
More informationFactoring Algorithms
Factoring Algorithms The p 1 Method and Quadratic Sieve November 17, 2008 () Factoring Algorithms November 17, 2008 1 / 12 Fermat s factoring method Fermat made the observation that if n has two factors
More informationCryptosystem. Diploma Thesis. Mol Petros. July 17, 2006. Supervisor: Stathis Zachos
s and s and Diploma Thesis Department of Electrical and Computer Engineering, National Technical University of Athens July 17, 2006 Supervisor: Stathis Zachos ol Petros (Department of Electrical and Computer
More informationMA2C03 Mathematics School of Mathematics, Trinity College Hilary Term 2016 Lecture 59 (April 1, 2016) David R. Wilkins
MA2C03 Mathematics School of Mathematics, Trinity College Hilary Term 2016 Lecture 59 (April 1, 2016) David R. Wilkins The RSA encryption scheme works as follows. In order to establish the necessary public
More informationFACTORING. n = 2 25 + 1. fall in the arithmetic sequence
FACTORING The claim that factorization is harder than primality testing (or primality certification) is not currently substantiated rigorously. As some sort of backward evidence that factoring is hard,
More informationDit proefschrift is goedgekeurd door de promotor: prof.dr.ir. H.C.A. van Tilborg Copromotor: dr. B.M.M. de Weger
Dit proefschrift is goedgekeurd door de promotor: prof.dr.ir. H.C.A. van Tilborg Copromotor: dr. B.M.M. de Weger CIPDATA LIBRARY TECHNISCHE UNIVERSITEIT EINDHOVEN Jochemsz, Ellen Cryptanalysis of RSA
More informationFactoring Polynomials
Factoring Polynomials Sue Geller June 19, 2006 Factoring polynomials over the rational numbers, real numbers, and complex numbers has long been a standard topic of high school algebra. With the advent
More informationPrimality  Factorization
Primality  Factorization Christophe Ritzenthaler November 9, 2009 1 Prime and factorization Definition 1.1. An integer p > 1 is called a prime number (nombre premier) if it has only 1 and p as divisors.
More informationLecture 13: Factoring Integers
CS 880: Quantum Information Processing 0/4/0 Lecture 3: Factoring Integers Instructor: Dieter van Melkebeek Scribe: Mark Wellons In this lecture, we review order finding and use this to develop a method
More informationU.C. Berkeley CS276: Cryptography Handout 0.1 Luca Trevisan January, 2009. Notes on Algebra
U.C. Berkeley CS276: Cryptography Handout 0.1 Luca Trevisan January, 2009 Notes on Algebra These notes contain as little theory as possible, and most results are stated without proof. Any introductory
More informationCIS 5371 Cryptography. 8. Encryption 
CIS 5371 Cryptography p y 8. Encryption  Asymmetric Techniques Textbook encryption algorithms In this chapter, security (confidentiality) is considered in the following sense: Allornothing secrecy.
More informationIndex Calculation Attacks on RSA Signature and Encryption
Index Calculation Attacks on RSA Signature and Encryption JeanSébastien Coron 1, Yvo Desmedt 2, David Naccache 1, Andrew Odlyzko 3, and Julien P. Stern 4 1 Gemplus Card International {jeansebastien.coron,david.naccache}@gemplus.com
More informationThe RSA Algorithm: A Mathematical History of the Ubiquitous Cryptological Algorithm
The RSA Algorithm: A Mathematical History of the Ubiquitous Cryptological Algorithm Maria D. Kelly December 7, 2009 Abstract The RSA algorithm, developed in 1977 by Rivest, Shamir, and Adlemen, is an algorithm
More informationCHAPTER SIX IRREDUCIBILITY AND FACTORIZATION 1. BASIC DIVISIBILITY THEORY
January 10, 2010 CHAPTER SIX IRREDUCIBILITY AND FACTORIZATION 1. BASIC DIVISIBILITY THEORY The set of polynomials over a field F is a ring, whose structure shares with the ring of integers many characteristics.
More informationCryptography: RSA and the discrete logarithm problem
Cryptography: and the discrete logarithm problem R. Hayden Advanced Maths Lectures Department of Computing Imperial College London February 2010 Public key cryptography Assymmetric cryptography two keys:
More informationA Tool Kit for Finding Small Roots of Bivariate Polynomials over the Integers
A Tool Kit for Finding Small Roots of Bivariate Polynomials over the Integers Johannes Blömer, Alexander May Faculty of Computer Science, Electrical Engineering and Mathematics University of Paderborn
More informationComputing Cubic Fields in QuasiLinear Time
Computing Cubic Fields in QuasiLinear Time K. Belabas Département de mathématiques (A2X) Université Bordeaux I 351, cours de la Libération, 33405 Talence (France) belabas@math.ubordeaux.fr Cubic fields
More informationit is easy to see that α = a
21. Polynomial rings Let us now turn out attention to determining the prime elements of a polynomial ring, where the coefficient ring is a field. We already know that such a polynomial ring is a UF. Therefore
More information3. Applications of Number Theory
3. APPLICATIONS OF NUMBER THEORY 163 3. Applications of Number Theory 3.1. Representation of Integers. Theorem 3.1.1. Given an integer b > 1, every positive integer n can be expresses uniquely as n = a
More informationOutline. Computer Science 418. Digital Signatures: Observations. Digital Signatures: Definition. Definition 1 (Digital signature) Digital Signatures
Outline Computer Science 418 Digital Signatures Mike Jacobson Department of Computer Science University of Calgary Week 12 1 Digital Signatures 2 Signatures via Public Key Cryptosystems 3 Provable 4 Mike
More informationWinter Camp 2011 Polynomials Alexander Remorov. Polynomials. Alexander Remorov alexanderrem@gmail.com
Polynomials Alexander Remorov alexanderrem@gmail.com Warmup Problem 1: Let f(x) be a quadratic polynomial. Prove that there exist quadratic polynomials g(x) and h(x) such that f(x)f(x + 1) = g(h(x)).
More informationCryptography and Network Security. Prof. D. Mukhopadhyay. Department of Computer Science and Engineering. Indian Institute of Technology, Kharagpur
Cryptography and Network Security Prof. D. Mukhopadhyay Department of Computer Science and Engineering Indian Institute of Technology, Kharagpur Module No. # 01 Lecture No. # 12 Block Cipher Standards
More information2 Primality and Compositeness Tests
Int. J. Contemp. Math. Sciences, Vol. 3, 2008, no. 33, 16351642 On Factoring R. A. Mollin Department of Mathematics and Statistics University of Calgary, Calgary, Alberta, Canada, T2N 1N4 http://www.math.ucalgary.ca/
More informationPolynomial Factoring. Ramesh Hariharan
Polynomial Factoring Ramesh Hariharan The Problem Factoring Polynomials overs Integers Factorization is unique (why?) (x^2 + 5x +6) (x+2)(x+3) Time: Polynomial in degree A Related Problem Factoring Integers
More informationLecture 3: OneWay Encryption, RSA Example
ICS 180: Introduction to Cryptography April 13, 2004 Lecturer: Stanislaw Jarecki Lecture 3: OneWay Encryption, RSA Example 1 LECTURE SUMMARY We look at a different security property one might require
More informationPRIMES 2017 Math Problem Set
Dear PRIMES applicant: PRIMES 2017 Math Problem Set This is the PRIMES 2017 Math Problem Set. Please send us your solutions as part of your PRIMES application by the application deadline (December 1, 2016).
More informationEfficient quantum algorithms for the principal ideal problem and class group problem in arbitrarydegree number fields
Efficient quantum algorithms for the principal ideal problem and class group problem in arbitrarydegree number fields Fang Song Institute for Quantum Computing University of Waterloo Joint work with JeanFrançois
More informationModern Factoring Algorithms
Modern Factoring Algorithms Kostas Bimpikis and Ragesh Jaiswal University of California, San Diego... both Gauss and lesser mathematicians may be justified in rejoicing that there is one science [number
More informationSome applications of LLL
Some applications of LLL a. Factorization of polynomials As the title Factoring polynomials with rational coefficients of the original paper in which the LLL algorithm was first published (Mathematische
More informationFACTORING SPARSE POLYNOMIALS
FACTORING SPARSE POLYNOMIALS Theorem 1 (Schinzel): Let r be a positive integer, and fix nonzero integers a 0,..., a r. Let F (x 1,..., x r ) = a r x r + + a 1 x 1 + a 0. Then there exist finite sets S
More informationCryptography and Network Security Chapter 8
Cryptography and Network Security Chapter 8 Fifth Edition by William Stallings Lecture slides by Lawrie Brown (with edits by RHB) Chapter 8 Introduction to Number Theory The Devil said to Daniel Webster:
More informationPublicKey Cryptanalysis
To appear in Recent Trends in Cryptography, I. Luengo (Ed.), Contemporary Mathematics series, AMSRSME, 2008. PublicKey Cryptanalysis Phong Q. Nguyen Abstract. In 1976, Diffie and Hellman introduced the
More informationcalculating the result modulo 3, as follows: p(0) = 0 3 + 0 + 1 = 1 0,
Homework #02, due 1/27/10 = 9.4.1, 9.4.2, 9.4.5, 9.4.6, 9.4.7. Additional problems recommended for study: (9.4.3), 9.4.4, 9.4.9, 9.4.11, 9.4.13, (9.4.14), 9.4.17 9.4.1 Determine whether the following polynomials
More informationH/wk 13, Solutions to selected problems
H/wk 13, Solutions to selected problems Ch. 4.1, Problem 5 (a) Find the number of roots of x x in Z 4, Z Z, any integral domain, Z 6. (b) Find a commutative ring in which x x has infinitely many roots.
More informationCommunications security
University of Roma Sapienza DIET Communications security Lecturer: Andrea Baiocchi DIET  University of Roma La Sapienza Email: andrea.baiocchi@uniroma1.it URL: http://net.infocom.uniroma1.it/corsi/index.htm
More informationInternational Journal of Information Technology, Modeling and Computing (IJITMC) Vol.1, No.3,August 2013
FACTORING CRYPTOSYSTEM MODULI WHEN THE COFACTORS DIFFERENCE IS BOUNDED Omar Akchiche 1 and Omar Khadir 2 1,2 Laboratory of Mathematics, Cryptography and Mechanics, Fstm, University of Hassan II MohammediaCasablanca,
More informationELEMENTARY THOUGHTS ON DISCRETE LOGARITHMS. Carl Pomerance
ELEMENTARY THOUGHTS ON DISCRETE LOGARITHMS Carl Pomerance Given a cyclic group G with generator g, and given an element t in G, the discrete logarithm problem is that of computing an integer l with g l
More informationModern Algebra Lecture Notes: Rings and fields set 4 (Revision 2)
Modern Algebra Lecture Notes: Rings and fields set 4 (Revision 2) Kevin Broughan University of Waikato, Hamilton, New Zealand May 13, 2010 Remainder and Factor Theorem 15 Definition of factor If f (x)
More informationProblem Set 7  Fall 2008 Due Tuesday, Oct. 28 at 1:00
18.781 Problem Set 7  Fall 2008 Due Tuesday, Oct. 28 at 1:00 Throughout this assignment, f(x) always denotes a polynomial with integer coefficients. 1. (a) Show that e 32 (3) = 8, and write down a list
More informationSTUDY ON ELLIPTIC AND HYPERELLIPTIC CURVE METHODS FOR INTEGER FACTORIZATION. Takayuki Yato. A Senior Thesis. Submitted to
STUDY ON ELLIPTIC AND HYPERELLIPTIC CURVE METHODS FOR INTEGER FACTORIZATION by Takayuki Yato A Senior Thesis Submitted to Department of Information Science Faculty of Science The University of Tokyo on
More informationINTEGER FACTORING USING SMALL ALGEBRAIC DEPENDENCIES
INTEGER FACTORING USING SMALL ALGEBRAIC DEPENDENCIES MANINDRA AGRAWAL, NITIN SAXENA, AND SHUBHAM SAHAI SRIVASTAVA Abstract Integer factoring is a curious number theory problem with wide applications in
More informationSolving Cubic Polynomials
Solving Cubic Polynomials 1.1 The general solution to the quadratic equation There are four steps to finding the zeroes of a quadratic polynomial. 1. First divide by the leading term, making the polynomial
More informationInteger Factorization
Integer Factorization Lecture given at the Joh. GutenbergUniversität, Mainz, July 23, 1992 by ÖYSTEIN J. RÖDSETH University of Bergen, Department of Mathematics, Allégt. 55, N5007 Bergen, Norway 1 Introduction
More informationDiscrete Mathematics, Chapter 4: Number Theory and Cryptography
Discrete Mathematics, Chapter 4: Number Theory and Cryptography Richard Mayr University of Edinburgh, UK Richard Mayr (University of Edinburgh, UK) Discrete Mathematics. Chapter 4 1 / 35 Outline 1 Divisibility
More informationPublic Key Cryptography: RSA and Lots of Number Theory
Public Key Cryptography: RSA and Lots of Number Theory Public vs. PrivateKey Cryptography We have just discussed traditional symmetric cryptography: Uses a single key shared between sender and receiver
More informationFaster Cryptographic Key Exchange on Hyperelliptic Curves
Faster Cryptographic Key Exchange on Hyperelliptic Curves No Author Given No Institute Given Abstract. We present a key exchange procedure based on divisor arithmetic for the real model of a hyperelliptic
More informationA Strategy for Finding Roots of Multivariate Polynomials with New Applications in Attacking RSA Variants
A Strategy for Finding Roots of Multivariate Polynomials with New Applications in Attacking RSA Variants Ellen Jochemsz 1 and Alexander May 2 1 Department of Mathematics and Computer Science, TU Eindhoven,
More informationNotes on Network Security Prof. Hemant K. Soni
Chapter 9 Public Key Cryptography and RSA PrivateKey Cryptography traditional private/secret/single key cryptography uses one key shared by both sender and receiver if this key is disclosed communications
More information4. BINARY QUADRATIC FORMS
4. BINARY QUADRATIC FORMS 4.1. What integers are represented by a given binary quadratic form?. An integer n is represented by the binary quadratic form ax + bxy + cy if there exist integers r and s such
More informationI. Introduction. MPRI Cours 2122. Lecture IV: Integer factorization. What is the factorization of a random number? II. Smoothness testing. F.
F. Morain École polytechnique MPRI cours 2122 20132014 3/22 F. Morain École polytechnique MPRI cours 2122 20132014 4/22 MPRI Cours 2122 I. Introduction Input: an integer N; logox F. Morain logocnrs
More informationz = i ± 9 2 2 so z = 2i or z = i are the solutions. (c) z 4 + 2z 2 + 4 = 0. By the quadratic formula,
91 Homework 8 solutions Exercises.: 18. Show that Z[i] is an integral domain, describe its field of fractions and find the units. There are two ways to show it is an integral domain. The first is to observe:
More informationCRYPTANALYSIS OF RSA USING ALGEBRAIC AND LATTICE METHODS
CRYPTANALYSIS OF RSA USING ALGEBRAIC AND LATTICE METHODS a dissertation submitted to the department of computer science and the committee on graduate studies of stanford university in partial fulfillment
More informationFactoring & Primality
Factoring & Primality Lecturer: Dimitris Papadopoulos In this lecture we will discuss the problem of integer factorization and primality testing, two problems that have been the focus of a great amount
More informationThe Method of Partial Fractions Math 121 Calculus II Spring 2015
Rational functions. as The Method of Partial Fractions Math 11 Calculus II Spring 015 Recall that a rational function is a quotient of two polynomials such f(x) g(x) = 3x5 + x 3 + 16x x 60. The method
More informationFACTORING LARGE NUMBERS, A GREAT WAY TO SPEND A BIRTHDAY
FACTORING LARGE NUMBERS, A GREAT WAY TO SPEND A BIRTHDAY LINDSEY R. BOSKO I would like to acknowledge the assistance of Dr. Michael Singer. His guidance and feedback were instrumental in completing this
More informationCryptography and Network Security Number Theory
Cryptography and Network Security Number Theory XiangYang Li Introduction to Number Theory Divisors b a if a=mb for an integer m b a and c b then c a b g and b h then b (mg+nh) for any int. m,n Prime
More informationFactoring polynomials over finite fields
Factoring polynomials over finite fields Summary and et questions 12 octobre 2011 1 Finite fields Let p an odd prime and let F p = Z/pZ the (unique up to automorphism) field with pelements. We want to
More informationFactoring Polynomials
Factoring Polynomials 412014 The opposite of multiplying polynomials is factoring. Why would you want to factor a polynomial? Let p(x) be a polynomial. p(c) = 0 is equivalent to x c dividing p(x). Recall
More informationUnique Factorization
Unique Factorization Waffle Mathcamp 2010 Throughout these notes, all rings will be assumed to be commutative. 1 Factorization in domains: definitions and examples In this class, we will study the phenomenon
More informationThe Mathematical Cryptography of the RSA Cryptosystem
The Mathematical Cryptography of the RSA Cryptosystem Abderrahmane Nitaj Laboratoire de Mathématiques Nicolas Oresme Université de Caen, France abderrahmanenitaj@unicaenfr http://wwwmathunicaenfr/~nitaj
More informationPublickey cryptography RSA
Publickey cryptography RSA NGUYEN Tuong Lan LIU Yi Master Informatique University Lyon 1 Objective: Our goal in the study is to understand the algorithm RSA, some existence attacks and implement in Java.
More informationFactoring Report. MEC Consulting (communicated via RSA Security) Dr.Preda Mihailescu
Factoring Report 2001 12 4 MEC Consulting (communicated via RSA Security) Dr.Preda Mihailescu Factoring Report Dr. Preda Mihailescu MEC Consulting Seestr. 78, 8700 Erlenbach Zürich Email: preda@upb.de
More informationHomework until Test #2
MATH31: Number Theory Homework until Test # Philipp BRAUN Section 3.1 page 43, 1. It has been conjectured that there are infinitely many primes of the form n. Exhibit five such primes. Solution. Five such
More informationCryptography and Network Security
Cryptography and Network Security Fifth Edition by William Stallings Chapter 9 Public Key Cryptography and RSA PrivateKey Cryptography traditional private/secret/single key cryptography uses one key shared
More information0.4 FACTORING POLYNOMIALS
36_.qxd /3/5 :9 AM Page 9 SECTION. Factoring Polynomials 9. FACTORING POLYNOMIALS Use special products and factorization techniques to factor polynomials. Find the domains of radical expressions. Use
More informationFactoring Trinomials: The ac Method
6.7 Factoring Trinomials: The ac Method 6.7 OBJECTIVES 1. Use the ac test to determine whether a trinomial is factorable over the integers 2. Use the results of the ac test to factor a trinomial 3. For
More informationCryptography and Network Security Chapter 9
Cryptography and Network Security Chapter 9 Fifth Edition by William Stallings Lecture slides by Lawrie Brown (with edits by RHB) Chapter 9 Public Key Cryptography and RSA Every Egyptian received two names,
More informationModule: Applied Cryptography. Professor Patrick McDaniel Fall 2010. CSE543  Introduction to Computer and Network Security
CSE543  Introduction to Computer and Network Security Module: Applied Cryptography Professor Patrick McDaniel Fall 2010 Page 1 Key Distribution/Agreement Key Distribution is the process where we assign
More informationFactHacks: RSA factorization in the real world
FactHacks: RSA factorization in the real world Daniel J. Bernstein University of Illinois at Chicago Technische Universiteit Eindhoven Nadia Heninger Microsoft Research New England Tanja Lange Technische
More informationHomework 5 Solutions
Homework 5 Solutions 4.2: 2: a. 321 = 256 + 64 + 1 = (01000001) 2 b. 1023 = 512 + 256 + 128 + 64 + 32 + 16 + 8 + 4 + 2 + 1 = (1111111111) 2. Note that this is 1 less than the next power of 2, 1024, which
More informationNumber Theoretic SETUPs for RSA Like Factoring Based Algorithms
Journal of Information Hiding and Multimedia Signal Processing c 2012 ISSN 20734212 Ubiquitous International Volume 3, Number 2, April 2012 Number Theoretic SETUPs for RSA Like Factoring Based Algorithms
More information5.1 The Remainder and Factor Theorems; Synthetic Division
5.1 The Remainder and Factor Theorems; Synthetic Division In this section you will learn to: understand the definition of a zero of a polynomial function use long and synthetic division to divide polynomials
More informationComputer and Network Security
MIT 6.857 Computer and Networ Security Class Notes 1 File: http://theory.lcs.mit.edu/ rivest/notes/notes.pdf Revision: December 2, 2002 Computer and Networ Security MIT 6.857 Class Notes by Ronald L. Rivest
More informationRuntime and Implementation of Factoring Algorithms: A Comparison
Runtime and Implementation of Factoring Algorithms: A Comparison Justin Moore CSC290 Cryptology December 20, 2003 Abstract Factoring composite numbers is not an easy task. It is classified as a hard algorithm,
More information