(0, 0) : order 1; (0, 1) : order 4; (0, 2) : order 2; (0, 3) : order 4; (1, 0) : order 2; (1, 1) : order 4; (1, 2) : order 2; (1, 3) : order 4.


 Frederick Dalton
 1 years ago
 Views:
Transcription
1 11.01 List the elements of Z 2 Z 4. Find the order of each of the elements is this group cyclic? Solution: The elements of Z 2 Z 4 are: (0, 0) : order 1; (0, 1) : order 4; (0, 2) : order 2; (0, 3) : order 4; (1, 0) : order 2; (1, 1) : order 4; (1, 2) : order 2; (1, 3) : order 4. This group is not cyclic since no element can generate the whole group List the elements of Z 3 Z 4. Find the order of each of the elements is this group cyclic? Solution: The elements of Z 3 Z 4 are: (0, 0) : order 1; (0, 1) : order 4; (0, 2) : order 2; (0, 3) : order 4; (1, 0) : order 3; (1, 1) : order 12; (1, 2) : order 6; (1, 3) : order 12; (2, 0) : order 3; (2, 1) : order 12; (2, 2) : order 6; (2, 3) : order 12. This group is cyclic since it can be generated by either of the elements (1, 1), (1, 3), (2, 1), and (2, 3). 18
2 11.13 Disregarding the order of the factors, write direct products of two or more groups of the form Z n so that the resulting product is isomorphic to Z 60 in as many ways as possible. Solution: There are 4 different ways: Z 60 = Z 2 2 Z 3 Z 5 = Z 4 Z 3 Z 5, Z 60 = Z Z 5 = Z 12 Z 5, Z 60 = Z Z 3 = Z 20 Z 3, Z 60 = Z 2 2 Z 3 5 = Z 4 Z a. The cyclic subgroup of Z 24 generated by 18 has order 4. b. Z 3 Z 4 is of order 12. c. The element (4, 2) of Z 12 Z 8 has order 12. d. The Klein 4group is isomorphic to Z 2 Z 2. e. Z 2 Z Z 4 has 8 elements of finite order Find the maximum possible order for some element of Z 4 Z 6. Solution: (1, 1) in Z 4 Z 6 has the maximum order lcm(4, 6) = Are the groups Z 8 Z 10 Z 24 and Z 4 Z 12 Z 40 isomorphic? Why or why not? Solution: We decompose both groups into indecomposible ones: Z 8 Z 10 Z 24 Z 8 (Z 2 Z 5 ) (Z 8 Z 3 ) = Z 2 (Z 8 ) 2 Z 3 Z 5, Z 4 Z 12 Z 40 Z 4 (Z 4 Z 3 ) (Z 8 Z 5 ) = (Z 4 ) 2 Z 8 Z 3 Z 5. So they are not isomorphic How many abelian groups (up to isomorphism) are there of order 24? of order 25? of order (24)(25)? Solution: 24 = = = So there are 3 abelian groups of order 24: Z 2 3 Z 3, Z 2 Z 2 2 Z 3, Z 2 Z 2 Z 2 Z = 5 2 = 5 5. So there are 2 abelian groups of order 25: Z 5 2, Z 5 Z 5. 19
3 Because gcd(24, 25) = 1, there are 3 2 = 6 abelian groups of order (24)(25): Z 2 3 Z 3 Z 5 2, Z 2 3 Z 3 Z 5 Z 5, Z 2 Z 2 2 Z 3 Z 5 2, Z 2 Z 2 2 Z 3 Z 5 Z 5, Z 2 Z 2 Z 2 Z 3 Z 5 2, Z 2 Z 2 Z 2 Z 3 Z 5 Z Mark each of the following true or false: a. (T) If G 1 and G 2 are any groups, then G 1 G 2 is always isomorphic to G 2 G 1. b. (T) Computation in an external direct product of groups is easy if you know how to compute in each component group. c. (F) Groups of finite order must be used to form an external direct product. d. (T) A group of prime order could not be the internal direct product of two proper nontrivial subgroups. e. (F) Z 2 Z 4 is isomorphic to Z 8. f. (F) Z 2 Z 4 is isomorphic to 8. g. (F) Z 3 Z 8 is isomorphic to 4. h. (F) Every element in Z 4 Z 8 has order 8. i. (F) The order of Z 12 Z 15 is 60. j. (T) Z m Z n has mn elements whether m and n are relatively prime or not a. How many subgroups of Z 5 Z 6 are isomorphic to Z 5 Z 6? Solution: No subgroup of Z 5 Z 6 is isomorphic to Z 5 Z 6. b. How many subgroups of Z Z are isomorphic to Z Z? Solution: There are infinite many subgroups of Z Z that are isomorphic to Z Z. They are of the form mz nz for positive integers m and n with m 1 or n Mark each of the following true or false: 20
4 a. (T) Every abelian group of prime order is cyclic. b. (F) Every abeliang roup of prime power order is cyclic. c. (F) Z 8 is generated by {4, 6}. d. (T) Z 8 is generated by {4, 5, 6}. e. (T) All finite abelian groups are classified up to isomorphism by Theorem f. (F) Any two finitely generated abelian gruops witht he same Betti number are isomorphic. g. (T) Every abelian group of order divisible by 5 contains a cyclic subgroup of order 5. h. (F) Every abelian group of order divisible by 4 contains a cyclic subgroup of order 4. i. (T) Every abelian group of order divisible by 6 contains a cyclic subgroup of order 6. j. (T) Every finite abelian group has a Betti number of Prove that a direct product of abelian groups is abelian. Solution: Suppose G i are abelian groups. We prove that n i=1 G i is an abelian group. Let (a 1,, a n ) and (b 1,, b n ) be elements of n i=1 G i. Then (a 1,, a n )(b 1,, b n ) = (a 1 b 1,, a n b n ) = (b 1 a 1,, b n a n ) = (b 1,, b n )(a 1,, a n ). This shows that the binary operation on n i=1 G i is commutative. So n i=1 G i is an abelian group Let G be an abelian group. Let H be the subset of G consisiting of the identity e together with all elements of G of order 2. Show that H is a subgroup of G. Solution: We show that H meets the criteria of a subgroup of G: 1. (Closed) If a, b H, then a 2 = b 2 = e. So (ab) 2 = a 2 b 2 = e. This implies that ab H. 2. (Identity) The identity is in H by definition. 21
5 3. (Inverse) If a H, then a 2 = e and so a 1 = a H. Therefore, H is a subgroup of G Prove that if a finite abelian group has order a power of a prime p, then the order of every element in the group is a power of p. Can the hypothesis of commutativity be dropped? Why, or why not? Solution: Suppose a group G has the order p k for some prime p and some positive integer k. Then the order m of every element a of G divides the order p k of G. So m = p r for some integer 0 r k. That is, the order of a is a power of p. The hypothesis of commutativity can be dropped, since we do not use the commutativity in the above argument. 22
GROUPS SUBGROUPS. Definition 1: An operation on a set G is a function : G G G.
Definition 1: GROUPS An operation on a set G is a function : G G G. Definition 2: A group is a set G which is equipped with an operation and a special element e G, called the identity, such that (i) the
More informationSUBGROUPS OF CYCLIC GROUPS. 1. Introduction In a group G, we denote the (cyclic) group of powers of some g G by
SUBGROUPS OF CYCLIC GROUPS KEITH CONRAD 1. Introduction In a group G, we denote the (cyclic) group of powers of some g G by g = {g k : k Z}. If G = g, then G itself is cyclic, with g as a generator. Examples
More information6.2 Permutations continued
6.2 Permutations continued Theorem A permutation on a finite set A is either a cycle or can be expressed as a product (composition of disjoint cycles. Proof is by (strong induction on the number, r, of
More informationTest1. Due Friday, March 13, 2015.
1 Abstract Algebra Professor M. Zuker Test1. Due Friday, March 13, 2015. 1. Euclidean algorithm and related. (a) Suppose that a and b are two positive integers and that gcd(a, b) = d. Find all solutions
More informationI. GROUPS: BASIC DEFINITIONS AND EXAMPLES
I GROUPS: BASIC DEFINITIONS AND EXAMPLES Definition 1: An operation on a set G is a function : G G G Definition 2: A group is a set G which is equipped with an operation and a special element e G, called
More informationGroups in Cryptography
Groups in Cryptography Çetin Kaya Koç http://cs.ucsb.edu/~koc/cs178 koc@cs.ucsb.edu Koç (http://cs.ucsb.edu/~koc) ucsb cs 178 intro to crypto winter 2013 1 / 13 Groups in Cryptography A set S and a binary
More informationArkansas Tech University MATH 4033: Elementary Modern Algebra Dr. Marcel B. Finan
Arkansas Tech University MATH 4033: Elementary Modern Algebra Dr. Marcel B. Finan 3 Binary Operations We are used to addition and multiplication of real numbers. These operations combine two real numbers
More informationCOMMUTATIVE RINGS. Definition: A domain is a commutative ring R that satisfies the cancellation law for multiplication:
COMMUTATIVE RINGS Definition: A commutative ring R is a set with two operations, addition and multiplication, such that: (i) R is an abelian group under addition; (ii) ab = ba for all a, b R (commutative
More information2. Let H and K be subgroups of a group G. Show that H K G if and only if H K or K H.
Math 307 Abstract Algebra Sample final examination questions with solutions 1. Suppose that H is a proper subgroup of Z under addition and H contains 18, 30 and 40, Determine H. Solution. Since gcd(18,
More informationAPPLICATIONS OF THE ORDER FUNCTION
APPLICATIONS OF THE ORDER FUNCTION LECTURE NOTES: MATH 432, CSUSM, SPRING 2009. PROF. WAYNE AITKEN In this lecture we will explore several applications of order functions including formulas for GCDs and
More informationGroup Theory. Contents
Group Theory Contents Chapter 1: Review... 2 Chapter 2: Permutation Groups and Group Actions... 3 Orbits and Transitivity... 6 Specific Actions The Right regular and coset actions... 8 The Conjugation
More informationSolutions to TOPICS IN ALGEBRA I.N. HERSTEIN. Part II: Group Theory
Solutions to TOPICS IN ALGEBRA I.N. HERSTEIN Part II: Group Theory No rights reserved. Any part of this work can be reproduced or transmitted in any form or by any means. Version: 1.1 Release: Jan 2013
More information(Q, ), (R, ), (C, ), where the star means without 0, (Q +, ), (R +, ), where the plussign means just positive numbers, and (U, ),
2 Examples of Groups 21 Some infinite abelian groups It is easy to see that the following are infinite abelian groups: Z, +), Q, +), R, +), C, +), where R is the set of real numbers and C is the set of
More informationADDITIVE GROUPS OF RINGS WITH IDENTITY
ADDITIVE GROUPS OF RINGS WITH IDENTITY SIMION BREAZ AND GRIGORE CĂLUGĂREANU Abstract. A ring with identity exists on a torsion Abelian group exactly when the group is bounded. The additive groups of torsionfree
More informationAbstract Algebra Cheat Sheet
Abstract Algebra Cheat Sheet 16 December 2002 By Brendan Kidwell, based on Dr. Ward Heilman s notes for his Abstract Algebra class. Notes: Where applicable, page numbers are listed in parentheses at the
More informationAlgebraic Structures II
MAS 305 Algebraic Structures II Notes 12 Autumn 2006 Factorization in integral domains Lemma If a, b, c are elements of an integral domain R and ab = ac then either a = 0 R or b = c. Proof ab = ac a(b
More informationAssignment 8: Selected Solutions
Section 4.1 Assignment 8: Selected Solutions 1. and 2. Express each permutation as a product of disjoint cycles, and identify their parity. (1) (1,9,2,3)(1,9,6,5)(1,4,8,7)=(1,4,8,7,2,3)(5,9,6), odd; (2)
More informationLecture 13  Basic Number Theory.
Lecture 13  Basic Number Theory. Boaz Barak March 22, 2010 Divisibility and primes Unless mentioned otherwise throughout this lecture all numbers are nonnegative integers. We say that A divides B, denoted
More informationA Hajós type result on factoring finite abelian groups by subsets II
Comment.Math.Univ.Carolin. 51,1(2010) 1 8 1 A Hajós type result on factoring finite abelian groups by subsets II Keresztély Corrádi, Sándor Szabó Abstract. It is proved that if a finite abelian group is
More information4. FIRST STEPS IN THE THEORY 4.1. A
4. FIRST STEPS IN THE THEORY 4.1. A Catalogue of All Groups: The Impossible Dream The fundamental problem of group theory is to systematically explore the landscape and to chart what lies out there. We
More informationChapter 7. Permutation Groups
Chapter 7 Permutation Groups () We started the study of groups by considering planar isometries In the previous chapter, we learnt that finite groups of planar isometries can only be cyclic or dihedral
More informationGroup Fundamentals. Chapter 1. 1.1 Groups and Subgroups. 1.1.1 Definition
Chapter 1 Group Fundamentals 1.1 Groups and Subgroups 1.1.1 Definition A group is a nonempty set G on which there is defined a binary operation (a, b) ab satisfying the following properties. Closure: If
More informationG = G 0 > G 1 > > G k = {e}
Proposition 49. 1. A group G is nilpotent if and only if G appears as an element of its upper central series. 2. If G is nilpotent, then the upper central series and the lower central series have the same
More informationKevin James. MTHSC 412 Section 2.4 Prime Factors and Greatest Comm
MTHSC 412 Section 2.4 Prime Factors and Greatest Common Divisor Greatest Common Divisor Definition Suppose that a, b Z. Then we say that d Z is a greatest common divisor (gcd) of a and b if the following
More informationGROUPS ACTING ON A SET
GROUPS ACTING ON A SET MATH 435 SPRING 2012 NOTES FROM FEBRUARY 27TH, 2012 1. Left group actions Definition 1.1. Suppose that G is a group and S is a set. A left (group) action of G on S is a rule for
More informationToday s Topics. Primes & Greatest Common Divisors
Today s Topics Primes & Greatest Common Divisors Prime representations Important theorems about primality Greatest Common Divisors Least Common Multiples Euclid s algorithm Once and for all, what are prime
More informationChapter 13: Basic ring theory
Chapter 3: Basic ring theory Matthew Macauley Department of Mathematical Sciences Clemson University http://www.math.clemson.edu/~macaule/ Math 42, Spring 24 M. Macauley (Clemson) Chapter 3: Basic ring
More informationFACTORING CERTAIN INFINITE ABELIAN GROUPS BY DISTORTED CYCLIC SUBSETS
International Electronic Journal of Algebra Volume 6 (2009) 95106 FACTORING CERTAIN INFINITE ABELIAN GROUPS BY DISTORTED CYCLIC SUBSETS Sándor Szabó Received: 11 November 2008; Revised: 13 March 2009
More information= 2 + 1 2 2 = 3 4, Now assume that P (k) is true for some fixed k 2. This means that
Instructions. Answer each of the questions on your own paper, and be sure to show your work so that partial credit can be adequately assessed. Credit will not be given for answers (even correct ones) without
More informationCONSEQUENCES OF THE SYLOW THEOREMS
CONSEQUENCES OF THE SYLOW THEOREMS KEITH CONRAD For a group theorist, Sylow s Theorem is such a basic tool, and so fundamental, that it is used almost without thinking, like breathing. Geoff Robinson 1.
More informationFactoring Polynomials
Factoring Polynomials Sue Geller June 19, 2006 Factoring polynomials over the rational numbers, real numbers, and complex numbers has long been a standard topic of high school algebra. With the advent
More informationHandout #1: Mathematical Reasoning
Math 101 Rumbos Spring 2010 1 Handout #1: Mathematical Reasoning 1 Propositional Logic A proposition is a mathematical statement that it is either true or false; that is, a statement whose certainty or
More informationIntroduction to Modern Algebra
Introduction to Modern Algebra David Joyce Clark University Version 0.0.6, 3 Oct 2008 1 1 Copyright (C) 2008. ii I dedicate this book to my friend and colleague Arthur Chou. Arthur encouraged me to write
More informationr + s = i + j (q + t)n; 2 rs = ij (qj + ti)n + qtn.
Chapter 7 Introduction to finite fields This chapter provides an introduction to several kinds of abstract algebraic structures, particularly groups, fields, and polynomials. Our primary interest is in
More informationGROUPS WITH TWO EXTREME CHARACTER DEGREES AND THEIR NORMAL SUBGROUPS
GROUPS WITH TWO EXTREME CHARACTER DEGREES AND THEIR NORMAL SUBGROUPS GUSTAVO A. FERNÁNDEZALCOBER AND ALEXANDER MORETÓ Abstract. We study the finite groups G for which the set cd(g) of irreducible complex
More information51 NUMBER THEORY: DIVISIBILITY; PRIME & COMPOSITE NUMBERS 210 f8
51 NUMBER THEORY: DIVISIBILITY; PRIME & COMPOSITE NUMBERS 210 f8 Note: Integers are the w hole numbers and their negatives (additive inverses). While our text discusses only whole numbers, all these ideas
More informationStrongly Principal Ideals of Rings with Involution
International Journal of Algebra, Vol. 2, 2008, no. 14, 685700 Strongly Principal Ideals of Rings with Involution Usama A. Aburawash and Wafaa M. Fakieh Department of Mathematics, Faculty of Science Alexandria
More informationThe Dirichlet Unit Theorem
Chapter 6 The Dirichlet Unit Theorem As usual, we will be working in the ring B of algebraic integers of a number field L. Two factorizations of an element of B are regarded as essentially the same if
More information4. CLASSES OF RINGS 4.1. Classes of Rings class operator Aclosed Example 1: product Example 2:
4. CLASSES OF RINGS 4.1. Classes of Rings Normally we associate, with any property, a set of objects that satisfy that property. But problems can arise when we allow sets to be elements of larger sets
More informationElements of Abstract Group Theory
Chapter 2 Elements of Abstract Group Theory Mathematics is a game played according to certain simple rules with meaningless marks on paper. David Hilbert The importance of symmetry in physics, and for
More informationElementary Number Theory We begin with a bit of elementary number theory, which is concerned
CONSTRUCTION OF THE FINITE FIELDS Z p S. R. DOTY Elementary Number Theory We begin with a bit of elementary number theory, which is concerned solely with questions about the set of integers Z = {0, ±1,
More informationLinear Algebra. A vector space (over R) is an ordered quadruple. such that V is a set; 0 V ; and the following eight axioms hold:
Linear Algebra A vector space (over R) is an ordered quadruple (V, 0, α, µ) such that V is a set; 0 V ; and the following eight axioms hold: α : V V V and µ : R V V ; (i) α(α(u, v), w) = α(u, α(v, w)),
More informationChapter 3. if 2 a i then location: = i. Page 40
Chapter 3 1. Describe an algorithm that takes a list of n integers a 1,a 2,,a n and finds the number of integers each greater than five in the list. Ans: procedure greaterthanfive(a 1,,a n : integers)
More informationGROUP ALGEBRAS. ANDREI YAFAEV
GROUP ALGEBRAS. ANDREI YAFAEV We will associate a certain algebra to a finite group and prove that it is semisimple. Then we will apply Wedderburn s theory to its study. Definition 0.1. Let G be a finite
More informationZORN S LEMMA AND SOME APPLICATIONS
ZORN S LEMMA AND SOME APPLICATIONS KEITH CONRAD 1. Introduction Zorn s lemma is a result in set theory that appears in proofs of some nonconstructive existence theorems throughout mathematics. We will
More informationSOLUTIONS FOR PROBLEM SET 2
SOLUTIONS FOR PROBLEM SET 2 A: There exist primes p such that p+6k is also prime for k = 1,2 and 3. One such prime is p = 11. Another such prime is p = 41. Prove that there exists exactly one prime p such
More informationFACTORING IN QUADRATIC FIELDS. 1. Introduction. This is called a quadratic field and it has degree 2 over Q. Similarly, set
FACTORING IN QUADRATIC FIELDS KEITH CONRAD For a squarefree integer d other than 1, let 1. Introduction K = Q[ d] = {x + y d : x, y Q}. This is called a quadratic field and it has degree 2 over Q. Similarly,
More informationIdeal Class Group and Units
Chapter 4 Ideal Class Group and Units We are now interested in understanding two aspects of ring of integers of number fields: how principal they are (that is, what is the proportion of principal ideals
More information5.1 Commutative rings; Integral Domains
5.1 J.A.Beachy 1 5.1 Commutative rings; Integral Domains from A Study Guide for Beginner s by J.A.Beachy, a supplement to Abstract Algebra by Beachy / Blair 23. Let R be a commutative ring. Prove the following
More informationAlgebra I: Section 3. Group Theory 3.1 Groups.
Notes: F.P. Greenleaf, 200008 Algebra I: Section 3. Group Theory 3.1 Groups. A group is a set G equipped with a binary operation mapping G G G. Such a product operation carries each ordered pair (x, y)
More informationMATHEMATICAL INDUCTION. Mathematical Induction. This is a powerful method to prove properties of positive integers.
MATHEMATICAL INDUCTION MIGUEL A LERMA (Last updated: February 8, 003) Mathematical Induction This is a powerful method to prove properties of positive integers Principle of Mathematical Induction Let P
More informationIntroduction to finite fields
Introduction to finite fields Topics in Finite Fields (Fall 2013) Rutgers University Swastik Kopparty Last modified: Monday 16 th September, 2013 Welcome to the course on finite fields! This is aimed at
More informationCryptography and Network Security. Prof. D. Mukhopadhyay. Department of Computer Science and Engineering. Indian Institute of Technology, Kharagpur
Cryptography and Network Security Prof. D. Mukhopadhyay Department of Computer Science and Engineering Indian Institute of Technology, Kharagpur Module No. # 01 Lecture No. # 12 Block Cipher Standards
More informationMATH10040 Chapter 2: Prime and relatively prime numbers
MATH10040 Chapter 2: Prime and relatively prime numbers Recall the basic definition: 1. Prime numbers Definition 1.1. Recall that a positive integer is said to be prime if it has precisely two positive
More informationGeometric Transformations
Geometric Transformations Definitions Def: f is a mapping (function) of a set A into a set B if for every element a of A there exists a unique element b of B that is paired with a; this pairing is denoted
More informationMathematics Course 111: Algebra I Part IV: Vector Spaces
Mathematics Course 111: Algebra I Part IV: Vector Spaces D. R. Wilkins Academic Year 19967 9 Vector Spaces A vector space over some field K is an algebraic structure consisting of a set V on which are
More informationOn the generation of elliptic curves with 16 rational torsion points by Pythagorean triples
On the generation of elliptic curves with 16 rational torsion points by Pythagorean triples Brian Hilley Boston College MT695 Honors Seminar March 3, 2006 1 Introduction 1.1 Mazur s Theorem Let C be a
More informationGalois representations with open image
Galois representations with open image Ralph Greenberg University of Washington Seattle, Washington, USA May 7th, 2011 Introduction This talk will be about representations of the absolute Galois group
More informationPrimality  Factorization
Primality  Factorization Christophe Ritzenthaler November 9, 2009 1 Prime and factorization Definition 1.1. An integer p > 1 is called a prime number (nombre premier) if it has only 1 and p as divisors.
More informationNotes on finite group theory. Peter J. Cameron
Notes on finite group theory Peter J. Cameron October 2013 2 Preface Group theory is a central part of modern mathematics. Its origins lie in geometry (where groups describe in a very detailed way the
More informationExamples and Exercises
Examples and Exercises Guerino Mazzola January 6, 00 Example of A Rigorous Proof Claim: Let a, b, c be sets. Then we have c (a b) = (c a) (c b). Proof. By definition of equality of sets, we have to prove
More informationSign changes of Hecke eigenvalues of Siegel cusp forms of degree 2
Sign changes of Hecke eigenvalues of Siegel cusp forms of degree 2 Ameya Pitale, Ralf Schmidt 2 Abstract Let µ(n), n > 0, be the sequence of Hecke eigenvalues of a cuspidal Siegel eigenform F of degree
More informationChapter 10. Abstract algebra
Chapter 10. Abstract algebra C.O.S. Sorzano Biomedical Engineering December 17, 2013 10. Abstract algebra December 17, 2013 1 / 62 Outline 10 Abstract algebra Sets Relations and functions Partitions and
More informationU.C. Berkeley CS276: Cryptography Handout 0.1 Luca Trevisan January, 2009. Notes on Algebra
U.C. Berkeley CS276: Cryptography Handout 0.1 Luca Trevisan January, 2009 Notes on Algebra These notes contain as little theory as possible, and most results are stated without proof. Any introductory
More information11 Ideals. 11.1 Revisiting Z
11 Ideals The presentation here is somewhat different than the text. In particular, the sections do not match up. We have seen issues with the failure of unique factorization already, e.g., Z[ 5] = O Q(
More informationGENERATING SETS KEITH CONRAD
GENERATING SETS KEITH CONRAD 1 Introduction In R n, every vector can be written as a unique linear combination of the standard basis e 1,, e n A notion weaker than a basis is a spanning set: a set of vectors
More informations = 1 + 2 +... + 49 + 50 s = 50 + 49 +... + 2 + 1 2s = 51 + 51 +... + 51 + 51 50 51. 2
1. Use Euler s trick to find the sum 1 + 2 + 3 + 4 + + 49 + 50. s = 1 + 2 +... + 49 + 50 s = 50 + 49 +... + 2 + 1 2s = 51 + 51 +... + 51 + 51 Thus, 2s = 50 51. Therefore, s = 50 51. 2 2. Consider the sequence
More informationThe fundamental group of the Hawaiian earring is not free (International Journal of Algebra and Computation Vol. 2, No. 1 (1992), 33 37) Bart de Smit
The fundamental group of the Hawaiian earring is not free Bart de Smit The fundamental group of the Hawaiian earring is not free (International Journal of Algebra and Computation Vol. 2, No. 1 (1992),
More information3. Equivalence Relations. Discussion
3. EQUIVALENCE RELATIONS 33 3. Equivalence Relations 3.1. Definition of an Equivalence Relations. Definition 3.1.1. A relation R on a set A is an equivalence relation if and only if R is reflexive, symmetric,
More information6 Commutators and the derived series. [x,y] = xyx 1 y 1.
6 Commutators and the derived series Definition. Let G be a group, and let x,y G. The commutator of x and y is [x,y] = xyx 1 y 1. Note that [x,y] = e if and only if xy = yx (since x 1 y 1 = (yx) 1 ). Proposition
More informationDEGREES OF ORDERS ON TORSIONFREE ABELIAN GROUPS
DEGREES OF ORDERS ON TORSIONFREE ABELIAN GROUPS ASHER M. KACH, KAREN LANGE, AND REED SOLOMON Abstract. We construct two computable presentations of computable torsionfree abelian groups, one of isomorphism
More informationBasic Proof Techniques
Basic Proof Techniques David Ferry dsf43@truman.edu September 13, 010 1 Four Fundamental Proof Techniques When one wishes to prove the statement P Q there are four fundamental approaches. This document
More informationUnique Factorization
Unique Factorization Waffle Mathcamp 2010 Throughout these notes, all rings will be assumed to be commutative. 1 Factorization in domains: definitions and examples In this class, we will study the phenomenon
More information8 Primes and Modular Arithmetic
8 Primes and Modular Arithmetic 8.1 Primes and Factors Over two millennia ago already, people all over the world were considering the properties of numbers. One of the simplest concepts is prime numbers.
More informationABSTRACT ALGEBRA: A STUDY GUIDE FOR BEGINNERS
ABSTRACT ALGEBRA: A STUDY GUIDE FOR BEGINNERS John A. Beachy Northern Illinois University 2014 ii J.A.Beachy This is a supplement to Abstract Algebra, Third Edition by John A. Beachy and William D. Blair
More informationMathematical Induction
Mathematical Induction (Handout March 8, 01) The Principle of Mathematical Induction provides a means to prove infinitely many statements all at once The principle is logical rather than strictly mathematical,
More informationPrime Factorization, Greatest Common Factor (GCF), and Least Common Multiple (LCM)
Prime Factorization, Greatest Common Factor (GCF), and Least Common Multiple (LCM) Definition of a Prime Number A prime number is a whole number greater than 1 AND can only be divided evenly by 1 and itself.
More informationFUNCTIONAL ANALYSIS LECTURE NOTES: QUOTIENT SPACES
FUNCTIONAL ANALYSIS LECTURE NOTES: QUOTIENT SPACES CHRISTOPHER HEIL 1. Cosets and the Quotient Space Any vector space is an abelian group under the operation of vector addition. So, if you are have studied
More informationTHE AVERAGE DEGREE OF AN IRREDUCIBLE CHARACTER OF A FINITE GROUP
THE AVERAGE DEGREE OF AN IRREDUCIBLE CHARACTER OF A FINITE GROUP by I. M. Isaacs Mathematics Department University of Wisconsin 480 Lincoln Dr. Madison, WI 53706 USA EMail: isaacs@math.wisc.edu Maria
More informationFactoring polynomials over finite fields
Factoring polynomials over finite fields Summary and et questions 12 octobre 2011 1 Finite fields Let p an odd prime and let F p = Z/pZ the (unique up to automorphism) field with pelements. We want to
More information26 Ideals and Quotient Rings
Arkansas Tech University MATH 4033: Elementary Modern Algebra Dr. Marcel B. Finan 26 Ideals and Quotient Rings In this section we develop some theory of rings that parallels the theory of groups discussed
More informationLet s just do some examples to get the feel of congruence arithmetic.
Basic Congruence Arithmetic Let s just do some examples to get the feel of congruence arithmetic. Arithmetic Mod 7 Just write the multiplication table. 0 1 2 3 4 5 6 0 0 0 0 0 0 0 0 1 0 1 2 3 4 5 6 2 0
More information4.1 Modules, Homomorphisms, and Exact Sequences
Chapter 4 Modules We always assume that R is a ring with unity 1 R. 4.1 Modules, Homomorphisms, and Exact Sequences A fundamental example of groups is the symmetric group S Ω on a set Ω. By Cayley s Theorem,
More informationMath 319 Problem Set #3 Solution 21 February 2002
Math 319 Problem Set #3 Solution 21 February 2002 1. ( 2.1, problem 15) Find integers a 1, a 2, a 3, a 4, a 5 such that every integer x satisfies at least one of the congruences x a 1 (mod 2), x a 2 (mod
More informationTuring Degrees and Definability of the Jump. Theodore A. Slaman. University of California, Berkeley. CJuly, 2005
Turing Degrees and Definability of the Jump Theodore A. Slaman University of California, Berkeley CJuly, 2005 Outline Lecture 1 Forcing in arithmetic Coding and decoding theorems Automorphisms of countable
More informationElementary Number Theory and Methods of Proof. CSE 215, Foundations of Computer Science Stony Brook University http://www.cs.stonybrook.
Elementary Number Theory and Methods of Proof CSE 215, Foundations of Computer Science Stony Brook University http://www.cs.stonybrook.edu/~cse215 1 Number theory Properties: 2 Properties of integers (whole
More informationAlex, I will take congruent numbers for one million dollars please
Alex, I will take congruent numbers for one million dollars please Jim L. Brown The Ohio State University Columbus, OH 4310 jimlb@math.ohiostate.edu One of the most alluring aspectives of number theory
More informationFACTORIZATION IN INTEGRAL DOMAINS
FACTORIZATION IN INTEGRAL DOMAINS PETE L. CLARK Contents Introduction 2 1. Norm functions 3 1.1. Weak multiplicative norms and multiplicative norms 3 1.2. Abstract number rings 3 1.3. Dirichlet rings 5
More informationUltraproducts and Applications I
Ultraproducts and Applications I Brent Cody Virginia Commonwealth University September 2, 2013 Outline Background of the Hyperreals Filters and Ultrafilters Construction of the Hyperreals The Transfer
More informationWOLLONGONG COLLEGE AUSTRALIA. Diploma in Information Technology
First Name: Family Name: Student Number: Class/Tutorial: WOLLONGONG COLLEGE AUSTRALIA A College of the University of Wollongong Diploma in Information Technology Final Examination Spring Session 2008 WUCT121
More informationModern Algebra Lecture Notes: Rings and fields set 4 (Revision 2)
Modern Algebra Lecture Notes: Rings and fields set 4 (Revision 2) Kevin Broughan University of Waikato, Hamilton, New Zealand May 13, 2010 Remainder and Factor Theorem 15 Definition of factor If f (x)
More informationCS 103X: Discrete Structures Homework Assignment 3 Solutions
CS 103X: Discrete Structures Homework Assignment 3 s Exercise 1 (20 points). On wellordering and induction: (a) Prove the induction principle from the wellordering principle. (b) Prove the wellordering
More informationSchemes for Deterministic Polynomial Factoring
Schemes for Deterministic Polynomial Factoring Gábor Ivanyos 1 Marek Karpinski 2 Nitin Saxena 3 1 Computer and Automation Research Institute, Budapest 2 Dept. of Computer Science, University of Bonn 3
More informationSECTION 102 Mathematical Induction
73 0 Sequences and Series 6. Approximate e 0. using the first five terms of the series. Compare this approximation with your calculator evaluation of e 0.. 6. Approximate e 0.5 using the first five terms
More informationMODULES OVER A PID KEITH CONRAD
MODULES OVER A PID KEITH CONRAD Every vector space over a field K that has a finite spanning set has a finite basis: it is isomorphic to K n for some n 0. When we replace the scalar field K with a commutative
More informationChapter 7: Products and quotients
Chapter 7: Products and quotients Matthew Macauley Department of Mathematical Sciences Clemson University http://www.math.clemson.edu/~macaule/ Math 42, Spring 24 M. Macauley (Clemson) Chapter 7: Products
More informationMODULAR ARITHMETIC. a smallest member. It is equivalent to the Principle of Mathematical Induction.
MODULAR ARITHMETIC 1 Working With Integers The usual arithmetic operations of addition, subtraction and multiplication can be performed on integers, and the result is always another integer Division, on
More informationABSTRACT ALGEBRA. Romyar Sharifi
ABSTRACT ALGEBRA Romyar Sharifi Contents Introduction 7 Part 1. A First Course 11 Chapter 1. Set theory 13 1.1. Sets and functions 13 1.2. Relations 15 1.3. Binary operations 19 Chapter 2. Group theory
More informationSo let us begin our quest to find the holy grail of real analysis.
1 Section 5.2 The Complete Ordered Field: Purpose of Section We present an axiomatic description of the real numbers as a complete ordered field. The axioms which describe the arithmetic of the real numbers
More informationminimal polyonomial Example
Minimal Polynomials Definition Let α be an element in GF(p e ). We call the monic polynomial of smallest degree which has coefficients in GF(p) and α as a root, the minimal polyonomial of α. Example: We
More information