# SOLUTIONS TO PROBLEM SET 3

Save this PDF as:

Size: px
Start display at page:

## Transcription

1 SOLUTIONS TO PROBLEM SET 3 MATTI ÅSTRAND The General Cubic Extension Denote L = k(α 1, α 2, α 3 ), F = k(a 1, a 2, a 3 ) and K = F (α 1 ). The polynomial f(x) = x 3 a 1 x 2 + a 2 x a 3 = (x α 1 )(x α 2 )(x α 3 ) is irreducible in F [x]. The symmetric group S 3 acts on L by permuting the α i, and fixes the field F. Problem 2. The field K = F (α 1 ) is generated over F by the element α 1, which is a root of the irreducible polynomial f(x) F [x], so K = F [t]/(f(t)) and has a basis {1, α 1, α 2 1} over F. Thus dim F K = 3. Let s now consider f(x) as a polynomial in K[x]. It has a linear factor corresponding to the root α 1 K, so it factors as f(x) = (x α 1 )g(x), where g(x) is a quadratic polynomial in K[x]. (Note: actually g(x) = (x α 2 )(x α 3 ), but this factoring takes place in L[x].) We get L from K by adding the roots of the quadratic polynomial g(x). Thus the extension is either quadratic (if the roots of g(x) are not in K) or trivial, i.e. L = K (if g(x) has roots already in K). Turns out that L is a quadratic extension of K: for this we need to show that the two fields are not equal. Let σ = (23) be the transposition swapping α 2 and α 3. Denote by L σ the fixed field of σ. Since σ obviously doesn t fix every element of L (e.g. it doesn t fix α 2 ) we see that L σ L. On the other hand, σ does fix everything in F and also α 1, so it fixes everything in K. We then have K L σ L. (Note that this also proves that K is exactly the fixed field L σ.) Now we know that dim K L = 2, and L has a basis {1, α 2 } over K. Then a basis for L over F would be {1, α 1, α 2 1, α 2, α 1 α 2, α 2 1α 2 }. (See problem 1 below) Problem 3. We saw in problem 2 above that dim F K = 3, so we only need to show that the automorphism group Aut(K/F ) is trivial. To see this, let σ Aut(K/F ) be such an automorphism. Since f(x) is a polynomial in F [x], the automorphism σ has to permute the roots of f(x), so σ(α 1 ) has to be a root of f(x). But in problem 2 above we saw that K doesn t contain the other roots α 2 and α 3 of f(x), so σ(α 1 ) = α 1. Let K σ be the fixed field of σ. Since σ has to fix F, we know that F K σ. But since σ(α 1 ) = α 1, we get α 1 K σ. Thus K σ F (α 1 ) = K, so σ fixes all of K, which means that σ = id. Thus Aut(K/F ) = {id}. 1

2 Problem 4. The roots of the polynomial f(x) = (x α 1 )(x α 2 )(x α 3 ) are exactly {α 1, α 2, α 3 }. The field L is by definition the smallest field containing the roots of f(x) (and k), so it s the smallest field where f(x) splits into linear factors. 2 The Cyclic Cubic Extension Let k be a field, and ξ k an element such that the polynomial κ(t) = t 3 ξ is irreducible. Problem 1. Let k κ = k[t]/(κ(t)) be the Kronecker construction. Denote by α the equivalence class of t in k κ, so that k κ = k(α) and α 3 = ξ. Assume first that k(α) doesn t contain a cube root of unity. Let σ Aut(k(α)/k) be an automorphism. Then σ(α) is also a root of κ(t), since σ permutes the roots of the polynomial κ(t) k[t]. But now we have ( σ(α) α ) 3 = σ(α)3 α 3 = ξ ξ = 1. Since k(α) doesn t have a (nontrivial) third root of unity, we have σ(α) = 1, so α σ(α) = α. But if the fixed field of σ contains both k and α, it has to be the whole field k(α), so σ = id. Assume now that k(α) does contain a cube root of unity µ. We have that (µα) 3 = µ 3 α 3 = 1 ξ = ξ, so µα is another root of κ(t). Similarly µ 2 α is a root of κ(t). Thus κ(t) has three roots in k(α), and κ(t) = (t α)(t µα)(t µ 2 α). Since both α and µα are roots of the irreducible polynomial κ(t), we have two isomorphisms k[t]/(κ(t)) = k(α): one sending the equivalence class of t to α, and another sending it to µα. Composing the first isomorphism with the inverse of the second one, we get an isomorphism from k(α) to itself, sending α to µα: k(α) k[t]/(κ(t)) k(α) This is a nontrivial automorphism of k(α) over k, so Aut(k(α)/k) is nontrivial. In fact, Aut(k(α)/k) = {id, σ, σ 2 } is a cyclic group of order 3. (For details of why this is true, see problem 3 of the last section.) Finally, if k(α) contains a cube root of unity, I claim that it has to be already in k. Otherwise µ is a root of the irreducible polynomial t 3 1 t 1 = t2 + t + 1, so the extension k(µ)/k has degree 2. But by problem 1 below, an extension of degree 3 cannot have a subextension of degree 2, since 3 is odd.

3 Problem 2. Let C 3 = {1, σ, σ 2 } be a cyclic group of order 3. Define a k-algebra homomorphism φ: k[t] k[c 3 ] by sending t to φ(t) = σ k[c 3 ]. Then φ(t 3 ) = σ 3 = 1, so t 3 1 Ker(φ). Thus we can define a homomorphism φ: k[t]/(t 3 1) k[c 3 ] by φ([g(t)]) = φ(g(t)) for any polynomial g(t) k[t]. Let s show that φ is an isomorphism. The ring k[t]/(t 3 1) has a k-basis {1, t, t 2 }, which is sent to {1, σ, σ 2 }. Thus φ sends a k-basis of k[t]/(t 3 1) to a k-basis of k[c 3 ], so it is bijective. This means that φ is an isomorphism between the two rings. Assume that k has a cube root of unity µ. Since the polynomial t 3 1 splits into coprime factors as t 3 1 = (t 1)(t µ)(t µ 2 ), we get k[c 3 ] = k[t]/(t 3 1) = k[t]/(t 1) k[t]/(t µ) k[t]/(t µ 2 ) = k k k. The automorphism from k[t]/(t 3 1) to k k k sends a polynomial p(t) to the triple (p(1), p(µ), p(µ 2 )). We want e 1 to be sent to (0, 1, 0), and we can notice that such a polynomial is Thus the desired element e 1 k[c 3 ] is (t 1)(t µ 2 ) (µ 1)(µ µ 2 ) = 1 3 (µ t2 + µ 2 t + 1). e 1 = µσ2 + µ 2 σ Problem 3. Let k be a field of characteristic 3. In k[t], the polynomial t 3 1 factors as (t 1) 3. Thus, the only root of t 3 1 is 1. Last 5 problems Let k be a field containing a cube root of unity µ, K be a field extension with dim k K = 3, and σ Aut(K/k) a nontrivial automorphism. Problem 1. Suppose that dim K L = m and dim L M = n. Choose {a 1,..., a m } to be a K-basis of L and {b 1,..., b n } to be an L-basis of M. I claim that now the mn elements in {a i b j i = 1,..., m, j = 1,..., n} are a K-basis for M. In particular, dim K M = mn. To prove that the (a i b j ) span M over K, let α M. Now α can be written as n α = c j b j j=1 for some c j L. Also the elements c j can be written as m c j = x ij a i 3

4 for some x ij K. Thus we have n m α = x ij a i b j, j=1 so the elements a i b j generate M over K. Finally, let s show that a i b j are linearly independent over K. Suppose that a linear combination n m ( x ij a i )b j = 0 j=1 for x ij K. But this is a linear combination in b j with the coefficients m x ij a i in the field L, so we must have m x ij a i = 0 for all i. But this means that x ij = 0, since a i are linearly independent. Problem 2. Pick an element α K, such that α / k. Now by the above problem 1 we see that K = k(α), since 3 = (dim k k(α))(dim k(α) K), and dim k k(α) 1. (With similar reasoning you can show that K σ = k.) Let f(t) k[t] be the minimal polynomial of α over k. Now σ permutes the roots of f(t). An automorphism is determined by where it maps α, in the following sense: If σ and τ are two automorphisms in Aut(K/k) such that σ(α) = τ(α), then σ = τ. This is because the fixed field of τ 1 σ contains k and α, so it is all of K, i.e. τ 1 σ = id. Since α has to map to one of the roots of f(t), there are at most 3 automorphisms in Aut(K/k). If σ had order 2, then the polynomial (t α)(t σ(α)) has its coefficients in K σ = k, and it has degree 2. This is a contradiction with the fact that the minimal polynomial of α has degree 3. Problem 3. The solution of problem 2 proves that Aut(K/k) is cyclic group of order 3. Problem 4. Let α K be a root of f(t). Then k(α) is a subfield of K which contains k but is not equal to k. By our standard dimension argument, we see that K = k(α), and deg(f(t)) = dim k k(α) = dim k K = 3. The (distinct) elements α, σ(α) and σ 2 (α) are roots of f(t), so f(t) is divisible by (t α)(t σ(α))(t σ 2 (α)). Because we already saw that deg f(t) = 3, we know that f(t) is constant multiple of the above polynomial. 4

5 5 Problem 5. The elements e i k[c 3 ] for i = 0, 1, 2 satisfy e 0 + e 1 + e 2 = 1 (σ µ i )e i = 0 e 2 i = e i e i e j = 0 for i j. We identify the group Aut(K/k) = {id, σ, σ 2 } with C 3. Then the elements of the group ring k[c 3 ] give maps K K, which are linear over k. The properties above imply that K = Im(e 0 ) Im(e 1 ) Im(e 2 ), and that Im(e 0 ) K σ = k. This means that Im(e 0 ) is (at most) 1-dimensional, so Im(e i ) has to be nonzero for either i = 1 or i = 2. Now, let η Im(e i ) be nonzero. Then σ(η) = µ i η η, so η / k. This implies that K = k(η) (by the standard dimension argument). Also, so η 3 K σ = k. σ(η 3 ) = (σ(η)) 3 = µ 3i η 3 = η 3,

### minimal polyonomial Example

Minimal Polynomials Definition Let α be an element in GF(p e ). We call the monic polynomial of smallest degree which has coefficients in GF(p) and α as a root, the minimal polyonomial of α. Example: We

### 1 = (a 0 + b 0 α) 2 + + (a m 1 + b m 1 α) 2. for certain elements a 0,..., a m 1, b 0,..., b m 1 of F. Multiplying out, we obtain

Notes on real-closed fields These notes develop the algebraic background needed to understand the model theory of real-closed fields. To understand these notes, a standard graduate course in algebra is

### ON GALOIS REALIZATIONS OF THE 2-COVERABLE SYMMETRIC AND ALTERNATING GROUPS

ON GALOIS REALIZATIONS OF THE 2-COVERABLE SYMMETRIC AND ALTERNATING GROUPS DANIEL RABAYEV AND JACK SONN Abstract. Let f(x) be a monic polynomial in Z[x] with no rational roots but with roots in Q p for

### Introduction to finite fields

Introduction to finite fields Topics in Finite Fields (Fall 2013) Rutgers University Swastik Kopparty Last modified: Monday 16 th September, 2013 Welcome to the course on finite fields! This is aimed at

### Galois Theory III. 3.1. Splitting fields.

Galois Theory III. 3.1. Splitting fields. We know how to construct a field extension L of a given field K where a given irreducible polynomial P (X) K[X] has a root. We need a field extension of K where

### it is easy to see that α = a

21. Polynomial rings Let us now turn out attention to determining the prime elements of a polynomial ring, where the coefficient ring is a field. We already know that such a polynomial ring is a UF. Therefore

### 7. Some irreducible polynomials

7. Some irreducible polynomials 7.1 Irreducibles over a finite field 7.2 Worked examples Linear factors x α of a polynomial P (x) with coefficients in a field k correspond precisely to roots α k [1] of

### Math 504, Fall 2013 HW 3

Math 504, Fall 013 HW 3 1. Let F = F (x) be the field of rational functions over the field of order. Show that the extension K = F(x 1/6 ) of F is equal to F( x, x 1/3 ). Show that F(x 1/3 ) is separable

### Proofs are short works of prose and need to be written in complete sentences, with mathematical symbols used where appropriate.

Advice for homework: Proofs are short works of prose and need to be written in complete sentences, with mathematical symbols used where appropriate. Even if a problem is a simple exercise that doesn t

### Factoring Cubic Polynomials

Factoring Cubic Polynomials Robert G. Underwood 1. Introduction There are at least two ways in which using the famous Cardano formulas (1545) to factor cubic polynomials present more difficulties than

### Introduction to Finite Fields (cont.)

Chapter 6 Introduction to Finite Fields (cont.) 6.1 Recall Theorem. Z m is a field m is a prime number. Theorem (Subfield Isomorphic to Z p ). Every finite field has the order of a power of a prime number

### ALGEBRA HW 5 CLAY SHONKWILER

ALGEBRA HW 5 CLAY SHONKWILER 510.5 Let F = Q(i). Prove that x 3 and x 3 3 are irreducible over F. Proof. If x 3 is reducible over F then, since it is a polynomial of degree 3, it must reduce into a product

### I. GROUPS: BASIC DEFINITIONS AND EXAMPLES

I GROUPS: BASIC DEFINITIONS AND EXAMPLES Definition 1: An operation on a set G is a function : G G G Definition 2: A group is a set G which is equipped with an operation and a special element e G, called

### 5. Linear algebra I: dimension

5. Linear algebra I: dimension 5.1 Some simple results 5.2 Bases and dimension 5.3 Homomorphisms and dimension 1. Some simple results Several observations should be made. Once stated explicitly, the proofs

### 2. Let H and K be subgroups of a group G. Show that H K G if and only if H K or K H.

Math 307 Abstract Algebra Sample final examination questions with solutions 1. Suppose that H is a proper subgroup of Z under addition and H contains 18, 30 and 40, Determine H. Solution. Since gcd(18,

### SOLVING POLYNOMIAL EQUATIONS BY RADICALS

SOLVING POLYNOMIAL EQUATIONS BY RADICALS Lee Si Ying 1 and Zhang De-Qi 2 1 Raffles Girls School (Secondary), 20 Anderson Road, Singapore 259978 2 Department of Mathematics, National University of Singapore,

### A NOTE ON FINITE FIELDS

A NOTE ON FINITE FIELDS FATEMEH Y. MOKARI The main goal of this note is to study finite fields and their Galois groups. Since I define finite fields as subfields of algebraic closure of prime fields of

### Module MA3411: Abstract Algebra Galois Theory Appendix Michaelmas Term 2013

Module MA3411: Abstract Algebra Galois Theory Appendix Michaelmas Term 2013 D. R. Wilkins Copyright c David R. Wilkins 1997 2013 Contents A Cyclotomic Polynomials 79 A.1 Minimum Polynomials of Roots of

### some algebra prelim solutions

some algebra prelim solutions David Morawski August 19, 2012 Problem (Spring 2008, #5). Show that f(x) = x p x + a is irreducible over F p whenever a F p is not zero. Proof. First, note that f(x) has no

### 50. Splitting Fields. 50. Splitting Fields 165

50. Splitting Fields 165 1. We should note that Q(x) is an algebraic closure of Q(x). We know that is transcendental over Q. Therefore, p must be transcendental over Q, for if it were algebraic, then (

### 6. Fields I. 1. Adjoining things

6. Fields I 6.1 Adjoining things 6.2 Fields of fractions, fields of rational functions 6.3 Characteristics, finite fields 6.4 Algebraic field extensions 6.5 Algebraic closures 1. Adjoining things The general

### CHAPTER SIX IRREDUCIBILITY AND FACTORIZATION 1. BASIC DIVISIBILITY THEORY

January 10, 2010 CHAPTER SIX IRREDUCIBILITY AND FACTORIZATION 1. BASIC DIVISIBILITY THEORY The set of polynomials over a field F is a ring, whose structure shares with the ring of integers many characteristics.

### H/wk 13, Solutions to selected problems

H/wk 13, Solutions to selected problems Ch. 4.1, Problem 5 (a) Find the number of roots of x x in Z 4, Z Z, any integral domain, Z 6. (b) Find a commutative ring in which x x has infinitely many roots.

### Proof. The map. G n i. where d is the degree of D.

7. Divisors Definition 7.1. We say that a scheme X is regular in codimension one if every local ring of dimension one is regular, that is, the quotient m/m 2 is one dimensional, where m is the unique maximal

### 3 1. Note that all cubes solve it; therefore, there are no more

Math 13 Problem set 5 Artin 11.4.7 Factor the following polynomials into irreducible factors in Q[x]: (a) x 3 3x (b) x 3 3x + (c) x 9 6x 6 + 9x 3 3 Solution: The first two polynomials are cubics, so if

### 13 Solutions for Section 6

13 Solutions for Section 6 Exercise 6.2 Draw up the group table for S 3. List, giving each as a product of disjoint cycles, all the permutations in S 4. Determine the order of each element of S 4. Solution

### Mathematics Course 111: Algebra I Part IV: Vector Spaces

Mathematics Course 111: Algebra I Part IV: Vector Spaces D. R. Wilkins Academic Year 1996-7 9 Vector Spaces A vector space over some field K is an algebraic structure consisting of a set V on which are

### Galois theory and the normal basis theorem

Galois theory and the normal basis theorem Arthur Ogus December 3, 2010 Recall the following key result: Theorem 1 (Independence of characters) Let M be a monoid and let K be a field. Then the set of monoid

### z = i ± 9 2 2 so z = 2i or z = i are the solutions. (c) z 4 + 2z 2 + 4 = 0. By the quadratic formula,

91 Homework 8 solutions Exercises.: 18. Show that Z[i] is an integral domain, describe its field of fractions and find the units. There are two ways to show it is an integral domain. The first is to observe:

### University of Lille I PC first year list of exercises n 7. Review

University of Lille I PC first year list of exercises n 7 Review Exercise Solve the following systems in 4 different ways (by substitution, by the Gauss method, by inverting the matrix of coefficients

### Generic Polynomials of Degree Three

Generic Polynomials of Degree Three Benjamin C. Wallace April 2012 1 Introduction In the nineteenth century, the mathematician Évariste Galois discovered an elegant solution to the fundamental problem

### Cyclotomic Extensions

Chapter 7 Cyclotomic Extensions A cyclotomic extension Q(ζ n ) of the rationals is formed by adjoining a primitive n th root of unity ζ n. In this chapter, we will find an integral basis and calculate

### calculating the result modulo 3, as follows: p(0) = 0 3 + 0 + 1 = 1 0,

Homework #02, due 1/27/10 = 9.4.1, 9.4.2, 9.4.5, 9.4.6, 9.4.7. Additional problems recommended for study: (9.4.3), 9.4.4, 9.4.9, 9.4.11, 9.4.13, (9.4.14), 9.4.17 9.4.1 Determine whether the following polynomials

### Finite fields: further properties

Chapter 4 Finite fields: further properties 8 Roots of unity in finite fields In this section, we will generalize the concept of roots of unity (well-known for complex numbers) to the finite field setting,

### 10 Splitting Fields. 2. The splitting field for x 3 2 over Q is Q( 3 2,ω), where ω is a primitive third root of 1 in C. Thus, since ω = 1+ 3

10 Splitting Fields We have seen how to construct a field K F such that K contains a root α of a given (irreducible) polynomial p(x) F [x], namely K = F [x]/(p(x)). We can extendthe procedure to build

### Matrix Representations of Linear Transformations and Changes of Coordinates

Matrix Representations of Linear Transformations and Changes of Coordinates 01 Subspaces and Bases 011 Definitions A subspace V of R n is a subset of R n that contains the zero element and is closed under

### THE FUNDAMENTAL THEOREM OF ALGEBRA VIA PROPER MAPS

THE FUNDAMENTAL THEOREM OF ALGEBRA VIA PROPER MAPS KEITH CONRAD 1. Introduction The Fundamental Theorem of Algebra says every nonconstant polynomial with complex coefficients can be factored into linear

### Chapter 4, Arithmetic in F [x] Polynomial arithmetic and the division algorithm.

Chapter 4, Arithmetic in F [x] Polynomial arithmetic and the division algorithm. We begin by defining the ring of polynomials with coefficients in a ring R. After some preliminary results, we specialize

### Modern Algebra Lecture Notes: Rings and fields set 4 (Revision 2)

Modern Algebra Lecture Notes: Rings and fields set 4 (Revision 2) Kevin Broughan University of Waikato, Hamilton, New Zealand May 13, 2010 Remainder and Factor Theorem 15 Definition of factor If f (x)

### 3. Some commutative algebra Definition 3.1. Let R be a ring. We say that R is graded, if there is a direct sum decomposition, M n, R n,

3. Some commutative algebra Definition 3.1. Let be a ring. We say that is graded, if there is a direct sum decomposition, = n N n, where each n is an additive subgroup of, such that d e d+e. The elements

### EXERCISES FOR THE COURSE MATH 570, FALL 2010

EXERCISES FOR THE COURSE MATH 570, FALL 2010 EYAL Z. GOREN (1) Let G be a group and H Z(G) a subgroup such that G/H is cyclic. Prove that G is abelian. Conclude that every group of order p 2 (p a prime

### Quadratic Equations in Finite Fields of Characteristic 2

Quadratic Equations in Finite Fields of Characteristic 2 Klaus Pommerening May 2000 english version February 2012 Quadratic equations over fields of characteristic 2 are solved by the well known quadratic

FINITE FIELDS KEITH CONRAD This handout discusses finite fields: how to construct them, properties of elements in a finite field, and relations between different finite fields. We write Z/(p) and F p interchangeably

### Math 345-60 Abstract Algebra I Questions for Section 23: Factoring Polynomials over a Field

Math 345-60 Abstract Algebra I Questions for Section 23: Factoring Polynomials over a Field 1. Throughout this section, F is a field and F [x] is the ring of polynomials with coefficients in F. We will

### Winter Camp 2011 Polynomials Alexander Remorov. Polynomials. Alexander Remorov alexanderrem@gmail.com

Polynomials Alexander Remorov alexanderrem@gmail.com Warm-up Problem 1: Let f(x) be a quadratic polynomial. Prove that there exist quadratic polynomials g(x) and h(x) such that f(x)f(x + 1) = g(h(x)).

### Introduction to polynomials

Worksheet 4.5 Polynomials Section 1 Introduction to polynomials A polynomial is an expression of the form p(x) = p 0 + p 1 x + p 2 x 2 + + p n x n, (n N) where p 0, p 1,..., p n are constants and x os

### Finite dimensional C -algebras

Finite dimensional C -algebras S. Sundar September 14, 2012 Throughout H, K stand for finite dimensional Hilbert spaces. 1 Spectral theorem for self-adjoint opertors Let A B(H) and let {ξ 1, ξ 2,, ξ n

### (a) Write each of p and q as a polynomial in x with coefficients in Z[y, z]. deg(p) = 7 deg(q) = 9

Homework #01, due 1/20/10 = 9.1.2, 9.1.4, 9.1.6, 9.1.8, 9.2.3 Additional problems for study: 9.1.1, 9.1.3, 9.1.5, 9.1.13, 9.2.1, 9.2.2, 9.2.4, 9.2.5, 9.2.6, 9.3.2, 9.3.3 9.1.1 (This problem was not assigned

### Introduction to Algebraic Geometry. Bézout s Theorem and Inflection Points

Introduction to Algebraic Geometry Bézout s Theorem and Inflection Points 1. The resultant. Let K be a field. Then the polynomial ring K[x] is a unique factorisation domain (UFD). Another example of a

### FACTORING IN QUADRATIC FIELDS. 1. Introduction. This is called a quadratic field and it has degree 2 over Q. Similarly, set

FACTORING IN QUADRATIC FIELDS KEITH CONRAD For a squarefree integer d other than 1, let 1. Introduction K = Q[ d] = {x + y d : x, y Q}. This is called a quadratic field and it has degree 2 over Q. Similarly,

### Assignment 8: Selected Solutions

Section 4.1 Assignment 8: Selected Solutions 1. and 2. Express each permutation as a product of disjoint cycles, and identify their parity. (1) (1,9,2,3)(1,9,6,5)(1,4,8,7)=(1,4,8,7,2,3)(5,9,6), odd; (2)

### Field Fundamentals. Chapter 3. 3.1 Field Extensions. 3.1.1 Definitions. 3.1.2 Lemma

Chapter 3 Field Fundamentals 3.1 Field Extensions If F is a field and F [X] is the set of all polynomials over F, that is, polynomials with coefficients in F, we know that F [X] is a Euclidean domain,

### Galois Theory. Richard Koch

Galois Theory Richard Koch April 2, 2015 Contents 1 Preliminaries 4 1.1 The Extension Problem; Simple Groups.................... 4 1.2 An Isomorphism Lemma............................. 5 1.3 Jordan Holder...................................

### GALOIS THEORY AT WORK: CONCRETE EXAMPLES

GALOIS THEORY AT WORK: CONCRETE EXAMPLES KEITH CONRAD 1. Examples Example 1.1. The field extension Q(, 3)/Q is Galois of degree 4, so its Galois group has order 4. The elements of the Galois group are

### The Mathematics of Origami

The Mathematics of Origami Sheri Yin June 3, 2009 1 Contents 1 Introduction 3 2 Some Basics in Abstract Algebra 4 2.1 Groups................................. 4 2.2 Ring..................................

### POLYNOMIAL RINGS AND UNIQUE FACTORIZATION DOMAINS

POLYNOMIAL RINGS AND UNIQUE FACTORIZATION DOMAINS RUSS WOODROOFE 1. Unique Factorization Domains Throughout the following, we think of R as sitting inside R[x] as the constant polynomials (of degree 0).

### Multiplicity. Chapter 6

Chapter 6 Multiplicity The fundamental theorem of algebra says that any polynomial of degree n 0 has exactly n roots in the complex numbers if we count with multiplicity. The zeros of a polynomial are

### ABSTRACT ALGEBRA: A STUDY GUIDE FOR BEGINNERS

ABSTRACT ALGEBRA: A STUDY GUIDE FOR BEGINNERS John A. Beachy Northern Illinois University 2014 ii J.A.Beachy This is a supplement to Abstract Algebra, Third Edition by John A. Beachy and William D. Blair

### Unique Factorization

Unique Factorization Waffle Mathcamp 2010 Throughout these notes, all rings will be assumed to be commutative. 1 Factorization in domains: definitions and examples In this class, we will study the phenomenon

### Factoring Polynomials

Factoring Polynomials Sue Geller June 19, 2006 Factoring polynomials over the rational numbers, real numbers, and complex numbers has long been a standard topic of high school algebra. With the advent

### x 3y 2z = 6 1.2) 2x 4y 3z = 8 3x + 6y + 8z = 5 x + 3y 2z + 5t = 4 1.5) 2x + 8y z + 9t = 9 3x + 5y 12z + 17t = 7 Linear Algebra-Lab 2

Linear Algebra-Lab 1 1) Use Gaussian elimination to solve the following systems x 1 + x 2 2x 3 + 4x 4 = 5 1.1) 2x 1 + 2x 2 3x 3 + x 4 = 3 3x 1 + 3x 2 4x 3 2x 4 = 1 x + y + 2z = 4 1.4) 2x + 3y + 6z = 10

### T ( a i x i ) = a i T (x i ).

Chapter 2 Defn 1. (p. 65) Let V and W be vector spaces (over F ). We call a function T : V W a linear transformation form V to W if, for all x, y V and c F, we have (a) T (x + y) = T (x) + T (y) and (b)

### Ideal Class Group and Units

Chapter 4 Ideal Class Group and Units We are now interested in understanding two aspects of ring of integers of number fields: how principal they are (that is, what is the proportion of principal ideals

### First and raw version 0.1 23. september 2013 klokken 13:45

The discriminant First and raw version 0.1 23. september 2013 klokken 13:45 One of the most significant invariant of an algebraic number field is the discriminant. One is tempted to say, apart from the

### Lemma 5.2. Let S be a set. (1) Let f and g be two permutations of S. Then the composition of f and g is a permutation of S.

Definition 51 Let S be a set bijection f : S S 5 Permutation groups A permutation of S is simply a Lemma 52 Let S be a set (1) Let f and g be two permutations of S Then the composition of f and g is a

### Since [L : K(α)] < [L : K] we know from the inductive assumption that [L : K(α)] s < [L : K(α)]. It follows now from Lemma 6.

Theorem 7.1. Let L K be a finite extension. Then a)[l : K] [L : K] s b) the extension L K is separable iff [L : K] = [L : K] s. Proof. Let M be a normal closure of L : K. Consider first the case when L

### Factorization in Polynomial Rings

Factorization in Polynomial Rings These notes are a summary of some of the important points on divisibility in polynomial rings from 17 and 18 of Gallian s Contemporary Abstract Algebra. Most of the important

### Algebra 2. Rings and fields. Finite fields. A.M. Cohen, H. Cuypers, H. Sterk. Algebra Interactive

2 Rings and fields A.M. Cohen, H. Cuypers, H. Sterk A.M. Cohen, H. Cuypers, H. Sterk 2 September 25, 2006 1 / 20 For p a prime number and f an irreducible polynomial of degree n in (Z/pZ)[X ], the quotient

### a 1 x + a 0 =0. (3) ax 2 + bx + c =0. (4)

ROOTS OF POLYNOMIAL EQUATIONS In this unit we discuss polynomial equations. A polynomial in x of degree n, where n 0 is an integer, is an expression of the form P n (x) =a n x n + a n 1 x n 1 + + a 1 x

### Review of Key Concepts: 1.2 Characteristics of Polynomial Functions

Review of Key Concepts: 1.2 Characteristics of Polynomial Functions Polynomial functions of the same degree have similar characteristics The degree and leading coefficient of the equation of the polynomial

### (January 14, 2009) End k (V ) End k (V/W )

(January 14, 29) [16.1] Let p be the smallest prime dividing the order of a finite group G. Show that a subgroup H of G of index p is necessarily normal. Let G act on cosets gh of H by left multiplication.

### Finite groups of uniform logarithmic diameter

arxiv:math/0506007v1 [math.gr] 1 Jun 005 Finite groups of uniform logarithmic diameter Miklós Abért and László Babai May 0, 005 Abstract We give an example of an infinite family of finite groups G n such

### Factoring polynomials over finite fields

Factoring polynomials over finite fields Summary and et questions 12 octobre 2011 1 Finite fields Let p an odd prime and let F p = Z/pZ the (unique up to automorphism) field with p-elements. We want to

### MA3D5 Galois theory. Miles Reid. Jan Mar 2004 printed Jan 2014

MA3D5 Galois theory Miles Reid Jan Mar 2004 printed Jan 2014 Contents 1 The theory of equations 3 1.1 Primitive question........................ 3 1.2 Quadratic equations....................... 3 1.3 The

### ASS.PROF.DR Thamer Information Theory 4th Class in Communication. Finite Field Arithmetic. (Galois field)

Finite Field Arithmetic (Galois field) Introduction: A finite field is also often known as a Galois field, after the French mathematician Pierre Galois. A Galois field in which the elements can take q

### fg = f g. 3.1.1. Ideals. An ideal of R is a nonempty k-subspace I R closed under multiplication by elements of R:

30 3. RINGS, IDEALS, AND GRÖBNER BASES 3.1. Polynomial rings and ideals The main object of study in this section is a polynomial ring in a finite number of variables R = k[x 1,..., x n ], where k is an

### Group Theory. Contents

Group Theory Contents Chapter 1: Review... 2 Chapter 2: Permutation Groups and Group Actions... 3 Orbits and Transitivity... 6 Specific Actions The Right regular and coset actions... 8 The Conjugation

### The Dirichlet Unit Theorem

Chapter 6 The Dirichlet Unit Theorem As usual, we will be working in the ring B of algebraic integers of a number field L. Two factorizations of an element of B are regarded as essentially the same if

### 1 VECTOR SPACES AND SUBSPACES

1 VECTOR SPACES AND SUBSPACES What is a vector? Many are familiar with the concept of a vector as: Something which has magnitude and direction. an ordered pair or triple. a description for quantities such

### Problem Set 7 - Fall 2008 Due Tuesday, Oct. 28 at 1:00

18.781 Problem Set 7 - Fall 2008 Due Tuesday, Oct. 28 at 1:00 Throughout this assignment, f(x) always denotes a polynomial with integer coefficients. 1. (a) Show that e 32 (3) = 8, and write down a list

### Factorization Algorithms for Polynomials over Finite Fields

Degree Project Factorization Algorithms for Polynomials over Finite Fields Sajid Hanif, Muhammad Imran 2011-05-03 Subject: Mathematics Level: Master Course code: 4MA11E Abstract Integer factorization is

### GROUPS ACTING ON A SET

GROUPS ACTING ON A SET MATH 435 SPRING 2012 NOTES FROM FEBRUARY 27TH, 2012 1. Left group actions Definition 1.1. Suppose that G is a group and S is a set. A left (group) action of G on S is a rule for

### 9. POLYNOMIALS. Example 1: The expression a(x) = x 3 4x 2 + 7x 11 is a polynomial in x. The coefficients of a(x) are the numbers 1, 4, 7, 11.

9. POLYNOMIALS 9.1. Definition of a Polynomial A polynomial is an expression of the form: a(x) = a n x n + a n-1 x n-1 +... + a 1 x + a 0. The symbol x is called an indeterminate and simply plays the role

### Finite Fields and Error-Correcting Codes

Lecture Notes in Mathematics Finite Fields and Error-Correcting Codes Karl-Gustav Andersson (Lund University) (version 1.013-16 September 2015) Translated from Swedish by Sigmundur Gudmundsson Contents

### 3 Congruence arithmetic

3 Congruence arithmetic 3.1 Congruence mod n As we said before, one of the most basic tasks in number theory is to factor a number a. How do we do this? We start with smaller numbers and see if they divide

### GROUP ALGEBRAS. ANDREI YAFAEV

GROUP ALGEBRAS. ANDREI YAFAEV We will associate a certain algebra to a finite group and prove that it is semisimple. Then we will apply Wedderburn s theory to its study. Definition 0.1. Let G be a finite

### 15. Symmetric polynomials

15. Symmetric polynomials 15.1 The theorem 15.2 First examples 15.3 A variant: discriminants 1. The theorem Let S n be the group of permutations of {1,, n}, also called the symmetric group on n things.

### 8.1 Examples, definitions, and basic properties

8 De Rham cohomology Last updated: May 21, 211. 8.1 Examples, definitions, and basic properties A k-form ω Ω k (M) is closed if dω =. It is exact if there is a (k 1)-form σ Ω k 1 (M) such that dσ = ω.

### Linear Algebra I. Ronald van Luijk, 2012

Linear Algebra I Ronald van Luijk, 2012 With many parts from Linear Algebra I by Michael Stoll, 2007 Contents 1. Vector spaces 3 1.1. Examples 3 1.2. Fields 4 1.3. The field of complex numbers. 6 1.4.

### MA106 Linear Algebra lecture notes

MA106 Linear Algebra lecture notes Lecturers: Martin Bright and Daan Krammer Warwick, January 2011 Contents 1 Number systems and fields 3 1.1 Axioms for number systems......................... 3 2 Vector

### FIBER PRODUCTS AND ZARISKI SHEAVES

FIBER PRODUCTS AND ZARISKI SHEAVES BRIAN OSSERMAN 1. Fiber products and Zariski sheaves We recall the definition of a fiber product: Definition 1.1. Let C be a category, and X, Y, Z objects of C. Fix also

### Galois representations with open image

Galois representations with open image Ralph Greenberg University of Washington Seattle, Washington, USA May 7th, 2011 Introduction This talk will be about representations of the absolute Galois group

### SUBGROUPS OF CYCLIC GROUPS. 1. Introduction In a group G, we denote the (cyclic) group of powers of some g G by

SUBGROUPS OF CYCLIC GROUPS KEITH CONRAD 1. Introduction In a group G, we denote the (cyclic) group of powers of some g G by g = {g k : k Z}. If G = g, then G itself is cyclic, with g as a generator. Examples

### 1 Homework 1. [p 0 q i+j +... + p i 1 q j+1 ] + [p i q j ] + [p i+1 q j 1 +... + p i+j q 0 ]

1 Homework 1 (1) Prove the ideal (3,x) is a maximal ideal in Z[x]. SOLUTION: Suppose we expand this ideal by including another generator polynomial, P / (3, x). Write P = n + x Q with n an integer not

GENERATING SETS KEITH CONRAD 1 Introduction In R n, every vector can be written as a unique linear combination of the standard basis e 1,, e n A notion weaker than a basis is a spanning set: a set of vectors

### Worksheet 4.7. Polynomials. Section 1. Introduction to Polynomials. A polynomial is an expression of the form

Worksheet 4.7 Polynomials Section 1 Introduction to Polynomials A polynomial is an expression of the form p(x) = p 0 + p 1 x + p 2 x 2 + + p n x n (n N) where p 0, p 1,..., p n are constants and x is a

### Linear Maps. Isaiah Lankham, Bruno Nachtergaele, Anne Schilling (February 5, 2007)

MAT067 University of California, Davis Winter 2007 Linear Maps Isaiah Lankham, Bruno Nachtergaele, Anne Schilling (February 5, 2007) As we have discussed in the lecture on What is Linear Algebra? one of

### 17. Inner product spaces Definition 17.1. Let V be a real vector space. An inner product on V is a function

17. Inner product spaces Definition 17.1. Let V be a real vector space. An inner product on V is a function, : V V R, which is symmetric, that is u, v = v, u. bilinear, that is linear (in both factors):