ABSTRACT KEYWORDS. Term structure, duration, uncertain cash flow, variable rates of return JEL codes: C33, E43 1. INTRODUCTION


 George Young
 3 years ago
 Views:
Transcription
1 THE VALUATION AND HEDGING OF VARIABLE RATE SAVINGS ACCOUNTS BY FRANK DE JONG 1 AND JACCO WIELHOUWER ABSTRACT Variable rae savings accouns have wo main feaures. The ineres rae paid on he accoun is variable and deposis can be invesed and wihdrawn a any ime. However, cusomer behaviour is no fully raional and wihdrawals of balances are ofen performed wih a delay. This paper focuses on measuring he ineres rae risk of variable rae savings accouns on a value basis (duraion) and analyzes he problem how o hedge hese accouns. In order o model he embedded opions and he cusomer behaviour we implemen a parial adjusmen specificaion. The ineres rae policy of he bank is described in an errorcorrecion model. KEYWORDS Term srucure, duraion, uncerain cash flow, variable raes of reurn JEL codes: C33, E43 1. INTRODUCTION A major par of privae savings is deposied in variable rae saving accouns, in he US also known as demand deposis. Typically, deposis can be invesed and wihdrawn a any ime a no cos, which makes a savings accoun look similar o a money marke accoun. However, he ineres rae paid on savings accouns is ofen differen from he money marke rae. In Europe, he ineres rae paid on he savings accoun can acually be higher or lower han he money marke rae. Even when hese ineres raes differ, deposiors do no immediaely wihdraw heir money from savings accouns when raes on * We hank Dennis Bams, Joos Driessen, D. Wilkie, paricipans a he AFIR colloquium, and wo anonymous referees for commens on previous versions of he paper. The usual disclaimer applies. 1 Universiy of Amserdam ING Group and CenER, Tilburg Universiy ASTIN BULLETIN, Vol. 33, No., 3, pp
2 384 FRANK DE JONG AND JACCO WIELHOUWER alernaive invesmens are higher. Whaever he causes of his behaviour (marke imperfecions, ransacion coss or oher), hese characerisics imply ha he value of he savings accouns from he poin of view of he issuing bank may be differen from he nominal value of he deposis. In he lieraure, he valuaion of savings accouns is well sudied. For example, Huchison and Pennacchi (1996), Jarrow and Van Devener (1998) and Selvaggio (1996) provide models for he valuaion of such producs. The firs wo papers build on he (exended) Vasicek (1977) model, whereas he laer paper uses a more radiional Ne Presen Value approach. In all hese papers here is lile explici modeling of he dynamic evoluion of he ineres rae paid on he accoun and he balance, and how his evoluion depends on changes in he erm srucure of marke ineres raes. For example, Jarrow and van Devener s (1998) model is compleely saic in he sense ha he ineres rae paid on he accoun and he balance are linear funcions of he curren spo rae. In pracice, i is well known ha ineres raes and balances are raher sluggish and ofen do no respond immediaely o changes in he reurn on alernaive invesmens, such as he money marke rae. Typically, he ineres rae paid on he accoun is se by he bank and he balance is deermined by clien behaviour. The balance depends, among oher hings, on he ineres rae bu also on he reurn on alernaive invesmens. Because he pahs of fuure ineres raes and he adjusmen of he balance deermine he value of he savings accouns, an analysis of dynamic adjusmen paerns is imporan. In his paper, we analyze he valuaion and hedging of savings deposis wih an explici model for he adjusmen of ineres raes and balances o changes in he money marke rae. A recen paper by Janosi, Jarrow and Zullo (JJZ, 1999) presens an empirical analysis of he Jarrow and van Devener (1998) model. They exend he saic heoreical model o a dynamic empirical model, ha akes he gradual adjusmen of ineres raes and balance ino accoun. Our approach differs from he JJZ paper in several respecs. Firsly, we rea he erm srucure of discoun raes as exogenous and calculae he value of he savings accoun by a simple Ne Presen Value equaion. This approach, suggesed by Selvaggio (1996) leads o simple valuaion and duraion formulas, and is applicable wihou assuming a paricular erm srucure model. The drawback of he NPV approach is ha we have o assume ha he risk premium implici in he discoun facor is consan, bu his may be a good firs approximaion because we wan o concenrae on he effecs of he dynamic adjusmen of he ineres rae paid on he accoun and balance and no on erm srucure effecs. Secondly, a difference beween he JJZ model and ours is he modeling of he long run effecs of discoun rae shocks. In our model, here is a long run equilibrium, in which he difference beween he ineres rae paid on he accoun and he money marke rae is consan, and he balance of he savings accoun is also consan (possibly around a rend). Shor erm deviaions from hese long run relaions are correced a a consan rae. This model srucure is known in he empirical ime series lieraure as an error correcion
3 THE VALUATION AND HEDGING OF VARIABLE RATE SAVINGS ACCOUNTS 385 model 3. This model has some aracive properies, such as convergence of he effecs of shocks o a longrun mean. The ineres rae sensiiviy is quanified in a duraion measure. We demonsrae ha he duraion depends on he adjusmen paerns of ineres rae paid on he accoun and balance. We pay paricular aenion o he implicaions of he model for he hedging of ineres rae risk on savings deposis. We illusrae how o fund he savings deposis by a mix of long and shor insrumens ha maches he duraion of he savings accoun s liabiliies. The paper is organized as follows. Firs he valuaion of he savings accouns is deal wih in. In 3 he models on he pricing policy and he cusomer behaviour are presened, and a discree ime version of he model is esimaed for he Duch savings accouns marke. 4 deals wih he duraion of his produc and 5 wih hedging decisions. The paper is concluded in 6.. VALUATION OF VARIABLE RATE SAVINGS ACCOUNTS The valuaion problem of savings accouns and similar producs was analyzed by Selvaggio (1996) and Jarrow and Van Devener (1998). Their approach is o acknowledge ha he liabiliy of he bank equals he presen value of fuure cash ouflows (ineres paymens and changes in he balance). The presen value of hese flows does no necessarily equal he marke value of he money deposied, and herefore he deposis may have some ne asse value. Jarrow and Van Devener (1998) rea he valuaion of savings accouns in a noarbirage framework and derive he ne asse value under a riskneural probabiliy measure. However, in our paper we wan o implemen an empirical model for he savings rae and he balance, and herefore we need a valuaion formula based on he empirical probabiliy measure. We herefore adop he approach proposed by Selvaggio (1996), who calculaes he value of he liabiliies as he expeced presen value of fuure cash flows, discouned a a discoun rae which is equal o he risk free rae plus a risk premium 4. Hence, he discoun rae R() can be wrien as R ] g= r ] g +c, (1) where r() is he money marke rae and g is he risk premium. We can inerpre his discoun rae as he hurdle rae of he invesmen, ha incorporaes he riskiness of he liabiliies, as in a radiional Ne Presen Value calculaion. The main assumpion in his paper is ha his risk premium is consan over ime and does no depend on he level of he money marke rae. This assumpion is obviously a simplificaion. Any underlying formal erm srucure model, such as he Ho and Lee (1984) model, implies ha risk premia depend on he 3 We refer o Davidson e al. (1978) for an inroducion o error correcion models. 4 Selvaggio (1996) calls he risk premium he Opion Adjused Spread
4 386 FRANK DE JONG AND JACCO WIELHOUWER money marke rae. However, he risk premia are ypically small and since he focus of he paper is on modeling he dynamic adjusmen of ineres raes and balances, we ignore he variaion in he risk premium and focus on he effec of shocks o he money marke rae. Wih his srucure, he marke value of liabiliies is he expeced discouned value of fuure cash ouflows, i.e. ineres paymens on he accoun i() and changes in he balance D() 5 Rs L () = E ; # 3 e  6i] sgd] sgdl] dse. () D Noice ha in his seup reinvesmens of ineres paymens are couned as a par of deposi inflow D (). Working ou he inegral over D (s) by parial inegraion we find ha he value of he liabiliies equals Rs L () = E ; # 3 e  6i ] sg R] D] sgdse + D(). (3) D Since he marke value of he asses is equal o he iniial balance, D(), he ne asse value (i.e., he marke value of he savings produc from he poin of view of he bank) is Rs V () = D()  L () = E ; # 3 e  6R] sgi] D] sgdse. (4) D D For an inerpreaion of his equaion, noice ha R() i() is he difference beween he bank s discoun rae and he ineres paid on he accoun. Addiional savings generae value wih reurn R(). The coss of hese addiional savings are i(), however. The difference R() i() herefore can be inerpreed as a profi margin. The ne asse value is simply he presen value of fuure profis (balance imes profi margin). Therefore, he ne asse value is posiive if he ineres rae paid on he accoun is on average below he discoun rae. Obviously, he ne asse value is zero if he ineres rae paid on he accoun always equals he discoun rae. As an example, consider he siuaion where he ineres rae paid on he accoun is always equal o he discoun rae minus a fixed margin, i()=r() m, and he discoun rae is consan over ime. 6 Moreover, assume ha he balance is consan a he level D *. In ha case, he ne asse value of he savings accouns is ) V = n D R D ). (5) 5 For noaional clariy, he ime variaion in he discoun rae R is suppressed. If he discoun rae is  Rudu () ime varying, he exac expression for he discoun facor is e # 3. 6 This is a special case of he Jarrow and Van Devener (1998) model.
5 THE VALUATION AND HEDGING OF VARIABLE RATE SAVINGS ACCOUNTS 387 Inuiively, his is he value of a perpeuiy wih coupon rae m and face value D ). Figure 1 graphs he ne asse value for differen values of R and m. For large profi margins and low discoun raes, he ne asse value can be a subsanial fracion of he marke value of he savings deposis. FIGURE 1: Ne asse value This figure shows he ne asse value of a deposi of 1, as a funcion of he discoun rae R and he profi margin m Obviously, his example describes he value in a saic seing. For he ineres rae sensiiviy of he ne asse value, we have o ake ino accoun ha afer a shock in ineres raes, he ineres rae paid on he accoun and he balance only gradually adjus o heir new equilibrium values. In he nex secion we herefore presen a model for he adjusmen paerns of ineres rae and balance afer shocks o he discoun rae. In he subsequen secion we presen discoun rae sensiiviy measures based on hese adjusmen paerns. 3. CLIENT AND BANK BEHAVIOUR The analysis in he previous secion shows ha he ne asse value of savings accouns depends on he specific paern of he expeced fuure ineres raes and balances. The main difference beween money marke accouns and savings accouns is he sluggish adjusmen of ineres raes and balance o changes in he discoun rae. In his secion we model hese adjusmen processes. The
6 388 FRANK DE JONG AND JACCO WIELHOUWER models highligh he parial adjusmen oward he long run equilibrium values of ineres raes and balances. In he analysis, we ake as given he pah of he money marke rae r]g and hence he pah of he discoun rae R] g= r] g +c. We describe he sochasic evoluion of he ineres rae paid on savings deposis, i(), and he balance, D(), condiional on he pah of he discoun rae. For he ineres rae paid on savings accouns, we propose he following sochasic error correcion specificaion di] g= l6 R] gn i] d + v dw ] g (6) 1 1 where W 1 () is a sandard Brownian moion. This equaion saes ha he ineres rae adjuss o deviaions beween he long run value R() m and he curren rae. We see his as he arge policy rule of he bank ha ses he ineres rae. Deviaions are correced a speed k >, and in he long run, expeced ineres raes are a margin m below he discoun rae R(). The sochasic erm W 1 () models he deviaions from he arge policy rule. Such deviaions could be due o sudden demand shocks, compeiion from oher banks and he like. For he balance we propose a parial adjusmen specificaion ) dd] g=m8d] gd B d h6r] gn i] d + v dw ] g (7) This specificaion has hree componens. Firsly, here is an auonomous convergence o a long run mean D *, which is deermined by a radeoff by he cliens beween savings deposis and money marke accouns. Secondly, here is an ouflow of funds proporional o he excess of he discoun rae over he savings rae. Thirdly, here is an unpredicable sochasic componen. This descripion wih an auonomous convergence is especially suiable for a derended ime series. An auonomous convergence o a long run mean is expeced in a derended series for he balance. We derend by defining he variable D() as he fracion of oal shor erm savings ha is invesed in variable rae savings accouns. In his case D * is he long run fracion of oal shor erm savings ha is invesed in variable rae savings accouns. In his way, he rend growh of he oal savings marke doesn affec he empirical esimaion and he duraion analysis. Working ou he sochasic differenial equaions (6) and (7) gives: # # 1  s  s  i] g= e l i] g+ l e l ] g6 R] sg  ds + v e l ] gdw ] sg, (8a) ) m ) m s  D ] g= D+ e _ D] gdi h e ] g6 Rs ] gnis ] ds # m s  + v # e ] gdw ] sg. (8b) To inerpre hese equaions, le s consider he siuaion where he discoun rae R is consan over ime. I is fairly easy o show ha he effec of a
7 THE VALUATION AND HEDGING OF VARIABLE RATE SAVINGS ACCOUNTS 389 change in he discoun rae in his siuaion is given by he following parial derivaives i ] g l s  l = l # e ] g ds= 1e, (9a) D ] g m s  i s =h # e ] g ] g < 1 Fds m l m s  ls  h e e ds=h e  e # ] g d n. (9b) l m The long run derivaive of he ineres rae paid on he accoun is one, bu in he shor run he effec is less han one. If j > and k > l (which we show laer is clearly he case empirically), he parial derivaive of he balance is negaive, and converges o zero in he long run. These parial derivaives can be used o sudy he effecs of a onceandforall shock o he discoun rae, a kind of impulse response analysis. Saring from he equilibrium siuaion D]g = D ) and i() = R n, he expeced adjusmen paerns are illusraed in Figure for an increase in he discoun rae by 1%. The parameer values are picked from he empirical esimaes o be discussed shorly, and are equal o k =.79, l =.48 and j =.43 for he base case. We see ha he ineres rae doesn follow he jump in he discoun rae immediaely bu gradually adjuss o is new equilibrium value. The adjusmen of he balance is more complex. Iniially, he balance decreases because of wihdrawals caused by he relaively low ineres rae paid on he accoun. Bu as he ineres rae increases, his effec becomes smaller and evenually he auonomous convergence of he balance o is long run level dominaes. One inerpreaion of his is ha cliens who iniially preferred he variable rae savings accoun o he money marke accoun will reurn o variable rae savings accouns when he difference beween he ineres rae paid on he savings accoun and he money marke rae revers o he iniial level. Equaions (9a) and (9b) also highligh he effecs of he model parameers on he adjusmen of ineres raes and balance o a shock in he discoun rae. The effec of j is obvious, i increases he impac of an ineres rae shock. This effec may be imporan in he curren marke, as he increase in he use of inerne for banking services and he resuling lower ransacion and search coss will probably increase he ineres rae sensiiviy of he cusomers. The effec of he meanreversion parameers k and l is more complicaed. A higher value of l speeds up he adjusmen of he balance iself, bu doesn affec he ineres raes. Wih a lower value of k, boh he adjusmen of he ineres rae and he balance are slower. The effec of he balance is a resul of he dependence of he balance on he ineres rae. These effecs are illusraed in Figure, where he dashed line gives he adjusmen paern for a lower value of k, and he doed line he paern wih a higher value of l.
8 39 FRANK DE JONG AND JACCO WIELHOUWER FIGURE : Adjusmen of ineres rae and balance of savings accouns This figure shows he adjusmen of ineres rae (op panel) end balance (boom panes) o a 1% shock in he discoun rae. The solid line is he base case. The dashed line is for a smaller value of k, he doed line for a larger value of l. The scale of he horizonal axis is years. We now presen some indicaive esimaes of he model parameers. This exercise is no mean o be a horough empirical invesigaion of he adjusmen paern bu merely serves as an illusraion of he model. In order o ranslae he coninuous ime parameers o a discree ime seing, we use he following approximae 7 discreizaion of he coninuous ime model Di = l7r n i A D+e, (1a) )  1 DD =m_ D D idh7r n ia D+e. (1b) The discoun rae is no direcly observed in he daa. Since a savings accoun shares characerisics of boh a money marke accoun and a long erm deposi, is required rae of reurn (or discoun rae) is proxied by a weighed average of he money marke rae (r ) and he long erm bond yield (y ). 8 7 This approximaion is quie accurae. For example, he exac mean reversion parameer for he ineres rae equaion is 1  exp ( l D), which for small values of l or D is close o l D. 8 An alernaive bu equivalen way o jusify his proxy is o assume ha he risk premium of he savings deposi is a fracion of he risk premium on long erm bonds.
9 THE VALUATION AND HEDGING OF VARIABLE RATE SAVINGS ACCOUNTS 391 We rea he weigh d as an unknown parameer which is esimaed from he daa. This leads o he following empirical model Di = a + a Dr + a 7i " dr + ^  dhy, A+ e, (11a) , D = b + b D + b 7i " dr ^  dhy, A + e. (11b) , This model is slighly more general han he heoreical model because i conains an immediae, discree adjusmen of he ineres rae o he money marke rae. Afer his iniial jump, he adjusmen o he new equilibrium is gradual. This effec urned ou o be so imporan empirically ha we included i in he empirical model. 9 The parameers of he coninuous ime model can be solved from he following equaions (wih D = 11 / for monhly daa) l= a / D, m= ^ bh/ D, h= 1 1 b / D. In fac, he long run deposi level and he average spread of he ineres raes over he esimaed discoun rae could be unraveled from he consan erms of he model. These are no very accuraely esimaed however and we refrain from drawing inferences abou hese parameers from he esimaes. We use monhly daa on ineres raes and deposis from he Duch savings accoun marke. The ineres rae paid on he accoun is aken from one of he price seers in he Duch marke. The sample period is 198:1 o 1999:1, spanning 17 years which is slighly longer han he samples of Huchison and Pennacchi (1996) or JJZ. To remove rends in he oal savings volume, we define he balance D as he fracion of variable rae savings accouns o oal savings. The following empirical esimaes are obained using leas squares: Di= Dr. 667i 1" dr 1 + ^1  dhy 1, A + e1,, (1a) D= D i 1" dr 1 + ^1  dhy 1, A + e,. (1b) The esimae of d is around.. These esimaes imply he following annualized values for he coninuous ime parameers: k =.79, l =.48, and j =.43. Using hese parameers we can solve he second equaion for he seady sae value of he fracion of variable rae savings deposis o oal savings, ) D = Noice ha including his erm does no invalidae he duraion analysis of he model, which is based on he gradual adjusmen paerns only. 1 The empirical average of D is.51
10 39 FRANK DE JONG AND JACCO WIELHOUWER 4. DURATION The previous secion showed ha he ineres rae paid on he accoun and he balance of savings accouns are relaed o he discoun rae. Therefore, he discoun rae sensiiviy of savings deposis will be differen from he discoun rae sensiiviy of a money marke accoun (which has a duraion of zero). In his secion, we sudy he sensiiviy of he ne asse value of a savings accoun o a parallel shif in he pah of he discoun raes. We sudy a shif from he original pah R() o R () + DR, and evaluae he derivaive in DR =. Wih some abuse of noaion, we will wrie he resuling expressions as V/ bu i should be kep in mind ha his refers o a parallel shif in he pah of discoun raes. This approach is close o a radiional duraion analysis, see e.g. Bierwag (1987), bu we ake ino accoun he dependence of fuure cash flows on discoun raes. In he iniial siuaion, he deposis are a heir equilibrium value D ). Differeniaion of he ne asse value wih respec he discoun rae gives V () 3 3 = E ;# se 6R() s  i() D() s ds + # e D Rs Rs 6Rs () is Dsds () 3 Rs Ds + e  ] g # 6 R() s i] R ds F (13) The hree componens of his expression can be inerpreed as follows: 1. he ineres rae sensiiviy of he expeced discouned profis;. he change in he margin on he expeced fuure balances; 3. he expeced margin imes increases or decreases in he balance of he deposi. Noice ha if he fuure balances do no change as a resul of he ineres rae change, and if he margin is consan, only he firs erm (he sensiiviy of he presen value of he profis) remains. The second and hird erm are specific for savings accouns wih heir slow adjusmen of he ineres rae and balance, and are herefore he mos ineresing for our analysis. We shall now discuss he duraion of he accouns given he specific model for he evoluion of ineres raes and balances. Assume again ha R]g s = Ris consan, and ha he iniial siuaion is in equilibrium, D]g = D ) and i() = R n. Under hese iniial condiions, he developmen of he ineres raes and he balance can be derived from equaions (8a) and (8b): l l( s  ) l( s  ) R i() = Re i( )l# e 6 R dsv # e dw() s ( ) 1 # 1 l s  = nv e dw(), s 1 1 # # ) s m( s ) ( u s) ( s ) hv1  l  m # 1 v  # # ) m( s  ) m( s  ) D () = D + h e 6 R] sg n i] ds+ v e dw] sg (14a) = D + e e dw]g u ds+ e dw (). s (14b)
11 THE VALUATION AND HEDGING OF VARIABLE RATE SAVINGS ACCOUNTS 393 Assuming ha he sochasic pars of he ineres rae and he balance are uncorrelaed, i.e. Cov(dW 1 (), dw ()) =, and noicing ha he parial derivaives (9a) and (9b) are nonsochasic, we can work ou he parial derivaive of he value: V () 3 D Rs = se  E R i() s D s ds # " ]g, Rs R i() s Rs Ds e E Ds () ds+ 3  ] g # e E Ri s ds # 6 ] Rs Rs s Rs = 3 ) se nd ds + 3 ) e e D ds  3 m l   l  e nh e  e # # # d nds l m n () (). R D 1 hn = R D l  b  l  m R + m R + l l (15) Wih an increase in he discoun rae, he firs erm reflecs he loss of value of he (perpeual) profi margin, he second erm he discouned value of he ineres paymens no made on he original balance during he ime he ineres rae paid on he accoun ^i ] gh is below he discoun rae minus he profi margin ^R  nh, and he hird erm he discouned value of he profi foregone on he balance ouflows. We can ransform his change of value o a duraion measure if we assume ha iniially, he ne asse value equals V D () = D() n R VD () Dur R V () R R R h = =  1 R D() R R R n + l +  l m b + m + l l (16) D The firs erm reflecs he duraion of a perpeuiy, and is deermined by he presen value of he profis in he seady sae. The second erm reflecs he value of he lower ineres raes paid on he exising balance, and is always negaive. The hird erm is he duraion of he profis on he addiional balance ouflows, and is posiive under he assumpion l> m. Especially when he margin m is hin and he ne asse value is low, he second erm may dominae he oher erms, leading o a negaive duraion for he ne asse value of a savings accoun. In ha case, an increase in he discoun rae will increase he ne asse value because for some ime he ineres rae paid on he savings accoun is lower han reurn on he asses deposied. As an illusraion Figure 3 shows he duraions as a funcion of he discoun rae R and he margin m (he oher parameers are pu equal o he esimaes of he previous secion). We see ha he duraion is ypically posiive, excep for low values of m, and declines wih he discoun rae. Mos of his effec is due o he duraion of he discouned profi margin, 1/R. Leaving ou his erm, we find he exra duraion of he ne asse value induced by he sluggish adjusmen paern. Figure 4 shows hese measures. Ineresingly, he exra duraion is always negaive, bu converges o zero for relaively big profi margins m.
12 394 FRANK DE JONG AND JACCO WIELHOUWER FIGURE 3: Duraion of savings deposis This figure shows he duraion (in years) of savings deposis as a funcion of he discoun rae (R) and he profi margin m. Figure 4: Duraion of savings deposis (excluding profi margin) This figure shows he exra duraion (in years) of savings deposis, in excess of he duraion of a perpeuiy (1/R), as a funcion of he discoun rae (R) and he profi margin m.
13 THE VALUATION AND HEDGING OF VARIABLE RATE SAVINGS ACCOUNTS HEDGING In his secion we consider he problem of hedging he ne asse value. Given he liabiliy value L D of he variable rae savings accouns, one can hedge he ne asse value by immunizaion. For simpliciy we assume he money deposied can be invesed in wo insrumens, Long Invesmens (LI) and Shor Invesmens (SI). The balance shee of he bank hen becomes V LI V SI L D V D where V D denoes he Ne Asse Value. We now consider he consrucion of an invesmen porfolio where he ineres rae risk on he ne asse value is fully hedged, i.e. he ne asse value V D is no sensiive o he parallel shifs in he discoun rae. From he balance shee we see ha his requires V V L + =. (17) SI LI D Of course, he soluion o his equaion, and hence he composiion of he invesmen porfolio, depends on he duraions of he shor and long invesmens. As a simple example, consider he case where he shor insrumen has zero duraion. In ha case he invesmen in he long insrumen is deermined by VLI LD =. (18) L We can find D from equaions (4) and (13). As an illusraion, Figure 5 graphs he required posiion in long (1 year mauriy) bonds in he hedge porfolio for differen value of R and m. As seen before, he duraion of variable rae savings accouns may be negaive, in paricular when he profi margin m is fairly small. In ha case he bank can hedge he accouns by aking a long posiion in long invesmens. Bu if Dur is posiive, which happens for example when he profi margin m is fairly high, one should ake a shor posiion in he long asse. Alernaively, if one does no like o ake shor posiions in bonds, one could use derivaive insrumens such as caps, which ypically have a negaive duraion, or forward conracs. 6. CONCLUSION This paper focuses on he valuaion and ineres rae sensiiviy of variable rae savings accouns. The duraion can be spli in hree differen effecs: he duraion of he expeced discouned profis; he change in margin on expeced fuure balances due o a change in ineres rae; he expeced margin imes increases or decreases in he balance of he accoun.
14 396 FRANK DE JONG AND JACCO WIELHOUWER Figure 5: Hedge porfolio This figure shows he posiion in long bonds (duraion 1 years) in he hedge porfolio of a 1 deposi, as a funcion of he discoun rae R and he profi margin m. The firs elemen is he sandard duraion for producs wihou embedded opions. The second and hird erm are nonsandard (for example, hey are zero for a money marke accoun) and arise due o he variable ineres rae paid on he accoun and he opion of he cliens o wihdraw and inves in he accoun a any ime. The duraion herefore crucially depends on he rapidness of he adjusmen of he ineres rae paid on he accoun o discoun rae changes and on he reacions of he cliens. These reacions will principally be deermined by he cliens ineres rae sensiiviy and by he marke efficiency. The models are esimaed for he Duch savings accoun marke. Duraion curves are given for differen margins. When hedging he savings deposis, one can consruc a porfolio wih he same duraion as he variable rae savings accouns. However, when one does no wan o go shor ino a cerain asse class, one migh need o include derivaives (for example caps) o hedge hese producs, since i is possible o have negaive duraions. The inuiion is ha an ineres rae increase migh lead o a fligh of cliens o money marke accouns. So buy insurance when money marke accouns are less aracive, which resul in profis when ineres raes spike up (he insurance pays ou). The gain due o he caps in an increasing ineres rae environmen hen offses he loss in he savings accouns. Hedging in his way cerainly smoohens he resuls on hese producs. Of course his can be achieved by going shor in long asses as well.
15 THE VALUATION AND HEDGING OF VARIABLE RATE SAVINGS ACCOUNTS 397 For fuure research i migh be ineresing o analyze he second order effecs. Then muliple immunizaion can be achieved wih a porfolio wih hree asse classes. Finally, i is possible o make he discoun rae a funcion of a number of ineres raes wih differen mauriies. This will of course increase he complexiy of he model bu allows for he calculaion of keyrae duraions. REFERENCES BIERWAG, G.O. (1987) Duraion Analysis, Ballinger, Cambridge MA. DAVIDSON, J., HENDRY, D.F., SRBA, F. and YEO, S. (1978) Economeric Modelling of he Aggregae Time Series Relaionship beween Consumer Expendiure and Income in he Unied Kingdom, Economic Journal, 88, HEATH, D., JARROW, R. and MORTON, A. (199) Bond pricing and he erm srucure of ineres raes: A new mehodology for coningen claims valuaion, Economerica 6, HO, T.S.Y. and LEE, S.B. (1986) Term srucure movemens and he pricing of ineres rae coningen claims, Journal of Finance 41, HULL, J. (1993) Opions, Fuures and oher Derivaive Securiies, second ediion, PreniceHall. HUTCHISON, D.E. and PENNACCHI, G.G. (1996) Measuring Rens and Ineres Rae Risk in Imperfec Financial Markes: The Case of Raail Bank Deposis, Journal of Financial and Quaniaive Analysis 31, JANOSI, T., JARROW, R. and ZULLO, F. (1999) An Empirical Analysis of he Jarrowvan Devener Model for Valuing NonMauriy Demand Deposis, Journal of Derivaives, Fall 1999, JARROW, R.A., and VAN DEVENTER, D.R. (1998) The arbiargefree valuaion and hedging of savings accouns and credi card loans, Journal of Banking and Finance, SELVAGGIO, R.D. (1996) Using he OAS Mehodology o Value and Hedge Commercial Bank Reail Demand Deposi Premiums, Chaper VASICEK, O. (1977) An equilibrium characerizaion of he erm srucure, Journal of Financial Economics 5, FRANK DE JONG Finance Group Universiei van Amserdam Roeerssraa WB, Amserdam he Neherlands Phone: Fax:
Duration and Convexity ( ) 20 = Bond B has a maturity of 5 years and also has a required rate of return of 10%. Its price is $613.
Graduae School of Business Adminisraion Universiy of Virginia UVAF38 Duraion and Convexiy he price of a bond is a funcion of he promised paymens and he marke required rae of reurn. Since he promised
More informationPROFIT TEST MODELLING IN LIFE ASSURANCE USING SPREADSHEETS PART ONE
Profi Tes Modelling in Life Assurance Using Spreadshees PROFIT TEST MODELLING IN LIFE ASSURANCE USING SPREADSHEETS PART ONE Erik Alm Peer Millingon 2004 Profi Tes Modelling in Life Assurance Using Spreadshees
More informationA Note on Using the Svensson procedure to estimate the risk free rate in corporate valuation
A Noe on Using he Svensson procedure o esimae he risk free rae in corporae valuaion By Sven Arnold, Alexander Lahmann and Bernhard Schwezler Ocober 2011 1. The risk free ineres rae in corporae valuaion
More information11/6/2013. Chapter 14: Dynamic ADAS. Introduction. Introduction. Keeping track of time. The model s elements
Inroducion Chaper 14: Dynamic DS dynamic model of aggregae and aggregae supply gives us more insigh ino how he economy works in he shor run. I is a simplified version of a DSGE model, used in cuingedge
More informationDYNAMIC MODELS FOR VALUATION OF WRONGFUL DEATH PAYMENTS
DYNAMIC MODELS FOR VALUATION OF WRONGFUL DEATH PAYMENTS Hong Mao, Shanghai Second Polyechnic Universiy Krzyszof M. Osaszewski, Illinois Sae Universiy Youyu Zhang, Fudan Universiy ABSTRACT Liigaion, exper
More informationTerm Structure of Prices of Asian Options
Term Srucure of Prices of Asian Opions Jirô Akahori, Tsuomu Mikami, Kenji Yasuomi and Teruo Yokoa Dep. of Mahemaical Sciences, Risumeikan Universiy 111 Nojihigashi, Kusasu, Shiga 5258577, Japan Email:
More informationMorningstar Investor Return
Morningsar Invesor Reurn Morningsar Mehodology Paper Augus 31, 2010 2010 Morningsar, Inc. All righs reserved. The informaion in his documen is he propery of Morningsar, Inc. Reproducion or ranscripion
More informationJournal Of Business & Economics Research September 2005 Volume 3, Number 9
Opion Pricing And Mone Carlo Simulaions George M. Jabbour, (Email: jabbour@gwu.edu), George Washingon Universiy YiKang Liu, (yikang@gwu.edu), George Washingon Universiy ABSTRACT The advanage of Mone Carlo
More informationChapter 6: Business Valuation (Income Approach)
Chaper 6: Business Valuaion (Income Approach) Cash flow deerminaion is one of he mos criical elemens o a business valuaion. Everyhing may be secondary. If cash flow is high, hen he value is high; if he
More informationIndividual Health Insurance April 30, 2008 Pages 167170
Individual Healh Insurance April 30, 2008 Pages 167170 We have received feedback ha his secion of he e is confusing because some of he defined noaion is inconsisen wih comparable life insurance reserve
More informationThe Greek financial crisis: growing imbalances and sovereign spreads. Heather D. Gibson, Stephan G. Hall and George S. Tavlas
The Greek financial crisis: growing imbalances and sovereign spreads Heaher D. Gibson, Sephan G. Hall and George S. Tavlas The enry The enry of Greece ino he Eurozone in 2001 produced a dividend in he
More informationINTEREST RATE FUTURES AND THEIR OPTIONS: SOME PRICING APPROACHES
INTEREST RATE FUTURES AND THEIR OPTIONS: SOME PRICING APPROACHES OPENGAMMA QUANTITATIVE RESEARCH Absrac. Exchangeraded ineres rae fuures and heir opions are described. The fuure opions include hose paying
More informationBALANCE OF PAYMENTS. First quarter 2008. Balance of payments
BALANCE OF PAYMENTS DATE: 20080530 PUBLISHER: Balance of Paymens and Financial Markes (BFM) Lena Finn + 46 8 506 944 09, lena.finn@scb.se Camilla Bergeling +46 8 506 942 06, camilla.bergeling@scb.se
More informationTable of contents Chapter 1 Interest rates and factors Chapter 2 Level annuities Chapter 3 Varying annuities
Table of conens Chaper 1 Ineres raes and facors 1 1.1 Ineres 2 1.2 Simple ineres 4 1.3 Compound ineres 6 1.4 Accumulaed value 10 1.5 Presen value 11 1.6 Rae of discoun 13 1.7 Consan force of ineres 17
More informationChapter 1.6 Financial Management
Chaper 1.6 Financial Managemen Par I: Objecive ype quesions and answers 1. Simple pay back period is equal o: a) Raio of Firs cos/ne yearly savings b) Raio of Annual gross cash flow/capial cos n c) = (1
More informationWhy Did the Demand for Cash Decrease Recently in Korea?
Why Did he Demand for Cash Decrease Recenly in Korea? Byoung Hark Yoo Bank of Korea 26. 5 Absrac We explores why cash demand have decreased recenly in Korea. The raio of cash o consumpion fell o 4.7% in
More informationThe Transport Equation
The Transpor Equaion Consider a fluid, flowing wih velociy, V, in a hin sraigh ube whose cross secion will be denoed by A. Suppose he fluid conains a conaminan whose concenraion a posiion a ime will be
More informationHedging with Forwards and Futures
Hedging wih orwards and uures Hedging in mos cases is sraighforward. You plan o buy 10,000 barrels of oil in six monhs and you wish o eliminae he price risk. If you ake he buyside of a forward/fuures
More informationYTM is positively related to default risk. YTM is positively related to liquidity risk. YTM is negatively related to special tax treatment.
. Two quesions for oday. A. Why do bonds wih he same ime o mauriy have differen YTM s? B. Why do bonds wih differen imes o mauriy have differen YTM s? 2. To answer he firs quesion les look a he risk srucure
More informationLEASING VERSUSBUYING
LEASNG VERSUSBUYNG Conribued by James D. Blum and LeRoy D. Brooks Assisan Professors of Business Adminisraion Deparmen of Business Adminisraion Universiy of Delaware Newark, Delaware The auhors discuss
More informationPricing FixedIncome Derivaives wih he ForwardRisk Adjused Measure Jesper Lund Deparmen of Finance he Aarhus School of Business DK8 Aarhus V, Denmark Email: jel@hha.dk Homepage: www.hha.dk/~jel/ Firs
More informationUNDERSTANDING THE DEATH BENEFIT SWITCH OPTION IN UNIVERSAL LIFE POLICIES. Nadine Gatzert
UNDERSTANDING THE DEATH BENEFIT SWITCH OPTION IN UNIVERSAL LIFE POLICIES Nadine Gazer Conac (has changed since iniial submission): Chair for Insurance Managemen Universiy of ErlangenNuremberg Lange Gasse
More informationThe Interest Rate Risk of Mortgage Loan Portfolio of Banks
The Ineres Rae Risk of Morgage Loan Porfolio of Banks A Case Sudy of he Hong Kong Marke Jim Wong Hong Kong Moneary Auhoriy Paper presened a he Exper Forum on Advanced Techniques on Sress Tesing: Applicaions
More information4. International Parity Conditions
4. Inernaional ariy ondiions 4.1 urchasing ower ariy he urchasing ower ariy ( heory is one of he early heories of exchange rae deerminaion. his heory is based on he concep ha he demand for a counry's currency
More informationI. Basic Concepts (Ch. 14)
(Ch. 14) A. Real vs. Financial Asses (Ch 1.2) Real asses (buildings, machinery, ec.) appear on he asse side of he balance shee. Financial asses (bonds, socks) appear on boh sides of he balance shee. Creaing
More informationRepresenting Periodic Functions by Fourier Series. (a n cos nt + b n sin nt) n=1
Represening Periodic Funcions by Fourier Series 3. Inroducion In his Secion we show how a periodic funcion can be expressed as a series of sines and cosines. We begin by obaining some sandard inegrals
More informationEconomics Honors Exam 2008 Solutions Question 5
Economics Honors Exam 2008 Soluions Quesion 5 (a) (2 poins) Oupu can be decomposed as Y = C + I + G. And we can solve for i by subsiuing in equaions given in he quesion, Y = C + I + G = c 0 + c Y D + I
More informationPresent Value Methodology
Presen Value Mehodology Econ 422 Invesmen, Capial & Finance Universiy of Washingon Eric Zivo Las updaed: April 11, 2010 Presen Value Concep Wealh in Fisher Model: W = Y 0 + Y 1 /(1+r) The consumer/producer
More informationDynamic Option Adjusted Spread and the Value of Mortgage Backed Securities
Dynamic Opion Adjused Spread and he Value of Morgage Backed Securiies Mario Cerrao, Abdelmadjid Djennad Universiy of Glasgow Deparmen of Economics 27 January 2008 Absrac We exend a reduced form model for
More informationII.1. Debt reduction and fiscal multipliers. dbt da dpbal da dg. bal
Quarerly Repor on he Euro Area 3/202 II.. Deb reducion and fiscal mulipliers The deerioraion of public finances in he firs years of he crisis has led mos Member Saes o adop sizeable consolidaion packages.
More informationPrincipal components of stock market dynamics. Methodology and applications in brief (to be updated ) Andrei Bouzaev, bouzaev@ya.
Principal componens of sock marke dynamics Mehodology and applicaions in brief o be updaed Andrei Bouzaev, bouzaev@ya.ru Why principal componens are needed Objecives undersand he evidence of more han one
More informationMarkit Excess Return Credit Indices Guide for price based indices
Marki Excess Reurn Credi Indices Guide for price based indices Sepember 2011 Marki Excess Reurn Credi Indices Guide for price based indices Conens Inroducion...3 Index Calculaion Mehodology...4 Semiannual
More informationOption PutCall Parity Relations When the Underlying Security Pays Dividends
Inernaional Journal of Business and conomics, 26, Vol. 5, No. 3, 22523 Opion Puall Pariy Relaions When he Underlying Securiy Pays Dividends Weiyu Guo Deparmen of Finance, Universiy of Nebraska Omaha,
More informationWorking Paper No. 482. Net Intergenerational Transfers from an Increase in Social Security Benefits
Working Paper No. 482 Ne Inergeneraional Transfers from an Increase in Social Securiy Benefis By Li Gan Texas A&M and NBER Guan Gong Shanghai Universiy of Finance and Economics Michael Hurd RAND Corporaion
More informationChapter 9 Bond Prices and Yield
Chaper 9 Bond Prices and Yield Deb Classes: Paymen ype A securiy obligaing issuer o pay ineress and principal o he holder on specified daes, Coupon rae or ineres rae, e.g. 4%, 5 3/4%, ec. Face, par value
More informationA Brief Introduction to the Consumption Based Asset Pricing Model (CCAPM)
A Brief Inroducion o he Consumpion Based Asse Pricing Model (CCAPM We have seen ha CAPM idenifies he risk of any securiy as he covariance beween he securiy's rae of reurn and he rae of reurn on he marke
More informationEquities: Positions and Portfolio Returns
Foundaions of Finance: Equiies: osiions and orfolio Reurns rof. Alex Shapiro Lecure oes 4b Equiies: osiions and orfolio Reurns I. Readings and Suggesed racice roblems II. Sock Transacions Involving Credi
More informationOptimal Investment and Consumption Decision of Family with Life Insurance
Opimal Invesmen and Consumpion Decision of Family wih Life Insurance Minsuk Kwak 1 2 Yong Hyun Shin 3 U Jin Choi 4 6h World Congress of he Bachelier Finance Sociey Torono, Canada June 25, 2010 1 Speaker
More informationFifth Quantitative Impact Study of Solvency II (QIS 5) National guidance on valuation of technical provisions for German SLT health insurance
Fifh Quaniaive Impac Sudy of Solvency II (QIS 5) Naional guidance on valuaion of echnical provisions for German SLT healh insurance Conens 1 Inroducion... 2 2 Calculaion of besesimae provisions... 3 2.1
More informationLIFE INSURANCE WITH STOCHASTIC INTEREST RATE. L. Noviyanti a, M. Syamsuddin b
LIFE ISURACE WITH STOCHASTIC ITEREST RATE L. oviyani a, M. Syamsuddin b a Deparmen of Saisics, Universias Padjadjaran, Bandung, Indonesia b Deparmen of Mahemaics, Insiu Teknologi Bandung, Indonesia Absrac.
More informationStochastic Optimal Control Problem for Life Insurance
Sochasic Opimal Conrol Problem for Life Insurance s. Basukh 1, D. Nyamsuren 2 1 Deparmen of Economics and Economerics, Insiue of Finance and Economics, Ulaanbaaar, Mongolia 2 School of Mahemaics, Mongolian
More informationValuation of Life Insurance Contracts with Simulated Guaranteed Interest Rate
Valuaion of Life Insurance Conracs wih Simulaed uaraneed Ineres Rae Xia uo and ao Wang Deparmen of Mahemaics Royal Insiue of echnology 100 44 Sockholm Acknowledgmens During he progress of he work on his
More informationGraphing the Von Bertalanffy Growth Equation
file: d:\b1732013\von_beralanffy.wpd dae: Sepember 23, 2013 Inroducion Graphing he Von Beralanffy Growh Equaion Previously, we calculaed regressions of TL on SL for fish size daa and ploed he daa and
More informationAgnes Joseph, Dirk de Jong and Antoon Pelsser. Policy Improvement via Inverse ALM. Discussion Paper 06/2010085
Agnes Joseph, Dirk de Jong and Anoon Pelsser Policy Improvemen via Inverse ALM Discussion Paper 06/2010085 Policy Improvemen via Inverse ALM AGNES JOSEPH 1 Universiy of Amserdam, Synrus Achmea Asse Managemen
More informationTHE PERFORMANCE OF OPTION PRICING MODELS ON HEDGING EXOTIC OPTIONS
HE PERFORMANE OF OPION PRIING MODEL ON HEDGING EXOI OPION Firs Draf: May 5 003 his Version Oc. 30 003 ommens are welcome Absrac his paper examines he empirical performance of various opion pricing models
More informationCredit Index Options: the noarmageddon pricing measure and the role of correlation after the subprime crisis
Second Conference on The Mahemaics of Credi Risk, Princeon May 2324, 2008 Credi Index Opions: he noarmageddon pricing measure and he role of correlaion afer he subprime crisis Damiano Brigo  Join work
More informationRelationships between Stock Prices and Accounting Information: A Review of the Residual Income and Ohlson Models. Scott Pirie* and Malcolm Smith**
Relaionships beween Sock Prices and Accouning Informaion: A Review of he Residual Income and Ohlson Models Sco Pirie* and Malcolm Smih** * Inernaional Graduae School of Managemen, Universiy of Souh Ausralia
More informationRisk Modelling of Collateralised Lending
Risk Modelling of Collaeralised Lending Dae: 4112008 Number: 8/18 Inroducion This noe explains how i is possible o handle collaeralised lending wihin Risk Conroller. The approach draws on he faciliies
More informationA general decomposition formula for derivative prices in stochastic volatility models
A general decomposiion formula for derivaive prices in sochasic volailiy models Elisa Alòs Universia Pompeu Fabra C/ Ramón rias Fargas, 57 85 Barcelona Absrac We see ha he price of an european call opion
More informationChapter 4: Exponential and Logarithmic Functions
Chaper 4: Eponenial and Logarihmic Funcions Secion 4.1 Eponenial Funcions... 15 Secion 4. Graphs of Eponenial Funcions... 3 Secion 4.3 Logarihmic Funcions... 4 Secion 4.4 Logarihmic Properies... 53 Secion
More informationRationales of Mortgage Insurance Premium Structures
JOURNAL OF REAL ESTATE RESEARCH Raionales of Morgage Insurance Premium Srucures Barry Dennis* Chionglong Kuo* Tyler T. Yang* Absrac. This sudy examines he raionales for he design of morgage insurance premium
More informationGraduate Macro Theory II: Notes on Neoclassical Growth Model
Graduae Macro Theory II: Noes on Neoclassical Growh Model Eric Sims Universiy of Nore Dame Spring 2011 1 Basic Neoclassical Growh Model The economy is populaed by a large number of infiniely lived agens.
More information4.8 Exponential Growth and Decay; Newton s Law; Logistic Growth and Decay
324 CHAPTER 4 Exponenial and Logarihmic Funcions 4.8 Exponenial Growh and Decay; Newon s Law; Logisic Growh and Decay OBJECTIVES 1 Find Equaions of Populaions Tha Obey he Law of Uninhibied Growh 2 Find
More informationThe Grantor Retained Annuity Trust (GRAT)
WEALTH ADVISORY Esae Planning Sraegies for closelyheld, family businesses The Granor Reained Annuiy Trus (GRAT) An efficien wealh ransfer sraegy, paricularly in a low ineres rae environmen Family business
More informationMarkov Chain Modeling of Policy Holder Behavior in Life Insurance and Pension
Markov Chain Modeling of Policy Holder Behavior in Life Insurance and Pension Lars Frederik Brand Henriksen 1, Jeppe Woemann Nielsen 2, Mogens Seffensen 1, and Chrisian Svensson 2 1 Deparmen of Mahemaical
More informationOption Pricing Under Stochastic Interest Rates
I.J. Engineering and Manufacuring, 0,3, 889 ublished Online June 0 in MECS (hp://www.mecspress.ne) DOI: 0.585/ijem.0.03. Available online a hp://www.mecspress.ne/ijem Opion ricing Under Sochasic Ineres
More informationTHE FIRM'S INVESTMENT DECISION UNDER CERTAINTY: CAPITAL BUDGETING AND RANKING OF NEW INVESTMENT PROJECTS
VII. THE FIRM'S INVESTMENT DECISION UNDER CERTAINTY: CAPITAL BUDGETING AND RANKING OF NEW INVESTMENT PROJECTS The mos imporan decisions for a firm's managemen are is invesmen decisions. While i is surely
More informationImpact of Debt on Primary Deficit and GSDP Gap in Odisha: Empirical Evidences
S.R. No. 002 10/2015/CEFT Impac of Deb on Primary Defici and GSDP Gap in Odisha: Empirical Evidences 1. Inroducion The excessive pressure of public expendiure over is revenue receip is financed hrough
More informationThe Impact of Surplus Distribution on the Risk Exposure of With Profit Life Insurance Policies Including Interest Rate Guarantees.
The Impac of Surplus Disribuion on he Risk Exposure of Wih Profi Life Insurance Policies Including Ineres Rae Guaranees Alexander Kling 1 Insiu für Finanz und Akuarwissenschafen, Helmholzsraße 22, 89081
More informationModeling VIX Futures and Pricing VIX Options in the Jump Diusion Modeling
Modeling VIX Fuures and Pricing VIX Opions in he Jump Diusion Modeling Faemeh Aramian Maseruppsas i maemaisk saisik Maser hesis in Mahemaical Saisics Maseruppsas 2014:2 Maemaisk saisik April 2014 www.mah.su.se
More informationPricing Guaranteed Minimum Withdrawal Benefits under Stochastic Interest Rates
Pricing Guaraneed Minimum Wihdrawal Benefis under Sochasic Ineres Raes Jingjiang Peng 1, Kwai Sun Leung 2 and Yue Kuen Kwok 3 Deparmen of Mahemaics, Hong Kong Universiy of Science and echnology, Clear
More informationPrice elasticity of demand for crude oil: estimates for 23 countries
Price elasiciy of demand for crude oil: esimaes for 23 counries John C.B. Cooper Absrac This paper uses a muliple regression model derived from an adapaion of Nerlove s parial adjusmen model o esimae boh
More informationA TwoAccount Life Insurance Model for ScenarioBased Valuation Including Event Risk Jensen, Ninna Reitzel; Schomacker, Kristian Juul
universiy of copenhagen Universiy of Copenhagen A TwoAccoun Life Insurance Model for ScenarioBased Valuaion Including Even Risk Jensen, Ninna Reizel; Schomacker, Krisian Juul Published in: Risks DOI:
More informationCHARGE AND DISCHARGE OF A CAPACITOR
REFERENCES RC Circuis: Elecrical Insrumens: Mos Inroducory Physics exs (e.g. A. Halliday and Resnick, Physics ; M. Sernheim and J. Kane, General Physics.) This Laboraory Manual: Commonly Used Insrumens:
More informationThe yield curve, and spot and forward interest rates Moorad Choudhry
he yield curve, and spo and forward ineres raes Moorad Choudhry In his primer we consider he zerocoupon or spo ineres rae and he forward rae. We also look a he yield curve. Invesors consider a bond yield
More informationDependent Interest and Transition Rates in Life Insurance
Dependen Ineres and ransiion Raes in Life Insurance Krisian Buchard Universiy of Copenhagen and PFA Pension January 28, 2013 Absrac In order o find marke consisen bes esimaes of life insurance liabiliies
More informationCointegration: The Engle and Granger approach
Coinegraion: The Engle and Granger approach Inroducion Generally one would find mos of he economic variables o be nonsaionary I(1) variables. Hence, any equilibrium heories ha involve hese variables require
More informationThe Impact of Surplus Distribution on the Risk Exposure of With Profit Life Insurance Policies Including Interest Rate Guarantees
1 The Impac of Surplus Disribuion on he Risk Exposure of Wih Profi Life Insurance Policies Including Ineres Rae Guaranees Alexander Kling Insiu für Finanz und Akuarwissenschafen, Helmholzsraße 22, 89081
More informationPREMIUM INDEXING IN LIFELONG HEALTH INSURANCE
Far Eas Journal of Mahemaical Sciences (FJMS 203 Pushpa Publishing House, Allahabad, India Published Online: Sepember 203 Available online a hp://pphm.com/ournals/fms.hm Special Volume 203, Par IV, Pages
More informationFORWARD AND FUTURES CONTRACTS
Page1 C H A P T E R 2 FORWARD AND FUTURES CONTRACTS 2.1 INTRODUCTION The main purpose of forward and fuures conracs is he managemen of risk. The exposure o risk as a resul of ransacing in he spo marke
More informationThe option pricing framework
Chaper 2 The opion pricing framework The opion markes based on swap raes or he LIBOR have become he larges fixed income markes, and caps (floors) and swapions are he mos imporan derivaives wihin hese markes.
More informationHiring as Investment Behavior
Review of Economic Dynamics 3, 486522 Ž 2000. doi:10.1006redy.1999.0084, available online a hp:www.idealibrary.com on Hiring as Invesmen Behavior Eran Yashiv 1 The Eian Berglas School of Economics, Tel
More informationIMPLICIT OPTIONS IN LIFE INSURANCE CONTRACTS FROM OPTION PRICING TO THE PRICE OF THE OPTION. Tobias Dillmann * and Jochen Ruß **
IMPLICIT OPTIONS IN LIFE INSURANCE CONTRACTS FROM OPTION PRICING TO THE PRICE OF THE OPTION Tobias Dillmann * and Jochen Ruß ** ABSTRACT Insurance conracs ofen include socalled implici or embedded opions.
More informationA Note on Construction of Multiple Swap Curves with and without Collateral
A Noe on Consrucion of Muliple Swap Curves wih and wihou Collaeral Masaaki Fujii, Yasufumi Shimada, Akihiko Takahashi Absrac There are now available wide variey
More informationMeasuring macroeconomic volatility Applications to export revenue data, 19702005
FONDATION POUR LES ETUDES ET RERS LE DEVELOPPEMENT INTERNATIONAL Measuring macroeconomic volailiy Applicaions o expor revenue daa, 1970005 by Joël Cariolle Policy brief no. 47 March 01 The FERDI is a
More informationCapital Budgeting and Initial Cash Outlay (ICO) Uncertainty
Financial Decisions, Summer 006, Aricle Capial Budgeing and Iniial Cash Oulay (ICO) Uncerainy Michael C. Ehrhard and John M. Wachowicz, Jr. * * The Paul and Beverly Casagna Professor of Finance and Professor
More informationStochastic Calculus, Week 10. Definitions and Notation. TermStructure Models & Interest Rate Derivatives
Sochasic Calculus, Week 10 TermSrucure Models & Ineres Rae Derivaives Topics: 1. Definiions and noaion for he ineres rae marke 2. Termsrucure models 3. Ineres rae derivaives Definiions and Noaion Zerocoupon
More informationTechnical Description of S&P 500 BuyWrite Monthly Index Composition
Technical Descripion of S&P 500 BuyWrie Monhly Index Composiion The S&P 500 BuyWrie Monhly (BWM) index is a oal reurn index based on wriing he nearby ahemoney S&P 500 call opion agains he S&P 500 index
More informationThe Real Business Cycle paradigm. The RBC model emphasizes supply (technology) disturbances as the main source of
Prof. Harris Dellas Advanced Macroeconomics Winer 2001/01 The Real Business Cycle paradigm The RBC model emphasizes supply (echnology) disurbances as he main source of macroeconomic flucuaions in a world
More informationChapter 8: Regression with Lagged Explanatory Variables
Chaper 8: Regression wih Lagged Explanaory Variables Time series daa: Y for =1,..,T End goal: Regression model relaing a dependen variable o explanaory variables. Wih ime series new issues arise: 1. One
More informationA Universal Pricing Framework for Guaranteed Minimum Benefits in Variable Annuities *
A Universal Pricing Framework for Guaraneed Minimum Benefis in Variable Annuiies * Daniel Bauer Deparmen of Risk Managemen and Insurance, Georgia Sae Universiy 35 Broad Sree, Alana, GA 333, USA Phone:
More informationSURVEYING THE RELATIONSHIP BETWEEN STOCK MARKET MAKER AND LIQUIDITY IN TEHRAN STOCK EXCHANGE COMPANIES
Inernaional Journal of Accouning Research Vol., No. 7, 4 SURVEYING THE RELATIONSHIP BETWEEN STOCK MARKET MAKER AND LIQUIDITY IN TEHRAN STOCK EXCHANGE COMPANIES Mohammad Ebrahimi Erdi, Dr. Azim Aslani,
More informationLife insurance cash flows with policyholder behaviour
Life insurance cash flows wih policyholder behaviour Krisian Buchard,,1 & Thomas Møller, Deparmen of Mahemaical Sciences, Universiy of Copenhagen Universiesparken 5, DK2100 Copenhagen Ø, Denmark PFA Pension,
More informationMarket Liquidity and the Impacts of the Computerized Trading System: Evidence from the Stock Exchange of Thailand
36 Invesmen Managemen and Financial Innovaions, 4/4 Marke Liquidiy and he Impacs of he Compuerized Trading Sysem: Evidence from he Sock Exchange of Thailand Sorasar Sukcharoensin 1, Pariyada Srisopisawa,
More informationIndexing Executive Stock Options Relatively
Indexing Execuive Sock Opions Relaively JinChuan Duan and Jason Wei Joseph L. Roman School of Managemen Universiy of Torono 105 S. George Sree Torono, Onario Canada, M5S 3E6 jcduan@roman.uorono.ca wei@roman.uorono.ca
More informationLongevity 11 Lyon 79 September 2015
Longeviy 11 Lyon 79 Sepember 2015 RISK SHARING IN LIFE INSURANCE AND PENSIONS wihin and across generaions Ragnar Norberg ISFA Universié Lyon 1/London School of Economics Email: ragnar.norberg@univlyon1.fr
More informationSupplementary Appendix for Depression Babies: Do Macroeconomic Experiences Affect RiskTaking?
Supplemenary Appendix for Depression Babies: Do Macroeconomic Experiences Affec RiskTaking? Ulrike Malmendier UC Berkeley and NBER Sefan Nagel Sanford Universiy and NBER Sepember 2009 A. Deails on SCF
More informationThe Interaction of Guarantees, Surplus Distribution, and Asset Allocation in With Profit Life Insurance Policies
1 The Ineracion of Guaranees, Surplus Disribuion, and Asse Allocaion in Wih Profi Life Insurance Policies Alexander Kling * Insiu für Finanz und Akuarwissenschafen, Helmholzsr. 22, 89081 Ulm, Germany
More informationReturn Calculation of U.S. Treasury Constant Maturity Indices
Reurn Calculaion of US Treasur Consan Mauri Indices Morningsar Mehodolog Paper Sepeber 30 008 008 Morningsar Inc All righs reserved The inforaion in his docuen is he proper of Morningsar Inc Reproducion
More informationNikkei Stock Average Volatility Index Realtime Version Index Guidebook
Nikkei Sock Average Volailiy Index Realime Version Index Guidebook Nikkei Inc. Wih he modificaion of he mehodology of he Nikkei Sock Average Volailiy Index as Nikkei Inc. (Nikkei) sars calculaing and
More informationAnalyzing Surplus Appropriation Schemes in Participating Life Insurance from the Insurer s and the Policyholder s Perspective
Analyzing Surplus Appropriaion Schemes in Paricipaing Life Insurance from he Insurer s and he Policyholder s Perspecive Alexander Bohner, Nadine Gazer Working Paper Chair for Insurance Economics FriedrichAlexanderUniversiy
More informationCircuit Types. () i( t) ( )
Circui Types DC Circuis Idenifying feaures: o Consan inpus: he volages of independen volage sources and currens of independen curren sources are all consan. o The circui does no conain any swiches. All
More informationInductance and Transient Circuits
Chaper H Inducance and Transien Circuis Blinn College  Physics 2426  Terry Honan As a consequence of Faraday's law a changing curren hrough one coil induces an EMF in anoher coil; his is known as muual
More informationWhat is a swap? A swap is a contract between two counterparties who agree to exchange a stream of payments over an agreed period of several years.
Currency swaps Wha is a swap? A swap is a conrac beween wo counerparies who agree o exchange a sream of paymens over an agreed period of several years. Types of swap equiy swaps (or equiyindexlinked
More informationDynamic Hybrid Products in Life Insurance: Assessing the Policyholders Viewpoint
Dynamic Hybrid Producs in Life Insurance: Assessing he Policyholders Viewpoin Alexander Bohner, Paricia Born, Nadine Gazer Working Paper Deparmen of Insurance Economics and Risk Managemen FriedrichAlexanderUniversiy
More informationABSTRACT KEYWORDS. Markov chain, Regulation of payments, Linear regulator, Bellman equations, Constraints. 1. INTRODUCTION
QUADRATIC OPTIMIZATION OF LIFE AND PENSION INSURANCE PAYMENTS BY MOGENS STEFFENSEN ABSTRACT Quadraic opimizaion is he classical approach o opimal conrol of pension funds. Usually he paymen sream is approximaed
More informationStochastic Volatility Models: Considerations for the Lay Actuary 1. Abstract
Sochasic Volailiy Models: Consideraions for he Lay Acuary 1 Phil Jouber Coomaren Vencaasawmy (Presened o he Finance & Invesmen Conference, 191 June 005) Absrac Sochasic models for asse prices processes
More informationDoes Option Trading Have a Pervasive Impact on Underlying Stock Prices? *
Does Opion Trading Have a Pervasive Impac on Underlying Sock Prices? * Neil D. Pearson Universiy of Illinois a UrbanaChampaign Allen M. Poeshman Universiy of Illinois a UrbanaChampaign Joshua Whie Universiy
More informationChapter 8 Student Lecture Notes 81
Chaper Suden Lecure Noes  Chaper Goals QM: Business Saisics Chaper Analyzing and Forecasing Series Daa Afer compleing his chaper, you should be able o: Idenify he componens presen in a ime series Develop
More informationRelative velocity in one dimension
Connexions module: m13618 1 Relaive velociy in one dimension Sunil Kumar Singh This work is produced by The Connexions Projec and licensed under he Creaive Commons Aribuion License Absrac All quaniies
More information