ABSTRACT KEYWORDS. Term structure, duration, uncertain cash flow, variable rates of return JEL codes: C33, E43 1. INTRODUCTION

Save this PDF as:
 WORD  PNG  TXT  JPG

Size: px
Start display at page:

Download "ABSTRACT KEYWORDS. Term structure, duration, uncertain cash flow, variable rates of return JEL codes: C33, E43 1. INTRODUCTION"

Transcription

1 THE VALUATION AND HEDGING OF VARIABLE RATE SAVINGS ACCOUNTS BY FRANK DE JONG 1 AND JACCO WIELHOUWER ABSTRACT Variable rae savings accouns have wo main feaures. The ineres rae paid on he accoun is variable and deposis can be invesed and wihdrawn a any ime. However, cusomer behaviour is no fully raional and wihdrawals of balances are ofen performed wih a delay. This paper focuses on measuring he ineres rae risk of variable rae savings accouns on a value basis (duraion) and analyzes he problem how o hedge hese accouns. In order o model he embedded opions and he cusomer behaviour we implemen a parial adjusmen specificaion. The ineres rae policy of he bank is described in an errorcorrecion model. KEYWORDS Term srucure, duraion, uncerain cash flow, variable raes of reurn JEL codes: C33, E43 1. INTRODUCTION A major par of privae savings is deposied in variable rae saving accouns, in he US also known as demand deposis. Typically, deposis can be invesed and wihdrawn a any ime a no cos, which makes a savings accoun look similar o a money marke accoun. However, he ineres rae paid on savings accouns is ofen differen from he money marke rae. In Europe, he ineres rae paid on he savings accoun can acually be higher or lower han he money marke rae. Even when hese ineres raes differ, deposiors do no immediaely wihdraw heir money from savings accouns when raes on * We hank Dennis Bams, Joos Driessen, D. Wilkie, paricipans a he AFIR colloquium, and wo anonymous referees for commens on previous versions of he paper. The usual disclaimer applies. 1 Universiy of Amserdam ING Group and CenER, Tilburg Universiy ASTIN BULLETIN, Vol. 33, No., 3, pp

2 384 FRANK DE JONG AND JACCO WIELHOUWER alernaive invesmens are higher. Whaever he causes of his behaviour (marke imperfecions, ransacion coss or oher), hese characerisics imply ha he value of he savings accouns from he poin of view of he issuing bank may be differen from he nominal value of he deposis. In he lieraure, he valuaion of savings accouns is well sudied. For example, Huchison and Pennacchi (1996), Jarrow and Van Devener (1998) and Selvaggio (1996) provide models for he valuaion of such producs. The firs wo papers build on he (exended) Vasicek (1977) model, whereas he laer paper uses a more radiional Ne Presen Value approach. In all hese papers here is lile explici modeling of he dynamic evoluion of he ineres rae paid on he accoun and he balance, and how his evoluion depends on changes in he erm srucure of marke ineres raes. For example, Jarrow and van Devener s (1998) model is compleely saic in he sense ha he ineres rae paid on he accoun and he balance are linear funcions of he curren spo rae. In pracice, i is well known ha ineres raes and balances are raher sluggish and ofen do no respond immediaely o changes in he reurn on alernaive invesmens, such as he money marke rae. Typically, he ineres rae paid on he accoun is se by he bank and he balance is deermined by clien behaviour. The balance depends, among oher hings, on he ineres rae bu also on he reurn on alernaive invesmens. Because he pahs of fuure ineres raes and he adjusmen of he balance deermine he value of he savings accouns, an analysis of dynamic adjusmen paerns is imporan. In his paper, we analyze he valuaion and hedging of savings deposis wih an explici model for he adjusmen of ineres raes and balances o changes in he money marke rae. A recen paper by Janosi, Jarrow and Zullo (JJZ, 1999) presens an empirical analysis of he Jarrow and van Devener (1998) model. They exend he saic heoreical model o a dynamic empirical model, ha akes he gradual adjusmen of ineres raes and balance ino accoun. Our approach differs from he JJZ paper in several respecs. Firsly, we rea he erm srucure of discoun raes as exogenous and calculae he value of he savings accoun by a simple Ne Presen Value equaion. This approach, suggesed by Selvaggio (1996) leads o simple valuaion and duraion formulas, and is applicable wihou assuming a paricular erm srucure model. The drawback of he NPV approach is ha we have o assume ha he risk premium implici in he discoun facor is consan, bu his may be a good firs approximaion because we wan o concenrae on he effecs of he dynamic adjusmen of he ineres rae paid on he accoun and balance and no on erm srucure effecs. Secondly, a difference beween he JJZ model and ours is he modeling of he long run effecs of discoun rae shocks. In our model, here is a long run equilibrium, in which he difference beween he ineres rae paid on he accoun and he money marke rae is consan, and he balance of he savings accoun is also consan (possibly around a rend). Shor erm deviaions from hese long run relaions are correced a a consan rae. This model srucure is known in he empirical ime series lieraure as an error correcion

3 THE VALUATION AND HEDGING OF VARIABLE RATE SAVINGS ACCOUNTS 385 model 3. This model has some aracive properies, such as convergence of he effecs of shocks o a long-run mean. The ineres rae sensiiviy is quanified in a duraion measure. We demonsrae ha he duraion depends on he adjusmen paerns of ineres rae paid on he accoun and balance. We pay paricular aenion o he implicaions of he model for he hedging of ineres rae risk on savings deposis. We illusrae how o fund he savings deposis by a mix of long and shor insrumens ha maches he duraion of he savings accoun s liabiliies. The paper is organized as follows. Firs he valuaion of he savings accouns is deal wih in. In 3 he models on he pricing policy and he cusomer behaviour are presened, and a discree ime version of he model is esimaed for he Duch savings accouns marke. 4 deals wih he duraion of his produc and 5 wih hedging decisions. The paper is concluded in 6.. VALUATION OF VARIABLE RATE SAVINGS ACCOUNTS The valuaion problem of savings accouns and similar producs was analyzed by Selvaggio (1996) and Jarrow and Van Devener (1998). Their approach is o acknowledge ha he liabiliy of he bank equals he presen value of fuure cash ouflows (ineres paymens and changes in he balance). The presen value of hese flows does no necessarily equal he marke value of he money deposied, and herefore he deposis may have some ne asse value. Jarrow and Van Devener (1998) rea he valuaion of savings accouns in a no-arbirage framework and derive he ne asse value under a risk-neural probabiliy measure. However, in our paper we wan o implemen an empirical model for he savings rae and he balance, and herefore we need a valuaion formula based on he empirical probabiliy measure. We herefore adop he approach proposed by Selvaggio (1996), who calculaes he value of he liabiliies as he expeced presen value of fuure cash flows, discouned a a discoun rae which is equal o he risk free rae plus a risk premium 4. Hence, he discoun rae R() can be wrien as R ] g= r ] g +c, (1) where r() is he money marke rae and g is he risk premium. We can inerpre his discoun rae as he hurdle rae of he invesmen, ha incorporaes he riskiness of he liabiliies, as in a radiional Ne Presen Value calculaion. The main assumpion in his paper is ha his risk premium is consan over ime and does no depend on he level of he money marke rae. This assumpion is obviously a simplificaion. Any underlying formal erm srucure model, such as he Ho and Lee (1984) model, implies ha risk premia depend on he 3 We refer o Davidson e al. (1978) for an inroducion o error correcion models. 4 Selvaggio (1996) calls he risk premium he Opion Adjused Spread

4 386 FRANK DE JONG AND JACCO WIELHOUWER money marke rae. However, he risk premia are ypically small and since he focus of he paper is on modeling he dynamic adjusmen of ineres raes and balances, we ignore he variaion in he risk premium and focus on he effec of shocks o he money marke rae. Wih his srucure, he marke value of liabiliies is he expeced discouned value of fuure cash ouflows, i.e. ineres paymens on he accoun i() and changes in he balance D() 5 Rs L () = E ; # 3 e - 6i] sgd] sg-dl] dse. () D Noice ha in his seup reinvesmens of ineres paymens are couned as a par of deposi inflow D (). Working ou he inegral over D (s) by parial inegraion we find ha he value of he liabiliies equals Rs L () = E ; # 3 e - 6i ] sg- R] D] sgdse + D(). (3) D Since he marke value of he asses is equal o he iniial balance, D(), he ne asse value (i.e., he marke value of he savings produc from he poin of view of he bank) is Rs V () = D() - L () = E ; # 3 e - 6R] sg-i] D] sgdse. (4) D D For an inerpreaion of his equaion, noice ha R() i() is he difference beween he bank s discoun rae and he ineres paid on he accoun. Addiional savings generae value wih reurn R(). The coss of hese addiional savings are i(), however. The difference R() i() herefore can be inerpreed as a profi margin. The ne asse value is simply he presen value of fuure profis (balance imes profi margin). Therefore, he ne asse value is posiive if he ineres rae paid on he accoun is on average below he discoun rae. Obviously, he ne asse value is zero if he ineres rae paid on he accoun always equals he discoun rae. As an example, consider he siuaion where he ineres rae paid on he accoun is always equal o he discoun rae minus a fixed margin, i()=r() m, and he discoun rae is consan over ime. 6 Moreover, assume ha he balance is consan a he level D *. In ha case, he ne asse value of he savings accouns is ) V = n D R D ). (5) 5 For noaional clariy, he ime variaion in he discoun rae R is suppressed. If he discoun rae is - Rudu () ime varying, he exac expression for he discoun facor is e # 3. 6 This is a special case of he Jarrow and Van Devener (1998) model.

5 THE VALUATION AND HEDGING OF VARIABLE RATE SAVINGS ACCOUNTS 387 Inuiively, his is he value of a perpeuiy wih coupon rae m and face value D ). Figure 1 graphs he ne asse value for differen values of R and m. For large profi margins and low discoun raes, he ne asse value can be a subsanial fracion of he marke value of he savings deposis. FIGURE 1: Ne asse value This figure shows he ne asse value of a deposi of 1, as a funcion of he discoun rae R and he profi margin m Obviously, his example describes he value in a saic seing. For he ineres rae sensiiviy of he ne asse value, we have o ake ino accoun ha afer a shock in ineres raes, he ineres rae paid on he accoun and he balance only gradually adjus o heir new equilibrium values. In he nex secion we herefore presen a model for he adjusmen paerns of ineres rae and balance afer shocks o he discoun rae. In he subsequen secion we presen discoun rae sensiiviy measures based on hese adjusmen paerns. 3. CLIENT AND BANK BEHAVIOUR The analysis in he previous secion shows ha he ne asse value of savings accouns depends on he specific paern of he expeced fuure ineres raes and balances. The main difference beween money marke accouns and savings accouns is he sluggish adjusmen of ineres raes and balance o changes in he discoun rae. In his secion we model hese adjusmen processes. The

6 388 FRANK DE JONG AND JACCO WIELHOUWER models highligh he parial adjusmen oward he long run equilibrium values of ineres raes and balances. In he analysis, we ake as given he pah of he money marke rae r]g and hence he pah of he discoun rae R] g= r] g +c. We describe he sochasic evoluion of he ineres rae paid on savings deposis, i(), and he balance, D(), condiional on he pah of he discoun rae. For he ineres rae paid on savings accouns, we propose he following sochasic error correcion specificaion di] g= l6 R] g-n- i] d + v dw ] g (6) 1 1 where W 1 () is a sandard Brownian moion. This equaion saes ha he ineres rae adjuss o deviaions beween he long run value R() m and he curren rae. We see his as he arge policy rule of he bank ha ses he ineres rae. Deviaions are correced a speed k >, and in he long run, expeced ineres raes are a margin m below he discoun rae R(). The sochasic erm W 1 () models he deviaions from he arge policy rule. Such deviaions could be due o sudden demand shocks, compeiion from oher banks and he like. For he balance we propose a parial adjusmen specificaion ) dd] g=-m8d] g-d B d -h6r] g-n- i] d + v dw ] g (7) This specificaion has hree componens. Firsly, here is an auonomous convergence o a long run mean D *, which is deermined by a radeoff by he cliens beween savings deposis and money marke accouns. Secondly, here is an ouflow of funds proporional o he excess of he discoun rae over he savings rae. Thirdly, here is an unpredicable sochasic componen. This descripion wih an auonomous convergence is especially suiable for a derended ime series. An auonomous convergence o a long run mean is expeced in a derended series for he balance. We derend by defining he variable D() as he fracion of oal shor erm savings ha is invesed in variable rae savings accouns. In his case D * is he long run fracion of oal shor erm savings ha is invesed in variable rae savings accouns. In his way, he rend growh of he oal savings marke doesn affec he empirical esimaion and he duraion analysis. Working ou he sochasic differenial equaions (6) and (7) gives: # # 1 - s - s - i] g= e l i] g+ l e l ] g6 R] sg - ds + v e l ] gdw ] sg, (8a) ) -m ) m s - D ] g= D+ e _ D] g-di -h e ] g6 Rs ] g-n-is ] ds # m s - + v # e ] gdw ] sg. (8b) To inerpre hese equaions, le s consider he siuaion where he discoun rae R is consan over ime. I is fairly easy o show ha he effec of a

7 THE VALUATION AND HEDGING OF VARIABLE RATE SAVINGS ACCOUNTS 389 change in he discoun rae in his siuaion is given by he following parial derivaives i ] g l s - -l = l # e ] g ds= 1-e, (9a) D ] g m s - i s =-h # e ] g ] g < 1- Fds -m -l m s - ls - h e e ds=-h e - e # ] g d n. (9b) l- m The long run derivaive of he ineres rae paid on he accoun is one, bu in he shor run he effec is less han one. If j > and k > l (which we show laer is clearly he case empirically), he parial derivaive of he balance is negaive, and converges o zero in he long run. These parial derivaives can be used o sudy he effecs of a once-andfor-all shock o he discoun rae, a kind of impulse response analysis. Saring from he equilibrium siuaion D]g = D ) and i() = R- n, he expeced adjusmen paerns are illusraed in Figure for an increase in he discoun rae by 1%. The parameer values are picked from he empirical esimaes o be discussed shorly, and are equal o k =.79, l =.48 and j =.43 for he base case. We see ha he ineres rae doesn follow he jump in he discoun rae immediaely bu gradually adjuss o is new equilibrium value. The adjusmen of he balance is more complex. Iniially, he balance decreases because of wihdrawals caused by he relaively low ineres rae paid on he accoun. Bu as he ineres rae increases, his effec becomes smaller and evenually he auonomous convergence of he balance o is long run level dominaes. One inerpreaion of his is ha cliens who iniially preferred he variable rae savings accoun o he money marke accoun will reurn o variable rae savings accouns when he difference beween he ineres rae paid on he savings accoun and he money marke rae revers o he iniial level. Equaions (9a) and (9b) also highligh he effecs of he model parameers on he adjusmen of ineres raes and balance o a shock in he discoun rae. The effec of j is obvious, i increases he impac of an ineres rae shock. This effec may be imporan in he curren marke, as he increase in he use of inerne for banking services and he resuling lower ransacion and search coss will probably increase he ineres rae sensiiviy of he cusomers. The effec of he mean-reversion parameers k and l is more complicaed. A higher value of l speeds up he adjusmen of he balance iself, bu doesn affec he ineres raes. Wih a lower value of k, boh he adjusmen of he ineres rae and he balance are slower. The effec of he balance is a resul of he dependence of he balance on he ineres rae. These effecs are illusraed in Figure, where he dashed line gives he adjusmen paern for a lower value of k, and he doed line he paern wih a higher value of l.

8 39 FRANK DE JONG AND JACCO WIELHOUWER FIGURE : Adjusmen of ineres rae and balance of savings accouns This figure shows he adjusmen of ineres rae (op panel) end balance (boom panes) o a 1% shock in he discoun rae. The solid line is he base case. The dashed line is for a smaller value of k, he doed line for a larger value of l. The scale of he horizonal axis is years. We now presen some indicaive esimaes of he model parameers. This exercise is no mean o be a horough empirical invesigaion of he adjusmen paern bu merely serves as an illusraion of he model. In order o ranslae he coninuous ime parameers o a discree ime seing, we use he following approximae 7 discreizaion of he coninuous ime model Di = l7r -n- i A D+e, (1a) ) - 1 DD =-m_ D -D id-h7r -n- ia D+e. (1b) The discoun rae is no direcly observed in he daa. Since a savings accoun shares characerisics of boh a money marke accoun and a long erm deposi, is required rae of reurn (or discoun rae) is proxied by a weighed average of he money marke rae (r ) and he long erm bond yield (y ). 8 7 This approximaion is quie accurae. For example, he exac mean reversion parameer for he ineres rae equaion is 1 - exp (- l D), which for small values of l or D is close o l D. 8 An alernaive bu equivalen way o jusify his proxy is o assume ha he risk premium of he savings deposi is a fracion of he risk premium on long erm bonds.

9 THE VALUATION AND HEDGING OF VARIABLE RATE SAVINGS ACCOUNTS 391 We rea he weigh d as an unknown parameer which is esimaed from he daa. This leads o he following empirical model Di = a + a Dr + a 7i -" dr + ^ - dhy, A+ e, (11a) , D = b + b D + b 7i -" dr -^ - dhy, A + e. (11b) , This model is slighly more general han he heoreical model because i conains an immediae, discree adjusmen of he ineres rae o he money marke rae. Afer his iniial jump, he adjusmen o he new equilibrium is gradual. This effec urned ou o be so imporan empirically ha we included i in he empirical model. 9 The parameers of he coninuous ime model can be solved from he following equaions (wih D = 11 / for monhly daa) l=- a / D, m= ^ -bh/ D, h= 1 1 b / D. In fac, he long run deposi level and he average spread of he ineres raes over he esimaed discoun rae could be unraveled from he consan erms of he model. These are no very accuraely esimaed however and we refrain from drawing inferences abou hese parameers from he esimaes. We use monhly daa on ineres raes and deposis from he Duch savings accoun marke. The ineres rae paid on he accoun is aken from one of he price seers in he Duch marke. The sample period is 198:1 o 1999:1, spanning 17 years which is slighly longer han he samples of Huchison and Pennacchi (1996) or JJZ. To remove rends in he oal savings volume, we define he balance D as he fracion of variable rae savings accouns o oal savings. The following empirical esimaes are obained using leas squares: Di= Dr-. 667i -1-" dr -1 + ^1 - dhy -1, A + e1,, (1a) D= D i -1-" dr -1 + ^1 - dhy -1, A + e,. (1b) The esimae of d is around.. These esimaes imply he following annualized values for he coninuous ime parameers: k =.79, l =.48, and j =.43. Using hese parameers we can solve he second equaion for he seady sae value of he fracion of variable rae savings deposis o oal savings, ) D = Noice ha including his erm does no invalidae he duraion analysis of he model, which is based on he gradual adjusmen paerns only. 1 The empirical average of D is.51

10 39 FRANK DE JONG AND JACCO WIELHOUWER 4. DURATION The previous secion showed ha he ineres rae paid on he accoun and he balance of savings accouns are relaed o he discoun rae. Therefore, he discoun rae sensiiviy of savings deposis will be differen from he discoun rae sensiiviy of a money marke accoun (which has a duraion of zero). In his secion, we sudy he sensiiviy of he ne asse value of a savings accoun o a parallel shif in he pah of he discoun raes. We sudy a shif from he original pah R() o R () + DR, and evaluae he derivaive in DR =. Wih some abuse of noaion, we will wrie he resuling expressions as V/ bu i should be kep in mind ha his refers o a parallel shif in he pah of discoun raes. This approach is close o a radiional duraion analysis, see e.g. Bierwag (1987), bu we ake ino accoun he dependence of fuure cash flows on discoun raes. In he iniial siuaion, he deposis are a heir equilibrium value D ). Differeniaion of he ne asse value wih respec he discoun rae gives V () 3 3 = E ;-# se 6R() s - i() D() s ds + # e D -Rs -Rs 6Rs ()- is Dsds () 3 Rs Ds + e - ] g # 6 R() s -i] R ds F (13) The hree componens of his expression can be inerpreed as follows: 1. he ineres rae sensiiviy of he expeced discouned profis;. he change in he margin on he expeced fuure balances; 3. he expeced margin imes increases or decreases in he balance of he deposi. Noice ha if he fuure balances do no change as a resul of he ineres rae change, and if he margin is consan, only he firs erm (he sensiiviy of he presen value of he profis) remains. The second and hird erm are specific for savings accouns wih heir slow adjusmen of he ineres rae and balance, and are herefore he mos ineresing for our analysis. We shall now discuss he duraion of he accouns given he specific model for he evoluion of ineres raes and balances. Assume again ha R]g s = Ris consan, and ha he iniial siuaion is in equilibrium, D]g = D ) and i() = R- n. Under hese iniial condiions, he developmen of he ineres raes and he balance can be derived from equaions (8a) and (8b): -l l( s - ) l( s - ) R- i() = R-e i( )-l# e 6 R- ds-v # e dw() s ( ) 1 # 1 l s - = n-v e dw(), s 1 1 # # ) s m( s ) ( u s) ( s ) hv1 - l - m # 1 v - # # ) m( s - ) m( s - ) D () = D + h e 6 R] sg- n- i] ds+ v e dw] sg (14a) = D + e e dw]g u ds+ e dw (). s (14b)

11 THE VALUATION AND HEDGING OF VARIABLE RATE SAVINGS ACCOUNTS 393 Assuming ha he sochasic pars of he ineres rae and he balance are uncorrelaed, i.e. Cov(dW 1 (), dw ()) =, and noicing ha he parial derivaives (9a) and (9b) are non-sochasic, we can work ou he parial derivaive of he value: V () 3 D Rs =- se - E R -i() s D s ds # " ]g, Rs R i() s Rs Ds e E Ds () ds+ 3 - ] g # e E R-i s ds # 6 ] Rs Rs s Rs =- 3 ) se nd ds + 3 ) e e D ds - 3 -m -l - - -l - e nh e - e # # # d nds l- m n () (). R D 1 hn =- R D l - b - l - m R + m R + l l (15) Wih an increase in he discoun rae, he firs erm reflecs he loss of value of he (perpeual) profi margin, he second erm he discouned value of he ineres paymens no made on he original balance during he ime he ineres rae paid on he accoun ^i ] gh is below he discoun rae minus he profi margin ^R - nh, and he hird erm he discouned value of he profi foregone on he balance ouflows. We can ransform his change of value o a duraion measure if we assume ha iniially, he ne asse value equals V D () = D() n R VD () Dur R V () R R R h =- = - 1 R D() R R R n + l + - l- m b + m + l l (16) D The firs erm reflecs he duraion of a perpeuiy, and is deermined by he presen value of he profis in he seady sae. The second erm reflecs he value of he lower ineres raes paid on he exising balance, and is always negaive. The hird erm is he duraion of he profis on he addiional balance ouflows, and is posiive under he assumpion l> m. Especially when he margin m is hin and he ne asse value is low, he second erm may dominae he oher erms, leading o a negaive duraion for he ne asse value of a savings accoun. In ha case, an increase in he discoun rae will increase he ne asse value because for some ime he ineres rae paid on he savings accoun is lower han reurn on he asses deposied. As an illusraion Figure 3 shows he duraions as a funcion of he discoun rae R and he margin m (he oher parameers are pu equal o he esimaes of he previous secion). We see ha he duraion is ypically posiive, excep for low values of m, and declines wih he discoun rae. Mos of his effec is due o he duraion of he discouned profi margin, 1/R. Leaving ou his erm, we find he exra duraion of he ne asse value induced by he sluggish adjusmen paern. Figure 4 shows hese measures. Ineresingly, he exra duraion is always negaive, bu converges o zero for relaively big profi margins m.

12 394 FRANK DE JONG AND JACCO WIELHOUWER FIGURE 3: Duraion of savings deposis This figure shows he duraion (in years) of savings deposis as a funcion of he discoun rae (R) and he profi margin m. Figure 4: Duraion of savings deposis (excluding profi margin) This figure shows he exra duraion (in years) of savings deposis, in excess of he duraion of a perpeuiy (1/R), as a funcion of he discoun rae (R) and he profi margin m.

13 THE VALUATION AND HEDGING OF VARIABLE RATE SAVINGS ACCOUNTS HEDGING In his secion we consider he problem of hedging he ne asse value. Given he liabiliy value L D of he variable rae savings accouns, one can hedge he ne asse value by immunizaion. For simpliciy we assume he money deposied can be invesed in wo insrumens, Long Invesmens (LI) and Shor Invesmens (SI). The balance shee of he bank hen becomes V LI V SI L D V D where V D denoes he Ne Asse Value. We now consider he consrucion of an invesmen porfolio where he ineres rae risk on he ne asse value is fully hedged, i.e. he ne asse value V D is no sensiive o he parallel shifs in he discoun rae. From he balance shee we see ha his requires V V L + =. (17) SI LI D Of course, he soluion o his equaion, and hence he composiion of he invesmen porfolio, depends on he duraions of he shor and long invesmens. As a simple example, consider he case where he shor insrumen has zero duraion. In ha case he invesmen in he long insrumen is deermined by VLI LD =. (18) L We can find D from equaions (4) and (13). As an illusraion, Figure 5 graphs he required posiion in long (1 year mauriy) bonds in he hedge porfolio for differen value of R and m. As seen before, he duraion of variable rae savings accouns may be negaive, in paricular when he profi margin m is fairly small. In ha case he bank can hedge he accouns by aking a long posiion in long invesmens. Bu if Dur is posiive, which happens for example when he profi margin m is fairly high, one should ake a shor posiion in he long asse. Alernaively, if one does no like o ake shor posiions in bonds, one could use derivaive insrumens such as caps, which ypically have a negaive duraion, or forward conracs. 6. CONCLUSION This paper focuses on he valuaion and ineres rae sensiiviy of variable rae savings accouns. The duraion can be spli in hree differen effecs: he duraion of he expeced discouned profis; he change in margin on expeced fuure balances due o a change in ineres rae; he expeced margin imes increases or decreases in he balance of he accoun.

14 396 FRANK DE JONG AND JACCO WIELHOUWER Figure 5: Hedge porfolio This figure shows he posiion in long bonds (duraion 1 years) in he hedge porfolio of a 1 deposi, as a funcion of he discoun rae R and he profi margin m. The firs elemen is he sandard duraion for producs wihou embedded opions. The second and hird erm are non-sandard (for example, hey are zero for a money marke accoun) and arise due o he variable ineres rae paid on he accoun and he opion of he cliens o wihdraw and inves in he accoun a any ime. The duraion herefore crucially depends on he rapidness of he adjusmen of he ineres rae paid on he accoun o discoun rae changes and on he reacions of he cliens. These reacions will principally be deermined by he cliens ineres rae sensiiviy and by he marke efficiency. The models are esimaed for he Duch savings accoun marke. Duraion curves are given for differen margins. When hedging he savings deposis, one can consruc a porfolio wih he same duraion as he variable rae savings accouns. However, when one does no wan o go shor ino a cerain asse class, one migh need o include derivaives (for example caps) o hedge hese producs, since i is possible o have negaive duraions. The inuiion is ha an ineres rae increase migh lead o a fligh of cliens o money marke accouns. So buy insurance when money marke accouns are less aracive, which resul in profis when ineres raes spike up (he insurance pays ou). The gain due o he caps in an increasing ineres rae environmen hen offses he loss in he savings accouns. Hedging in his way cerainly smoohens he resuls on hese producs. Of course his can be achieved by going shor in long asses as well.

15 THE VALUATION AND HEDGING OF VARIABLE RATE SAVINGS ACCOUNTS 397 For fuure research i migh be ineresing o analyze he second order effecs. Then muliple immunizaion can be achieved wih a porfolio wih hree asse classes. Finally, i is possible o make he discoun rae a funcion of a number of ineres raes wih differen mauriies. This will of course increase he complexiy of he model bu allows for he calculaion of key-rae duraions. REFERENCES BIERWAG, G.O. (1987) Duraion Analysis, Ballinger, Cambridge MA. DAVIDSON, J., HENDRY, D.F., SRBA, F. and YEO, S. (1978) Economeric Modelling of he Aggregae Time Series Relaionship beween Consumer Expendiure and Income in he Unied Kingdom, Economic Journal, 88, HEATH, D., JARROW, R. and MORTON, A. (199) Bond pricing and he erm srucure of ineres raes: A new mehodology for coningen claims valuaion, Economerica 6, HO, T.S.Y. and LEE, S.-B. (1986) Term srucure movemens and he pricing of ineres rae coningen claims, Journal of Finance 41, HULL, J. (1993) Opions, Fuures and oher Derivaive Securiies, second ediion, Prenice-Hall. HUTCHISON, D.E. and PENNACCHI, G.G. (1996) Measuring Rens and Ineres Rae Risk in Imperfec Financial Markes: The Case of Raail Bank Deposis, Journal of Financial and Quaniaive Analysis 31, JANOSI, T., JARROW, R. and ZULLO, F. (1999) An Empirical Analysis of he Jarrow-van Devener Model for Valuing Non-Mauriy Demand Deposis, Journal of Derivaives, Fall 1999, JARROW, R.A., and VAN DEVENTER, D.R. (1998) The arbiarge-free valuaion and hedging of savings accouns and credi card loans, Journal of Banking and Finance, SELVAGGIO, R.D. (1996) Using he OAS Mehodology o Value and Hedge Commercial Bank Reail Demand Deposi Premiums, Chaper VASICEK, O. (1977) An equilibrium characerizaion of he erm srucure, Journal of Financial Economics 5, FRANK DE JONG Finance Group Universiei van Amserdam Roeerssraa WB, Amserdam he Neherlands Phone: Fax:

Duration and Convexity ( ) 20 = Bond B has a maturity of 5 years and also has a required rate of return of 10%. Its price is $613.

Duration and Convexity ( ) 20 = Bond B has a maturity of 5 years and also has a required rate of return of 10%. Its price is $613. Graduae School of Business Adminisraion Universiy of Virginia UVA-F-38 Duraion and Convexiy he price of a bond is a funcion of he promised paymens and he marke required rae of reurn. Since he promised

More information

PROFIT TEST MODELLING IN LIFE ASSURANCE USING SPREADSHEETS PART ONE

PROFIT TEST MODELLING IN LIFE ASSURANCE USING SPREADSHEETS PART ONE Profi Tes Modelling in Life Assurance Using Spreadshees PROFIT TEST MODELLING IN LIFE ASSURANCE USING SPREADSHEETS PART ONE Erik Alm Peer Millingon 2004 Profi Tes Modelling in Life Assurance Using Spreadshees

More information

A Note on Using the Svensson procedure to estimate the risk free rate in corporate valuation

A Note on Using the Svensson procedure to estimate the risk free rate in corporate valuation A Noe on Using he Svensson procedure o esimae he risk free rae in corporae valuaion By Sven Arnold, Alexander Lahmann and Bernhard Schwezler Ocober 2011 1. The risk free ineres rae in corporae valuaion

More information

11/6/2013. Chapter 14: Dynamic AD-AS. Introduction. Introduction. Keeping track of time. The model s elements

11/6/2013. Chapter 14: Dynamic AD-AS. Introduction. Introduction. Keeping track of time. The model s elements Inroducion Chaper 14: Dynamic D-S dynamic model of aggregae and aggregae supply gives us more insigh ino how he economy works in he shor run. I is a simplified version of a DSGE model, used in cuing-edge

More information

DYNAMIC MODELS FOR VALUATION OF WRONGFUL DEATH PAYMENTS

DYNAMIC MODELS FOR VALUATION OF WRONGFUL DEATH PAYMENTS DYNAMIC MODELS FOR VALUATION OF WRONGFUL DEATH PAYMENTS Hong Mao, Shanghai Second Polyechnic Universiy Krzyszof M. Osaszewski, Illinois Sae Universiy Youyu Zhang, Fudan Universiy ABSTRACT Liigaion, exper

More information

Term Structure of Prices of Asian Options

Term Structure of Prices of Asian Options Term Srucure of Prices of Asian Opions Jirô Akahori, Tsuomu Mikami, Kenji Yasuomi and Teruo Yokoa Dep. of Mahemaical Sciences, Risumeikan Universiy 1-1-1 Nojihigashi, Kusasu, Shiga 525-8577, Japan E-mail:

More information

Morningstar Investor Return

Morningstar Investor Return Morningsar Invesor Reurn Morningsar Mehodology Paper Augus 31, 2010 2010 Morningsar, Inc. All righs reserved. The informaion in his documen is he propery of Morningsar, Inc. Reproducion or ranscripion

More information

Journal Of Business & Economics Research September 2005 Volume 3, Number 9

Journal Of Business & Economics Research September 2005 Volume 3, Number 9 Opion Pricing And Mone Carlo Simulaions George M. Jabbour, (Email: jabbour@gwu.edu), George Washingon Universiy Yi-Kang Liu, (yikang@gwu.edu), George Washingon Universiy ABSTRACT The advanage of Mone Carlo

More information

Chapter 6: Business Valuation (Income Approach)

Chapter 6: Business Valuation (Income Approach) Chaper 6: Business Valuaion (Income Approach) Cash flow deerminaion is one of he mos criical elemens o a business valuaion. Everyhing may be secondary. If cash flow is high, hen he value is high; if he

More information

Individual Health Insurance April 30, 2008 Pages 167-170

Individual Health Insurance April 30, 2008 Pages 167-170 Individual Healh Insurance April 30, 2008 Pages 167-170 We have received feedback ha his secion of he e is confusing because some of he defined noaion is inconsisen wih comparable life insurance reserve

More information

The Greek financial crisis: growing imbalances and sovereign spreads. Heather D. Gibson, Stephan G. Hall and George S. Tavlas

The Greek financial crisis: growing imbalances and sovereign spreads. Heather D. Gibson, Stephan G. Hall and George S. Tavlas The Greek financial crisis: growing imbalances and sovereign spreads Heaher D. Gibson, Sephan G. Hall and George S. Tavlas The enry The enry of Greece ino he Eurozone in 2001 produced a dividend in he

More information

INTEREST RATE FUTURES AND THEIR OPTIONS: SOME PRICING APPROACHES

INTEREST RATE FUTURES AND THEIR OPTIONS: SOME PRICING APPROACHES INTEREST RATE FUTURES AND THEIR OPTIONS: SOME PRICING APPROACHES OPENGAMMA QUANTITATIVE RESEARCH Absrac. Exchange-raded ineres rae fuures and heir opions are described. The fuure opions include hose paying

More information

BALANCE OF PAYMENTS. First quarter 2008. Balance of payments

BALANCE OF PAYMENTS. First quarter 2008. Balance of payments BALANCE OF PAYMENTS DATE: 2008-05-30 PUBLISHER: Balance of Paymens and Financial Markes (BFM) Lena Finn + 46 8 506 944 09, lena.finn@scb.se Camilla Bergeling +46 8 506 942 06, camilla.bergeling@scb.se

More information

Table of contents Chapter 1 Interest rates and factors Chapter 2 Level annuities Chapter 3 Varying annuities

Table of contents Chapter 1 Interest rates and factors Chapter 2 Level annuities Chapter 3 Varying annuities Table of conens Chaper 1 Ineres raes and facors 1 1.1 Ineres 2 1.2 Simple ineres 4 1.3 Compound ineres 6 1.4 Accumulaed value 10 1.5 Presen value 11 1.6 Rae of discoun 13 1.7 Consan force of ineres 17

More information

Chapter 1.6 Financial Management

Chapter 1.6 Financial Management Chaper 1.6 Financial Managemen Par I: Objecive ype quesions and answers 1. Simple pay back period is equal o: a) Raio of Firs cos/ne yearly savings b) Raio of Annual gross cash flow/capial cos n c) = (1

More information

Why Did the Demand for Cash Decrease Recently in Korea?

Why Did the Demand for Cash Decrease Recently in Korea? Why Did he Demand for Cash Decrease Recenly in Korea? Byoung Hark Yoo Bank of Korea 26. 5 Absrac We explores why cash demand have decreased recenly in Korea. The raio of cash o consumpion fell o 4.7% in

More information

The Transport Equation

The Transport Equation The Transpor Equaion Consider a fluid, flowing wih velociy, V, in a hin sraigh ube whose cross secion will be denoed by A. Suppose he fluid conains a conaminan whose concenraion a posiion a ime will be

More information

Hedging with Forwards and Futures

Hedging with Forwards and Futures Hedging wih orwards and uures Hedging in mos cases is sraighforward. You plan o buy 10,000 barrels of oil in six monhs and you wish o eliminae he price risk. If you ake he buy-side of a forward/fuures

More information

YTM is positively related to default risk. YTM is positively related to liquidity risk. YTM is negatively related to special tax treatment.

YTM is positively related to default risk. YTM is positively related to liquidity risk. YTM is negatively related to special tax treatment. . Two quesions for oday. A. Why do bonds wih he same ime o mauriy have differen YTM s? B. Why do bonds wih differen imes o mauriy have differen YTM s? 2. To answer he firs quesion les look a he risk srucure

More information

LEASING VERSUSBUYING

LEASING VERSUSBUYING LEASNG VERSUSBUYNG Conribued by James D. Blum and LeRoy D. Brooks Assisan Professors of Business Adminisraion Deparmen of Business Adminisraion Universiy of Delaware Newark, Delaware The auhors discuss

More information

Pricing Fixed-Income Derivaives wih he Forward-Risk Adjused Measure Jesper Lund Deparmen of Finance he Aarhus School of Business DK-8 Aarhus V, Denmark E-mail: jel@hha.dk Homepage: www.hha.dk/~jel/ Firs

More information

UNDERSTANDING THE DEATH BENEFIT SWITCH OPTION IN UNIVERSAL LIFE POLICIES. Nadine Gatzert

UNDERSTANDING THE DEATH BENEFIT SWITCH OPTION IN UNIVERSAL LIFE POLICIES. Nadine Gatzert UNDERSTANDING THE DEATH BENEFIT SWITCH OPTION IN UNIVERSAL LIFE POLICIES Nadine Gazer Conac (has changed since iniial submission): Chair for Insurance Managemen Universiy of Erlangen-Nuremberg Lange Gasse

More information

The Interest Rate Risk of Mortgage Loan Portfolio of Banks

The Interest Rate Risk of Mortgage Loan Portfolio of Banks The Ineres Rae Risk of Morgage Loan Porfolio of Banks A Case Sudy of he Hong Kong Marke Jim Wong Hong Kong Moneary Auhoriy Paper presened a he Exper Forum on Advanced Techniques on Sress Tesing: Applicaions

More information

4. International Parity Conditions

4. International Parity Conditions 4. Inernaional ariy ondiions 4.1 urchasing ower ariy he urchasing ower ariy ( heory is one of he early heories of exchange rae deerminaion. his heory is based on he concep ha he demand for a counry's currency

More information

I. Basic Concepts (Ch. 1-4)

I. Basic Concepts (Ch. 1-4) (Ch. 1-4) A. Real vs. Financial Asses (Ch 1.2) Real asses (buildings, machinery, ec.) appear on he asse side of he balance shee. Financial asses (bonds, socks) appear on boh sides of he balance shee. Creaing

More information

Representing Periodic Functions by Fourier Series. (a n cos nt + b n sin nt) n=1

Representing Periodic Functions by Fourier Series. (a n cos nt + b n sin nt) n=1 Represening Periodic Funcions by Fourier Series 3. Inroducion In his Secion we show how a periodic funcion can be expressed as a series of sines and cosines. We begin by obaining some sandard inegrals

More information

Economics Honors Exam 2008 Solutions Question 5

Economics Honors Exam 2008 Solutions Question 5 Economics Honors Exam 2008 Soluions Quesion 5 (a) (2 poins) Oupu can be decomposed as Y = C + I + G. And we can solve for i by subsiuing in equaions given in he quesion, Y = C + I + G = c 0 + c Y D + I

More information

Present Value Methodology

Present Value Methodology Presen Value Mehodology Econ 422 Invesmen, Capial & Finance Universiy of Washingon Eric Zivo Las updaed: April 11, 2010 Presen Value Concep Wealh in Fisher Model: W = Y 0 + Y 1 /(1+r) The consumer/producer

More information

Dynamic Option Adjusted Spread and the Value of Mortgage Backed Securities

Dynamic Option Adjusted Spread and the Value of Mortgage Backed Securities Dynamic Opion Adjused Spread and he Value of Morgage Backed Securiies Mario Cerrao, Abdelmadjid Djennad Universiy of Glasgow Deparmen of Economics 27 January 2008 Absrac We exend a reduced form model for

More information

II.1. Debt reduction and fiscal multipliers. dbt da dpbal da dg. bal

II.1. Debt reduction and fiscal multipliers. dbt da dpbal da dg. bal Quarerly Repor on he Euro Area 3/202 II.. Deb reducion and fiscal mulipliers The deerioraion of public finances in he firs years of he crisis has led mos Member Saes o adop sizeable consolidaion packages.

More information

Principal components of stock market dynamics. Methodology and applications in brief (to be updated ) Andrei Bouzaev, bouzaev@ya.

Principal components of stock market dynamics. Methodology and applications in brief (to be updated ) Andrei Bouzaev, bouzaev@ya. Principal componens of sock marke dynamics Mehodology and applicaions in brief o be updaed Andrei Bouzaev, bouzaev@ya.ru Why principal componens are needed Objecives undersand he evidence of more han one

More information

Markit Excess Return Credit Indices Guide for price based indices

Markit Excess Return Credit Indices Guide for price based indices Marki Excess Reurn Credi Indices Guide for price based indices Sepember 2011 Marki Excess Reurn Credi Indices Guide for price based indices Conens Inroducion...3 Index Calculaion Mehodology...4 Semi-annual

More information

Option Put-Call Parity Relations When the Underlying Security Pays Dividends

Option Put-Call Parity Relations When the Underlying Security Pays Dividends Inernaional Journal of Business and conomics, 26, Vol. 5, No. 3, 225-23 Opion Pu-all Pariy Relaions When he Underlying Securiy Pays Dividends Weiyu Guo Deparmen of Finance, Universiy of Nebraska Omaha,

More information

Working Paper No. 482. Net Intergenerational Transfers from an Increase in Social Security Benefits

Working Paper No. 482. Net Intergenerational Transfers from an Increase in Social Security Benefits Working Paper No. 482 Ne Inergeneraional Transfers from an Increase in Social Securiy Benefis By Li Gan Texas A&M and NBER Guan Gong Shanghai Universiy of Finance and Economics Michael Hurd RAND Corporaion

More information

Chapter 9 Bond Prices and Yield

Chapter 9 Bond Prices and Yield Chaper 9 Bond Prices and Yield Deb Classes: Paymen ype A securiy obligaing issuer o pay ineress and principal o he holder on specified daes, Coupon rae or ineres rae, e.g. 4%, 5 3/4%, ec. Face, par value

More information

A Brief Introduction to the Consumption Based Asset Pricing Model (CCAPM)

A Brief Introduction to the Consumption Based Asset Pricing Model (CCAPM) A Brief Inroducion o he Consumpion Based Asse Pricing Model (CCAPM We have seen ha CAPM idenifies he risk of any securiy as he covariance beween he securiy's rae of reurn and he rae of reurn on he marke

More information

Equities: Positions and Portfolio Returns

Equities: Positions and Portfolio Returns Foundaions of Finance: Equiies: osiions and orfolio Reurns rof. Alex Shapiro Lecure oes 4b Equiies: osiions and orfolio Reurns I. Readings and Suggesed racice roblems II. Sock Transacions Involving Credi

More information

Optimal Investment and Consumption Decision of Family with Life Insurance

Optimal Investment and Consumption Decision of Family with Life Insurance Opimal Invesmen and Consumpion Decision of Family wih Life Insurance Minsuk Kwak 1 2 Yong Hyun Shin 3 U Jin Choi 4 6h World Congress of he Bachelier Finance Sociey Torono, Canada June 25, 2010 1 Speaker

More information

Fifth Quantitative Impact Study of Solvency II (QIS 5) National guidance on valuation of technical provisions for German SLT health insurance

Fifth Quantitative Impact Study of Solvency II (QIS 5) National guidance on valuation of technical provisions for German SLT health insurance Fifh Quaniaive Impac Sudy of Solvency II (QIS 5) Naional guidance on valuaion of echnical provisions for German SLT healh insurance Conens 1 Inroducion... 2 2 Calculaion of bes-esimae provisions... 3 2.1

More information

LIFE INSURANCE WITH STOCHASTIC INTEREST RATE. L. Noviyanti a, M. Syamsuddin b

LIFE INSURANCE WITH STOCHASTIC INTEREST RATE. L. Noviyanti a, M. Syamsuddin b LIFE ISURACE WITH STOCHASTIC ITEREST RATE L. oviyani a, M. Syamsuddin b a Deparmen of Saisics, Universias Padjadjaran, Bandung, Indonesia b Deparmen of Mahemaics, Insiu Teknologi Bandung, Indonesia Absrac.

More information

Stochastic Optimal Control Problem for Life Insurance

Stochastic Optimal Control Problem for Life Insurance Sochasic Opimal Conrol Problem for Life Insurance s. Basukh 1, D. Nyamsuren 2 1 Deparmen of Economics and Economerics, Insiue of Finance and Economics, Ulaanbaaar, Mongolia 2 School of Mahemaics, Mongolian

More information

Valuation of Life Insurance Contracts with Simulated Guaranteed Interest Rate

Valuation of Life Insurance Contracts with Simulated Guaranteed Interest Rate Valuaion of Life Insurance Conracs wih Simulaed uaraneed Ineres Rae Xia uo and ao Wang Deparmen of Mahemaics Royal Insiue of echnology 100 44 Sockholm Acknowledgmens During he progress of he work on his

More information

Graphing the Von Bertalanffy Growth Equation

Graphing the Von Bertalanffy Growth Equation file: d:\b173-2013\von_beralanffy.wpd dae: Sepember 23, 2013 Inroducion Graphing he Von Beralanffy Growh Equaion Previously, we calculaed regressions of TL on SL for fish size daa and ploed he daa and

More information

Agnes Joseph, Dirk de Jong and Antoon Pelsser. Policy Improvement via Inverse ALM. Discussion Paper 06/2010-085

Agnes Joseph, Dirk de Jong and Antoon Pelsser. Policy Improvement via Inverse ALM. Discussion Paper 06/2010-085 Agnes Joseph, Dirk de Jong and Anoon Pelsser Policy Improvemen via Inverse ALM Discussion Paper 06/2010-085 Policy Improvemen via Inverse ALM AGNES JOSEPH 1 Universiy of Amserdam, Synrus Achmea Asse Managemen

More information

THE PERFORMANCE OF OPTION PRICING MODELS ON HEDGING EXOTIC OPTIONS

THE PERFORMANCE OF OPTION PRICING MODELS ON HEDGING EXOTIC OPTIONS HE PERFORMANE OF OPION PRIING MODEL ON HEDGING EXOI OPION Firs Draf: May 5 003 his Version Oc. 30 003 ommens are welcome Absrac his paper examines he empirical performance of various opion pricing models

More information

Credit Index Options: the no-armageddon pricing measure and the role of correlation after the subprime crisis

Credit Index Options: the no-armageddon pricing measure and the role of correlation after the subprime crisis Second Conference on The Mahemaics of Credi Risk, Princeon May 23-24, 2008 Credi Index Opions: he no-armageddon pricing measure and he role of correlaion afer he subprime crisis Damiano Brigo - Join work

More information

Relationships between Stock Prices and Accounting Information: A Review of the Residual Income and Ohlson Models. Scott Pirie* and Malcolm Smith**

Relationships between Stock Prices and Accounting Information: A Review of the Residual Income and Ohlson Models. Scott Pirie* and Malcolm Smith** Relaionships beween Sock Prices and Accouning Informaion: A Review of he Residual Income and Ohlson Models Sco Pirie* and Malcolm Smih** * Inernaional Graduae School of Managemen, Universiy of Souh Ausralia

More information

Risk Modelling of Collateralised Lending

Risk Modelling of Collateralised Lending Risk Modelling of Collaeralised Lending Dae: 4-11-2008 Number: 8/18 Inroducion This noe explains how i is possible o handle collaeralised lending wihin Risk Conroller. The approach draws on he faciliies

More information

A general decomposition formula for derivative prices in stochastic volatility models

A general decomposition formula for derivative prices in stochastic volatility models A general decomposiion formula for derivaive prices in sochasic volailiy models Elisa Alòs Universia Pompeu Fabra C/ Ramón rias Fargas, 5-7 85 Barcelona Absrac We see ha he price of an european call opion

More information

Chapter 4: Exponential and Logarithmic Functions

Chapter 4: Exponential and Logarithmic Functions Chaper 4: Eponenial and Logarihmic Funcions Secion 4.1 Eponenial Funcions... 15 Secion 4. Graphs of Eponenial Funcions... 3 Secion 4.3 Logarihmic Funcions... 4 Secion 4.4 Logarihmic Properies... 53 Secion

More information

Rationales of Mortgage Insurance Premium Structures

Rationales of Mortgage Insurance Premium Structures JOURNAL OF REAL ESTATE RESEARCH Raionales of Morgage Insurance Premium Srucures Barry Dennis* Chionglong Kuo* Tyler T. Yang* Absrac. This sudy examines he raionales for he design of morgage insurance premium

More information

Graduate Macro Theory II: Notes on Neoclassical Growth Model

Graduate Macro Theory II: Notes on Neoclassical Growth Model Graduae Macro Theory II: Noes on Neoclassical Growh Model Eric Sims Universiy of Nore Dame Spring 2011 1 Basic Neoclassical Growh Model The economy is populaed by a large number of infiniely lived agens.

More information

4.8 Exponential Growth and Decay; Newton s Law; Logistic Growth and Decay

4.8 Exponential Growth and Decay; Newton s Law; Logistic Growth and Decay 324 CHAPTER 4 Exponenial and Logarihmic Funcions 4.8 Exponenial Growh and Decay; Newon s Law; Logisic Growh and Decay OBJECTIVES 1 Find Equaions of Populaions Tha Obey he Law of Uninhibied Growh 2 Find

More information

The Grantor Retained Annuity Trust (GRAT)

The Grantor Retained Annuity Trust (GRAT) WEALTH ADVISORY Esae Planning Sraegies for closely-held, family businesses The Granor Reained Annuiy Trus (GRAT) An efficien wealh ransfer sraegy, paricularly in a low ineres rae environmen Family business

More information

Markov Chain Modeling of Policy Holder Behavior in Life Insurance and Pension

Markov Chain Modeling of Policy Holder Behavior in Life Insurance and Pension Markov Chain Modeling of Policy Holder Behavior in Life Insurance and Pension Lars Frederik Brand Henriksen 1, Jeppe Woemann Nielsen 2, Mogens Seffensen 1, and Chrisian Svensson 2 1 Deparmen of Mahemaical

More information

Option Pricing Under Stochastic Interest Rates

Option Pricing Under Stochastic Interest Rates I.J. Engineering and Manufacuring, 0,3, 8-89 ublished Online June 0 in MECS (hp://www.mecs-press.ne) DOI: 0.585/ijem.0.03. Available online a hp://www.mecs-press.ne/ijem Opion ricing Under Sochasic Ineres

More information

THE FIRM'S INVESTMENT DECISION UNDER CERTAINTY: CAPITAL BUDGETING AND RANKING OF NEW INVESTMENT PROJECTS

THE FIRM'S INVESTMENT DECISION UNDER CERTAINTY: CAPITAL BUDGETING AND RANKING OF NEW INVESTMENT PROJECTS VII. THE FIRM'S INVESTMENT DECISION UNDER CERTAINTY: CAPITAL BUDGETING AND RANKING OF NEW INVESTMENT PROJECTS The mos imporan decisions for a firm's managemen are is invesmen decisions. While i is surely

More information

Impact of Debt on Primary Deficit and GSDP Gap in Odisha: Empirical Evidences

Impact of Debt on Primary Deficit and GSDP Gap in Odisha: Empirical Evidences S.R. No. 002 10/2015/CEFT Impac of Deb on Primary Defici and GSDP Gap in Odisha: Empirical Evidences 1. Inroducion The excessive pressure of public expendiure over is revenue receip is financed hrough

More information

The Impact of Surplus Distribution on the Risk Exposure of With Profit Life Insurance Policies Including Interest Rate Guarantees.

The Impact of Surplus Distribution on the Risk Exposure of With Profit Life Insurance Policies Including Interest Rate Guarantees. The Impac of Surplus Disribuion on he Risk Exposure of Wih Profi Life Insurance Policies Including Ineres Rae Guaranees Alexander Kling 1 Insiu für Finanz- und Akuarwissenschafen, Helmholzsraße 22, 89081

More information

Modeling VIX Futures and Pricing VIX Options in the Jump Diusion Modeling

Modeling VIX Futures and Pricing VIX Options in the Jump Diusion Modeling Modeling VIX Fuures and Pricing VIX Opions in he Jump Diusion Modeling Faemeh Aramian Maseruppsas i maemaisk saisik Maser hesis in Mahemaical Saisics Maseruppsas 2014:2 Maemaisk saisik April 2014 www.mah.su.se

More information

Pricing Guaranteed Minimum Withdrawal Benefits under Stochastic Interest Rates

Pricing Guaranteed Minimum Withdrawal Benefits under Stochastic Interest Rates Pricing Guaraneed Minimum Wihdrawal Benefis under Sochasic Ineres Raes Jingjiang Peng 1, Kwai Sun Leung 2 and Yue Kuen Kwok 3 Deparmen of Mahemaics, Hong Kong Universiy of Science and echnology, Clear

More information

Price elasticity of demand for crude oil: estimates for 23 countries

Price elasticity of demand for crude oil: estimates for 23 countries Price elasiciy of demand for crude oil: esimaes for 23 counries John C.B. Cooper Absrac This paper uses a muliple regression model derived from an adapaion of Nerlove s parial adjusmen model o esimae boh

More information

A Two-Account Life Insurance Model for Scenario-Based Valuation Including Event Risk Jensen, Ninna Reitzel; Schomacker, Kristian Juul

A Two-Account Life Insurance Model for Scenario-Based Valuation Including Event Risk Jensen, Ninna Reitzel; Schomacker, Kristian Juul universiy of copenhagen Universiy of Copenhagen A Two-Accoun Life Insurance Model for Scenario-Based Valuaion Including Even Risk Jensen, Ninna Reizel; Schomacker, Krisian Juul Published in: Risks DOI:

More information

CHARGE AND DISCHARGE OF A CAPACITOR

CHARGE AND DISCHARGE OF A CAPACITOR REFERENCES RC Circuis: Elecrical Insrumens: Mos Inroducory Physics exs (e.g. A. Halliday and Resnick, Physics ; M. Sernheim and J. Kane, General Physics.) This Laboraory Manual: Commonly Used Insrumens:

More information

The yield curve, and spot and forward interest rates Moorad Choudhry

The yield curve, and spot and forward interest rates Moorad Choudhry he yield curve, and spo and forward ineres raes Moorad Choudhry In his primer we consider he zero-coupon or spo ineres rae and he forward rae. We also look a he yield curve. Invesors consider a bond yield

More information

Dependent Interest and Transition Rates in Life Insurance

Dependent Interest and Transition Rates in Life Insurance Dependen Ineres and ransiion Raes in Life Insurance Krisian Buchard Universiy of Copenhagen and PFA Pension January 28, 2013 Absrac In order o find marke consisen bes esimaes of life insurance liabiliies

More information

Cointegration: The Engle and Granger approach

Cointegration: The Engle and Granger approach Coinegraion: The Engle and Granger approach Inroducion Generally one would find mos of he economic variables o be non-saionary I(1) variables. Hence, any equilibrium heories ha involve hese variables require

More information

The Impact of Surplus Distribution on the Risk Exposure of With Profit Life Insurance Policies Including Interest Rate Guarantees

The Impact of Surplus Distribution on the Risk Exposure of With Profit Life Insurance Policies Including Interest Rate Guarantees 1 The Impac of Surplus Disribuion on he Risk Exposure of Wih Profi Life Insurance Policies Including Ineres Rae Guaranees Alexander Kling Insiu für Finanz- und Akuarwissenschafen, Helmholzsraße 22, 89081

More information

PREMIUM INDEXING IN LIFELONG HEALTH INSURANCE

PREMIUM INDEXING IN LIFELONG HEALTH INSURANCE Far Eas Journal of Mahemaical Sciences (FJMS 203 Pushpa Publishing House, Allahabad, India Published Online: Sepember 203 Available online a hp://pphm.com/ournals/fms.hm Special Volume 203, Par IV, Pages

More information

FORWARD AND FUTURES CONTRACTS

FORWARD AND FUTURES CONTRACTS Page1 C H A P T E R 2 FORWARD AND FUTURES CONTRACTS 2.1 INTRODUCTION The main purpose of forward and fuures conracs is he managemen of risk. The exposure o risk as a resul of ransacing in he spo marke

More information

The option pricing framework

The option pricing framework Chaper 2 The opion pricing framework The opion markes based on swap raes or he LIBOR have become he larges fixed income markes, and caps (floors) and swapions are he mos imporan derivaives wihin hese markes.

More information

Hiring as Investment Behavior

Hiring as Investment Behavior Review of Economic Dynamics 3, 486522 Ž 2000. doi:10.1006redy.1999.0084, available online a hp:www.idealibrary.com on Hiring as Invesmen Behavior Eran Yashiv 1 The Eian Berglas School of Economics, Tel

More information

IMPLICIT OPTIONS IN LIFE INSURANCE CONTRACTS FROM OPTION PRICING TO THE PRICE OF THE OPTION. Tobias Dillmann * and Jochen Ruß **

IMPLICIT OPTIONS IN LIFE INSURANCE CONTRACTS FROM OPTION PRICING TO THE PRICE OF THE OPTION. Tobias Dillmann * and Jochen Ruß ** IMPLICIT OPTIONS IN LIFE INSURANCE CONTRACTS FROM OPTION PRICING TO THE PRICE OF THE OPTION Tobias Dillmann * and Jochen Ruß ** ABSTRACT Insurance conracs ofen include so-called implici or embedded opions.

More information

A Note on Construction of Multiple Swap Curves with and without Collateral

A Note on Construction of Multiple Swap Curves with and without Collateral A Noe on Consrucion of Muliple Swap Curves wih and wihou Collaeral Masaaki Fujii, Yasufumi Shimada, Akihiko Takahashi Absrac There are now available wide variey

More information

Measuring macroeconomic volatility Applications to export revenue data, 1970-2005

Measuring macroeconomic volatility Applications to export revenue data, 1970-2005 FONDATION POUR LES ETUDES ET RERS LE DEVELOPPEMENT INTERNATIONAL Measuring macroeconomic volailiy Applicaions o expor revenue daa, 1970-005 by Joël Cariolle Policy brief no. 47 March 01 The FERDI is a

More information

Capital Budgeting and Initial Cash Outlay (ICO) Uncertainty

Capital Budgeting and Initial Cash Outlay (ICO) Uncertainty Financial Decisions, Summer 006, Aricle Capial Budgeing and Iniial Cash Oulay (ICO) Uncerainy Michael C. Ehrhard and John M. Wachowicz, Jr. * * The Paul and Beverly Casagna Professor of Finance and Professor

More information

Stochastic Calculus, Week 10. Definitions and Notation. Term-Structure Models & Interest Rate Derivatives

Stochastic Calculus, Week 10. Definitions and Notation. Term-Structure Models & Interest Rate Derivatives Sochasic Calculus, Week 10 Term-Srucure Models & Ineres Rae Derivaives Topics: 1. Definiions and noaion for he ineres rae marke 2. Term-srucure models 3. Ineres rae derivaives Definiions and Noaion Zero-coupon

More information

Technical Description of S&P 500 Buy-Write Monthly Index Composition

Technical Description of S&P 500 Buy-Write Monthly Index Composition Technical Descripion of S&P 500 Buy-Wrie Monhly Index Composiion The S&P 500 Buy-Wrie Monhly (BWM) index is a oal reurn index based on wriing he nearby a-he-money S&P 500 call opion agains he S&P 500 index

More information

The Real Business Cycle paradigm. The RBC model emphasizes supply (technology) disturbances as the main source of

The Real Business Cycle paradigm. The RBC model emphasizes supply (technology) disturbances as the main source of Prof. Harris Dellas Advanced Macroeconomics Winer 2001/01 The Real Business Cycle paradigm The RBC model emphasizes supply (echnology) disurbances as he main source of macroeconomic flucuaions in a world

More information

Chapter 8: Regression with Lagged Explanatory Variables

Chapter 8: Regression with Lagged Explanatory Variables Chaper 8: Regression wih Lagged Explanaory Variables Time series daa: Y for =1,..,T End goal: Regression model relaing a dependen variable o explanaory variables. Wih ime series new issues arise: 1. One

More information

A Universal Pricing Framework for Guaranteed Minimum Benefits in Variable Annuities *

A Universal Pricing Framework for Guaranteed Minimum Benefits in Variable Annuities * A Universal Pricing Framework for Guaraneed Minimum Benefis in Variable Annuiies * Daniel Bauer Deparmen of Risk Managemen and Insurance, Georgia Sae Universiy 35 Broad Sree, Alana, GA 333, USA Phone:

More information

SURVEYING THE RELATIONSHIP BETWEEN STOCK MARKET MAKER AND LIQUIDITY IN TEHRAN STOCK EXCHANGE COMPANIES

SURVEYING THE RELATIONSHIP BETWEEN STOCK MARKET MAKER AND LIQUIDITY IN TEHRAN STOCK EXCHANGE COMPANIES Inernaional Journal of Accouning Research Vol., No. 7, 4 SURVEYING THE RELATIONSHIP BETWEEN STOCK MARKET MAKER AND LIQUIDITY IN TEHRAN STOCK EXCHANGE COMPANIES Mohammad Ebrahimi Erdi, Dr. Azim Aslani,

More information

Life insurance cash flows with policyholder behaviour

Life insurance cash flows with policyholder behaviour Life insurance cash flows wih policyholder behaviour Krisian Buchard,,1 & Thomas Møller, Deparmen of Mahemaical Sciences, Universiy of Copenhagen Universiesparken 5, DK-2100 Copenhagen Ø, Denmark PFA Pension,

More information

Market Liquidity and the Impacts of the Computerized Trading System: Evidence from the Stock Exchange of Thailand

Market Liquidity and the Impacts of the Computerized Trading System: Evidence from the Stock Exchange of Thailand 36 Invesmen Managemen and Financial Innovaions, 4/4 Marke Liquidiy and he Impacs of he Compuerized Trading Sysem: Evidence from he Sock Exchange of Thailand Sorasar Sukcharoensin 1, Pariyada Srisopisawa,

More information

Indexing Executive Stock Options Relatively

Indexing Executive Stock Options Relatively Indexing Execuive Sock Opions Relaively Jin-Chuan Duan and Jason Wei Joseph L. Roman School of Managemen Universiy of Torono 105 S. George Sree Torono, Onario Canada, M5S 3E6 jcduan@roman.uorono.ca wei@roman.uorono.ca

More information

Longevity 11 Lyon 7-9 September 2015

Longevity 11 Lyon 7-9 September 2015 Longeviy 11 Lyon 7-9 Sepember 2015 RISK SHARING IN LIFE INSURANCE AND PENSIONS wihin and across generaions Ragnar Norberg ISFA Universié Lyon 1/London School of Economics Email: ragnar.norberg@univ-lyon1.fr

More information

Supplementary Appendix for Depression Babies: Do Macroeconomic Experiences Affect Risk-Taking?

Supplementary Appendix for Depression Babies: Do Macroeconomic Experiences Affect Risk-Taking? Supplemenary Appendix for Depression Babies: Do Macroeconomic Experiences Affec Risk-Taking? Ulrike Malmendier UC Berkeley and NBER Sefan Nagel Sanford Universiy and NBER Sepember 2009 A. Deails on SCF

More information

The Interaction of Guarantees, Surplus Distribution, and Asset Allocation in With Profit Life Insurance Policies

The Interaction of Guarantees, Surplus Distribution, and Asset Allocation in With Profit Life Insurance Policies 1 The Ineracion of Guaranees, Surplus Disribuion, and Asse Allocaion in Wih Profi Life Insurance Policies Alexander Kling * Insiu für Finanz- und Akuarwissenschafen, Helmholzsr. 22, 89081 Ulm, Germany

More information

Return Calculation of U.S. Treasury Constant Maturity Indices

Return Calculation of U.S. Treasury Constant Maturity Indices Reurn Calculaion of US Treasur Consan Mauri Indices Morningsar Mehodolog Paper Sepeber 30 008 008 Morningsar Inc All righs reserved The inforaion in his docuen is he proper of Morningsar Inc Reproducion

More information

Nikkei Stock Average Volatility Index Real-time Version Index Guidebook

Nikkei Stock Average Volatility Index Real-time Version Index Guidebook Nikkei Sock Average Volailiy Index Real-ime Version Index Guidebook Nikkei Inc. Wih he modificaion of he mehodology of he Nikkei Sock Average Volailiy Index as Nikkei Inc. (Nikkei) sars calculaing and

More information

Analyzing Surplus Appropriation Schemes in Participating Life Insurance from the Insurer s and the Policyholder s Perspective

Analyzing Surplus Appropriation Schemes in Participating Life Insurance from the Insurer s and the Policyholder s Perspective Analyzing Surplus Appropriaion Schemes in Paricipaing Life Insurance from he Insurer s and he Policyholder s Perspecive Alexander Bohner, Nadine Gazer Working Paper Chair for Insurance Economics Friedrich-Alexander-Universiy

More information

Circuit Types. () i( t) ( )

Circuit Types. () i( t) ( ) Circui Types DC Circuis Idenifying feaures: o Consan inpus: he volages of independen volage sources and currens of independen curren sources are all consan. o The circui does no conain any swiches. All

More information

Inductance and Transient Circuits

Inductance and Transient Circuits Chaper H Inducance and Transien Circuis Blinn College - Physics 2426 - Terry Honan As a consequence of Faraday's law a changing curren hrough one coil induces an EMF in anoher coil; his is known as muual

More information

What is a swap? A swap is a contract between two counter-parties who agree to exchange a stream of payments over an agreed period of several years.

What is a swap? A swap is a contract between two counter-parties who agree to exchange a stream of payments over an agreed period of several years. Currency swaps Wha is a swap? A swap is a conrac beween wo couner-paries who agree o exchange a sream of paymens over an agreed period of several years. Types of swap equiy swaps (or equiy-index-linked

More information

Dynamic Hybrid Products in Life Insurance: Assessing the Policyholders Viewpoint

Dynamic Hybrid Products in Life Insurance: Assessing the Policyholders Viewpoint Dynamic Hybrid Producs in Life Insurance: Assessing he Policyholders Viewpoin Alexander Bohner, Paricia Born, Nadine Gazer Working Paper Deparmen of Insurance Economics and Risk Managemen Friedrich-Alexander-Universiy

More information

ABSTRACT KEYWORDS. Markov chain, Regulation of payments, Linear regulator, Bellman equations, Constraints. 1. INTRODUCTION

ABSTRACT KEYWORDS. Markov chain, Regulation of payments, Linear regulator, Bellman equations, Constraints. 1. INTRODUCTION QUADRATIC OPTIMIZATION OF LIFE AND PENSION INSURANCE PAYMENTS BY MOGENS STEFFENSEN ABSTRACT Quadraic opimizaion is he classical approach o opimal conrol of pension funds. Usually he paymen sream is approximaed

More information

Stochastic Volatility Models: Considerations for the Lay Actuary 1. Abstract

Stochastic Volatility Models: Considerations for the Lay Actuary 1. Abstract Sochasic Volailiy Models: Consideraions for he Lay Acuary 1 Phil Jouber Coomaren Vencaasawmy (Presened o he Finance & Invesmen Conference, 19-1 June 005) Absrac Sochasic models for asse prices processes

More information

Does Option Trading Have a Pervasive Impact on Underlying Stock Prices? *

Does Option Trading Have a Pervasive Impact on Underlying Stock Prices? * Does Opion Trading Have a Pervasive Impac on Underlying Sock Prices? * Neil D. Pearson Universiy of Illinois a Urbana-Champaign Allen M. Poeshman Universiy of Illinois a Urbana-Champaign Joshua Whie Universiy

More information

Chapter 8 Student Lecture Notes 8-1

Chapter 8 Student Lecture Notes 8-1 Chaper Suden Lecure Noes - Chaper Goals QM: Business Saisics Chaper Analyzing and Forecasing -Series Daa Afer compleing his chaper, you should be able o: Idenify he componens presen in a ime series Develop

More information

Relative velocity in one dimension

Relative velocity in one dimension Connexions module: m13618 1 Relaive velociy in one dimension Sunil Kumar Singh This work is produced by The Connexions Projec and licensed under he Creaive Commons Aribuion License Absrac All quaniies

More information