Biomolekulare Strukturmodellierung. DKFZ, Abteilung Molekulare Biophysik Michaela Knapp-Mohammady

Size: px
Start display at page:

Download "Biomolekulare Strukturmodellierung. DKFZ, Abteilung Molekulare Biophysik Michaela Knapp-Mohammady"

Transcription

1 Biomolekulare Strukturmodellierung DKFZ, Abteilung Molekulare Biophysik Michaela Knapp-Mohammady

2 Biomolekulare Strukturmodellierung I) Structure of proteins, basics - Primary structure - Secondary structure - Tertiary structure II) Protein modelling, tools and techniques - Primary structure analysis - Secondary structure prediction - Tertiary structure analysis and modelling - Protein simulation

3

4

5

6

7

8 ! "#!$ "%& "$ '() *& &! '++!,

9

10

11 Nachfolgend das vollständige Gen in komplementärer Sequenz: GGATCCTGCC AGAGCCTCCT CCCACCTGGA GGGGTCCCAG CGTCCACCTT CCCTGCCCCA 60 GCCCCCCTCC TCGAGGTACT GGGAGGCTGG ATAAAGTCTT CGGCTGGGCC ACACCCCACC 120 CCAAATTCTC CCTGTCCCAC CCTAGTGCCC AGGCCACCCC GGCCTGCTCC CTTCCGCAAG 180 GCACCTCACC TTCTGTGCCC AGACCATTAG CCAACGCGGT GACCTTGACC CCGGCCCAGG 240 CCCTGCTAAT GAAGAGGAAA GCCCGTACGC ACTCGGCCTG ACCCACGGCG ACCCTCTGTG 300 ACCAATCATA CTACCAACCT CTTAAACAGA GCTCCACCGA CGCAATGCCC AGGCATAAAA 360 AGGCCAGGCC GAGAGACCGC CACCAGTCAC GGACCCTGGA CCCAGCGCAC CCGCACCATG 420 GCCGGCCCCA GCCTCGCTTG CTGTCTGCTC GGCCTCCTGG CGCTGACCTC CGCCTGCTAC 480 ATCCAGAACT GCCCCCTGGG AGGCAAGAGG GCCGCGCCGG ACCTCGACGT GCGCAAGGTG 540 AGTCCCCAGC CCTGGTCCCG CGGCGCTCCG GGGAGGGAGG GACCCGCAGC CACAGGGGCG 600 CGCCCCGCTC CGGCCTCGCC TGAGAACTCC AGGAGCTGAG CGGATTTTGA CGCCCCGCCC 660 TTGACCGCGG TCGAGGCCCC CACGGCGCCC CAGCGTCTCA GCCCCGCTGT CCCCGCCCGA 720 ACTCCGAACC CCGGACCCCA GCATCCTTGC CCGGCGCACC CCGGCCGGCC TCGCAGGGTC 780 CTCCGAGCGA GTCCCCAGCG CCGCCCCGCG TCCCGCTCAC CCCGCCCGTC CCCCGAGTGC 840 CTCCCCTGCG GCCCCGGGGG CAAAGGCCGC TGCTTCGGGC CCAATATCTG CTGCGCGGAA 900 GAGCTGGGCT GCTTCGTGGG CACCGCCGAA GCGCTGCGCT GCCAGGAGGA GAACTACCTG 960 CCGTCGCCCT GCCAGTCCGG CCAGAAGGCG TGCGGGAGCG GGGGCCGCTG CGCCTTGGGC 1020 CTCTGCTGCA GCCCGGGTGA GCGGGGCAAG GCGCTCCGGG GCCAGGGGGA GGCGGGCGGG 1080 GGTGCGGCCG GGATTCCCCT GACTCCACCT CTTCCTCCAG ACGGCTGCCA CGCCGACCCT 1140 GCCTGCGACG CGGAAGCCAC CTTCTCCCAG CGCTGAAACT TGATGGCTCC GAACACCCTC 1200 GAAGCGCGCC ACTCGCTTCC CCCATAGCCA CCCCAGAAAT GGTGAAAATA AAATAAAGCA 1260 GGTTTTTCTC CTCTACCTTG ACTCGTGTCT AAGTGCCAGA AATGGGACGG GGAGGGGGCA 1320 TTGTGGGACT GGAAGATC 1338

12 Die 20 Aminosäuren unterscheiden sich nur in ihren Seitenketten (funktionelle Gruppen)

13

14 different amino acids Amino acids have different biochemical and physical properties that influence their relative replaceability in evolution. aliphatic I L C S+S V A G T P G C SH S D N tiny small hydrophobic aromatic M F Y W H K E Q R charged positive polar

15 Unter Abgabe eines Wassermoleküls vereinigen sich die Aminosäuren zu einem Dipeptid. Es entsteht eine sogenannte Peptidbindung zwischen einem C- und einem N-Atom.

16 Hier sieht man die Peptidbindung in Großaufnahme (blau = Stickstoff, rot = Sauerstoff, schwarz = Kohlenstoff, grau = Wasserstoff, grün = Rest). Die dunkelrot gefärbten Bindungen liegen in einer Ebene und sind recht starr. Ursache hierfür ist die C=O-Doppelbindung. An den anderen Stellen des Peptids herrscht dagegen freie Beweglichkeit. Tripeptide bilden sich, wenn drei Aminosäuren (oder ein Dipeptid und eine Aminosäure) miteinander unter Wasserabspaltung reagieren (man nennt einen solchen Vorgang, bei dem Wasser abgegeben wird, auch Kondensation). Allgemein bezeichnet man Peptide, die aus wenigen Aminosäuren bestehen, als Oligopeptide. Das Gegenteil sind dann die Polypeptide, die aus vielen Aminosäuren bestehen. Peptide, die aus mehr als 100 Aminosäuren zusammengesetzt sind, bezeichnet man dann als Proteine.

17

18

19

20 Secondary structure - alpha-helix Properties of the α-helix. The structure repeats itself every 5.4 Å along the helix axis, i.e. we say that the α-helix has a pitch of 5.4 Å. α-helices have 3.6 amino acid residues per turn, i.e. a helix 36 amino acids long would form 10 turns.

21 Helix-Stukturen

22 Secondary Structure - ß-Sheet The ß-sheet structure In a ß-sheet two or more polypeptide chains run alongside each other and are linked in a regular manner by hydrogen bonds between the main chain C=O and N-H groups. Therefore all hydrogen bonds in a ß-sheet are between different segments of polypeptide. This contrasts with the α-helix where all hydrogen bonds involve the same element of secondary structure.

23 Secondary Structure - ß-Sheet

24 Secondary structure Reverse turns A reverse turn is region of the polypeptide having a hydrogen bond from one main chain carbonyl oxygen to the main chain N-H group 3 residues along the chain (i.e. Oi to Ni+3). Helical regions are excluded from this definition and turns between ß-strands form a special class of turn known as the ß-hairpin.

25

26

27 Tertiary structure Tertiary structure describes the packing of alpha-helices, beta-sheets and random coils with respect to each other on the level of one whole polypeptide chain. Figure shows the tertiary structure of Chain B of Protein Kinase C Interacting Protein

28

29 Quarternary structure Quaternary structure only exists, if there is more than one polypeptide chain present in a complex protein. Then quaternary structure describes the spatial organization of the chains. The figure shows the Protein Kinase C interacting protein.

30 Zusammenfassung von I) The wide variety of 3-dimensional protein structures corresponds to the diversity of functions proteins fulfill. Proteins fold in three dimensions. Protein structure is organized hierarchically from so-called primary structure to quaternary structure. Higher-level structures are motifs and domains. The primary structure is the sequence of residues in the polypedptide chain.

31 II Aufgaben der Bioinformatik

32

33

34

35

36 How can protein structures be predicted Structure prediction methods are coarsely divided into three categories: 1. Comparative modelling If the sequence to model has a homologue in the PDB (Brookhaven protein database) which it is very similar to, the homologue may be used as target and a structural model is built on the basis of this template. 2. Fold recognition In absence of a significantly similar sequence with known structure, various methods put together in the term "Fold Recognition". 3. Ab initio prediction In contrast to the above methods, the goal of ab initio prediction is to build a model for a given sequence without using a template e.g by minimizing knowledge based energy functions (Potential energy for any protein conformation - Potential energy function (PEF) Secondary Structure Prediction

37 1. Protein structure database - PDB Experimental methods given by X-ray crystallography and NMR spectroscopy to determine protein structure are essential. The Brookhaven Protein Data Bank (PDB) is the repository for those structures. Files include atom coordinates and are suited for visualization by graphical molecule viewers like rasmol. Atom coordinates Sequences (NRL3D)

38

39 How are the secondary structures detected in a PDB file The figure below shows the three main chain torsion angles of a polypeptide. These are phi (F), psi (Y), and omega (W). beta alpha omega fixed because of planar peptide bond.

40 Sequence Analysis on the Web

41 2.

42 Sequence Databases SWISS-PROT is a curated protein sequence database which strives to provide a high level of annotations (such as the description of the function of a protein, its domains structure, posttranslational modifications, variants, etc.), a minimal level of redundancy and high level of integration with other databases. TrEMBL is a computer-annotated supplement of SWISS-PROT that contains all the translations of EMBL nucleotide sequence entries not yet integrated in SWISS-PROT. These databases are developed by the SWISS-PROT groups at SIB and at EBI. SwissProt:Release 40 and updates up to 15-Nov-2001: entries TrEMBL (Nov. 2001): entries

43 Homology modelling Quick and easy!!!! Use the SWISS-MODEL server: SWISS-MODEL is an Automated Protein Modelling Server running at the GlaxoWellcome Experimental Research in Geneva, Switzerland. Disclaimer The result of any modelling procedure is NON- EXPERIMENTAL and MUST be considered with care. This is especially true since there is no human intervention during model building. New 3D modeling Server Geno3d:

44

45

46

47

48 TASK DESIGN DomainSweep compares a protein sequence with a range of protein family databases. The output of DomainSweep is comprised of an overview of the different database search results as well as a graphical report on the location of family patterns found in the sequence. PROBLEM Determine function for an uncharacterised protein sequence

49 Protein Domain Databases Evaluation Protein Analysis Each database has different strengths and weaknesses PFAM, PRODOM: Identification of members of highly divergent superfamilies but less likely to give specific sub-family diagnoses and quality is low PRINTS, BLOCKS: give specific sub-family diagnoses but less coverage Pattern part of PROSITE: good detection of very short motifs but least coverage and unreliable in the identification of highly divergent superfamilies

50

51 all alpha Fold classes all beta alpha+beta

52 Fold class prediction - FoldClass FoldClass (HUSAR) predicts protein fold classes and protein domains from sequence data. The predictions are generated by artificial neural networks (Reczko, M. and Bohr, H. Nucl. Ac. Res. 22: (1994)). This program predicts: a specific overall fold-class, a super fold-class with respect to secondary structure content and spatial distribution optionally, a profile of possible fold-classes along the sequence.

53 Fold class prediction - (Gen)Threader Algorithm: A library of unique protein domain folds is derived from PDB Testsequence is optimally fitted to all folds (allowing insertions/deletions) Energy of each possible fit is calculated by summing interactions and solvations parameters The lowest energy fold is taken Unlike most threading methods, such as the original THREADER, GenTHREADER attempts to make inferences about possible evolutionary relationships.

54 Number of analysis programs is huge. Which one should be used for what purpose? It is difficult to feed results from one program as input into the next program Users need compact presentable reports on analysis results

55

56 3.

57 Energy Minimisation - Start Calculate potentiell energy for a given molecule (atom coordinates): set of nuclear positions of all atoms = R

58 Energy Minimisation - Method We move the molecule so as to reduce its potential energy. There are several routines to do this: - Steepest Descent - Gradient conjugation - and more Unfortunately no technique can guarantee to find the global energy minimum of a complex problem (although simulated annealing is partial solution).

59 Modelling Programs WHATIF INSIGHTII GAUSSIAN SCC-DFTB.. GROMOS DISCOVER..

60

61 Model Viewer: Rasmol Kinemage Molden Gaussview Sybyl MSViewer Insight WebLab Swiss... SWISS-3DIMAGE (References) is an image database which strives to provide high quality pictures of biological macromolecules with known three-dimensional structure. The database contains mostly images of experimentally elucidated structures, but also provides views of well accepted theoretical protein models. The images are provided in several useful formats; both mono and stereo pictures are generally available (Disclaimer).

62 Molecule Simulation - Molecular Dynamics - The starting place for most simulations is the experimental crystal or NMR structure. - This is energy minimized, solvated in a box of water. - System is heated (high energy state) - Equilibration and simulation for 1 nano seconds, only short times are possible The detailed atomic motions are usually unimportant. What really matters are "the ensemble average" properties - i.e., what happens on average (MD is in fact chaotic with sensitive dependence on initial conditions - like the weather!).

63 Molecular Dynamics Proteins are not the static structures that X-ray crystallography can suggest, but are continuously moving. This is a short simulation of crambin, calculated using the AMBER force field.

64 DNA is not static either. This simulation was calculated using AMBER and a continuum model for water.

65 MD-Simulation

66

Built from 20 kinds of amino acids

Built from 20 kinds of amino acids Built from 20 kinds of amino acids Each Protein has a three dimensional structure. Majority of proteins are compact. Highly convoluted molecules. Proteins are folded polypeptides. There are four levels

More information

CSC 2427: Algorithms for Molecular Biology Spring 2006. Lecture 16 March 10

CSC 2427: Algorithms for Molecular Biology Spring 2006. Lecture 16 March 10 CSC 2427: Algorithms for Molecular Biology Spring 2006 Lecture 16 March 10 Lecturer: Michael Brudno Scribe: Jim Huang 16.1 Overview of proteins Proteins are long chains of amino acids (AA) which are produced

More information

Advanced Medicinal & Pharmaceutical Chemistry CHEM 5412 Dept. of Chemistry, TAMUK

Advanced Medicinal & Pharmaceutical Chemistry CHEM 5412 Dept. of Chemistry, TAMUK Advanced Medicinal & Pharmaceutical Chemistry CHEM 5412 Dept. of Chemistry, TAMUK Dai Lu, Ph.D. dlu@tamhsc.edu Tel: 361-221-0745 Office: RCOP, Room 307 Drug Discovery and Development Drug Molecules Medicinal

More information

Structure of proteins

Structure of proteins Structure of proteins Primary structure: is amino acids sequence or the covalent structure (50-2500) amino acids M.Wt. of amino acid=110 Dalton (56 110=5610 Dalton). Single chain or more than one polypeptide

More information

Paper: 6 Chemistry 2.130 University I Chemistry: Models Page: 2 of 7. 4. Which of the following weak acids would make the best buffer at ph = 5.0?

Paper: 6 Chemistry 2.130 University I Chemistry: Models Page: 2 of 7. 4. Which of the following weak acids would make the best buffer at ph = 5.0? Paper: 6 Chemistry 2.130 University I Chemistry: Models Page: 2 of 7 4. Which of the following weak acids would make the best buffer at ph = 5.0? A) Acetic acid (Ka = 1.74 x 10-5 ) B) H 2 PO - 4 (Ka =

More information

18.2 Protein Structure and Function: An Overview

18.2 Protein Structure and Function: An Overview 18.2 Protein Structure and Function: An Overview Protein: A large biological molecule made of many amino acids linked together through peptide bonds. Alpha-amino acid: Compound with an amino group bonded

More information

Peptide Bonds: Structure

Peptide Bonds: Structure Peptide Bonds: Structure Peptide primary structure The amino acid sequence, from - to C-terminus, determines the primary structure of a peptide or protein. The amino acids are linked through amide or peptide

More information

Peptide bonds: resonance structure. Properties of proteins: Peptide bonds and side chains. Dihedral angles. Peptide bond. Protein physics, Lecture 5

Peptide bonds: resonance structure. Properties of proteins: Peptide bonds and side chains. Dihedral angles. Peptide bond. Protein physics, Lecture 5 Protein physics, Lecture 5 Peptide bonds: resonance structure Properties of proteins: Peptide bonds and side chains Proteins are linear polymers However, the peptide binds and side chains restrict conformational

More information

Lecture 19: Proteins, Primary Struture

Lecture 19: Proteins, Primary Struture CPS260/BGT204.1 Algorithms in Computational Biology November 04, 2003 Lecture 19: Proteins, Primary Struture Lecturer: Pankaj K. Agarwal Scribe: Qiuhua Liu 19.1 The Building Blocks of Protein [1] Proteins

More information

This class deals with the fundamental structural features of proteins, which one can understand from the structure of amino acids, and how they are

This class deals with the fundamental structural features of proteins, which one can understand from the structure of amino acids, and how they are This class deals with the fundamental structural features of proteins, which one can understand from the structure of amino acids, and how they are put together. 1 A more detailed view of a single protein

More information

Amino Acids. Amino acids are the building blocks of proteins. All AA s have the same basic structure: Side Chain. Alpha Carbon. Carboxyl. Group.

Amino Acids. Amino acids are the building blocks of proteins. All AA s have the same basic structure: Side Chain. Alpha Carbon. Carboxyl. Group. Protein Structure Amino Acids Amino acids are the building blocks of proteins. All AA s have the same basic structure: Side Chain Alpha Carbon Amino Group Carboxyl Group Amino Acid Properties There are

More information

Combinatorial Biochemistry and Phage Display

Combinatorial Biochemistry and Phage Display Combinatorial Biochemistry and Phage Display Prof. Valery A. Petrenko Director - Valery Petrenko Instructors Galina Kouzmitcheva and I-Hsuan Chen Auburn 2006, Spring semester COMBINATORIAL BIOCHEMISTRY

More information

Disulfide Bonds at the Hair Salon

Disulfide Bonds at the Hair Salon Disulfide Bonds at the Hair Salon Three Alpha Helices Stabilized By Disulfide Bonds! In order for hair to grow 6 inches in one year, 9 1/2 turns of α helix must be produced every second!!! In some proteins,

More information

The peptide bond is rigid and planar

The peptide bond is rigid and planar Level Description Bonds Primary Sequence of amino acids in proteins Covalent (peptide bonds) Secondary Structural motifs in proteins: α- helix and β-sheet Hydrogen bonds (between NH and CO groups in backbone)

More information

Peptide Bond Amino acids are linked together by peptide bonds to form polypepetide chain.

Peptide Bond Amino acids are linked together by peptide bonds to form polypepetide chain. Peptide Bond Peptide Bond Amino acids are linked together by peptide bonds to form polypepetide chain. + H 2 O 2 Peptide bonds are strong and not broken by conditions that denature proteins, such as heating.

More information

Protein Physics. A. V. Finkelstein & O. B. Ptitsyn LECTURE 1

Protein Physics. A. V. Finkelstein & O. B. Ptitsyn LECTURE 1 Protein Physics A. V. Finkelstein & O. B. Ptitsyn LECTURE 1 PROTEINS Functions in a Cell MOLECULAR MACHINES BUILDING BLOCKS of a CELL ARMS of a CELL ENZYMES - enzymatic catalysis of biochemical reactions

More information

Linear Sequence Analysis. 3-D Structure Analysis

Linear Sequence Analysis. 3-D Structure Analysis Linear Sequence Analysis What can you learn from a (single) protein sequence? Calculate it s physical properties Molecular weight (MW), isoelectric point (pi), amino acid content, hydropathy (hydrophilic

More information

Biological Molecules

Biological Molecules Biological Molecules I won t lie. This is probably the most boring topic you have ever done in any science. It s pretty much as simple as this: learn the material deal with it. Enjoy don t say I didn t

More information

http://faculty.sau.edu.sa/h.alshehri

http://faculty.sau.edu.sa/h.alshehri http://faculty.sau.edu.sa/h.alshehri Definition: Proteins are macromolecules with a backbone formed by polymerization of amino acids. Proteins carry out a number of functions in living organisms: - They

More information

INTRODUCTION TO PROTEIN STRUCTURE

INTRODUCTION TO PROTEIN STRUCTURE Name Class: Partner, if any: INTRODUCTION TO PROTEIN STRUCTURE PRIMARY STRUCTURE: 1. Write the complete structural formula of the tripeptide shown (frame 10). Circle and label the three sidechains which

More information

MCAT Organic Chemistry - Problem Drill 23: Amino Acids, Peptides and Proteins

MCAT Organic Chemistry - Problem Drill 23: Amino Acids, Peptides and Proteins MCAT rganic Chemistry - Problem Drill 23: Amino Acids, Peptides and Proteins Question No. 1 of 10 Question 1. Which amino acid does not contain a chiral center? Question #01 (A) Serine (B) Proline (C)

More information

IV. -Amino Acids: carboxyl and amino groups bonded to -Carbon. V. Polypeptides and Proteins

IV. -Amino Acids: carboxyl and amino groups bonded to -Carbon. V. Polypeptides and Proteins IV. -Amino Acids: carboxyl and amino groups bonded to -Carbon A. Acid/Base properties 1. carboxyl group is proton donor! weak acid 2. amino group is proton acceptor! weak base 3. At physiological ph: H

More information

Bioinformatics for Biologists. Protein Structure

Bioinformatics for Biologists. Protein Structure Bioinformatics for Biologists Comparative Protein Analysis: Part III. Protein Structure Prediction and Comparison Robert Latek, PhD Sr. Bioinformatics Scientist Whitehead Institute for Biomedical Research

More information

Protein 3D-structure analysis. why and how

Protein 3D-structure analysis. why and how Protein 3D-structure analysis why and how 3D-structures are precious sources of information Shape and domain structure Protein classification Prediction of function for uncharacterized proteins Interaction

More information

Recap. Lecture 2. Protein conformation. Proteins. 8 types of protein function 10/21/10. Proteins.. > 50% dry weight of a cell

Recap. Lecture 2. Protein conformation. Proteins. 8 types of protein function 10/21/10. Proteins.. > 50% dry weight of a cell Lecture 2 Protein conformation ecap Proteins.. > 50% dry weight of a cell ell s building blocks and molecular tools. More important than genes A large variety of functions http://www.tcd.ie/biochemistry/courses/jf_lectures.php

More information

Amino Acids, Proteins, and Enzymes. Primary and Secondary Structure Tertiary and Quaternary Structure Protein Hydrolysis and Denaturation

Amino Acids, Proteins, and Enzymes. Primary and Secondary Structure Tertiary and Quaternary Structure Protein Hydrolysis and Denaturation Amino Acids, Proteins, and Enzymes Primary and Secondary Structure Tertiary and Quaternary Structure Protein Hydrolysis and Denaturation 1 Primary Structure of Proteins H 3 N The particular sequence of

More information

Guide for Bioinformatics Project Module 3

Guide for Bioinformatics Project Module 3 Structure- Based Evidence and Multiple Sequence Alignment In this module we will revisit some topics we started to look at while performing our BLAST search and looking at the CDD database in the first

More information

Role of Hydrogen Bonding on Protein Secondary Structure Introduction

Role of Hydrogen Bonding on Protein Secondary Structure Introduction Role of Hydrogen Bonding on Protein Secondary Structure Introduction The function and chemical properties of proteins are determined by its three-dimensional structure. The final architecture of the protein

More information

Myoglobin and Hemoglobin

Myoglobin and Hemoglobin Myoglobin and Hemoglobin Myoglobin and hemoglobin are hemeproteins whose physiological importance is principally related to their ability to bind molecular oxygen. Myoglobin (Mb) The oxygen storage protein

More information

Section I Using Jmol as a Computer Visualization Tool

Section I Using Jmol as a Computer Visualization Tool Section I Using Jmol as a Computer Visualization Tool Jmol is a free open source molecular visualization program used by students, teachers, professors, and scientists to explore protein structures. Section

More information

4. Which carbohydrate would you find as part of a molecule of RNA? a. Galactose b. Deoxyribose c. Ribose d. Glucose

4. Which carbohydrate would you find as part of a molecule of RNA? a. Galactose b. Deoxyribose c. Ribose d. Glucose 1. How is a polymer formed from multiple monomers? a. From the growth of the chain of carbon atoms b. By the removal of an OH group and a hydrogen atom c. By the addition of an OH group and a hydrogen

More information

Carbohydrates, proteins and lipids

Carbohydrates, proteins and lipids Carbohydrates, proteins and lipids Chapter 3 MACROMOLECULES Macromolecules: polymers with molecular weights >1,000 Functional groups THE FOUR MACROMOLECULES IN LIFE Molecules in living organisms: proteins,

More information

Chapter 3 Molecules of Cells

Chapter 3 Molecules of Cells Bio 100 Molecules of cells 1 Chapter 3 Molecules of Cells Compounds containing carbon are called organic compounds Molecules such as methane that are only composed of carbon and hydrogen are called hydrocarbons

More information

Amino Acids and Proteins

Amino Acids and Proteins Amino Acids and Proteins Proteins are composed of amino acids. There are 20 amino acids commonly found in proteins. All have: N2 C α R COO Amino acids at neutral p are dipolar ions (zwitterions) because

More information

Hydrogen Bonds The electrostatic nature of hydrogen bonds

Hydrogen Bonds The electrostatic nature of hydrogen bonds Hydrogen Bonds Hydrogen bonds have played an incredibly important role in the history of structural biology. Both the structure of DNA and of protein a-helices and b-sheets were predicted based largely

More information

(c) How would your answers to problem (a) change if the molecular weight of the protein was 100,000 Dalton?

(c) How would your answers to problem (a) change if the molecular weight of the protein was 100,000 Dalton? Problem 1. (12 points total, 4 points each) The molecular weight of an unspecified protein, at physiological conditions, is 70,000 Dalton, as determined by sedimentation equilibrium measurements and by

More information

Chapter 3. Protein Structure and Function

Chapter 3. Protein Structure and Function Chapter 3 Protein Structure and Function Broad functional classes So Proteins have structure and function... Fine! -Why do we care to know more???? Understanding functional architechture gives us POWER

More information

Introduction to Proteins and Enzymes

Introduction to Proteins and Enzymes Introduction to Proteins and Enzymes Basics of protein structure and composition The life of a protein Enzymes Theory of enzyme function Not all enzymes are proteins / not all proteins are enzymes Enzyme

More information

Helices From Readily in Biological Structures

Helices From Readily in Biological Structures The α Helix and the β Sheet Are Common Folding Patterns Although the overall conformation each protein is unique, there are only two different folding patterns are present in all proteins, which are α

More information

Structure Tools and Visualization

Structure Tools and Visualization Structure Tools and Visualization Gary Van Domselaar University of Alberta gary.vandomselaar@ualberta.ca Slides Adapted from Michel Dumontier, Blueprint Initiative 1 Visualization & Communication Visualization

More information

Lecture Overview. Hydrogen Bonds. Special Properties of Water Molecules. Universal Solvent. ph Scale Illustrated. special properties of water

Lecture Overview. Hydrogen Bonds. Special Properties of Water Molecules. Universal Solvent. ph Scale Illustrated. special properties of water Lecture Overview special properties of water > water as a solvent > ph molecules of the cell > properties of carbon > carbohydrates > lipids > proteins > nucleic acids Hydrogen Bonds polarity of water

More information

The peptide bond Peptides and proteins are linear polymers of amino acids. The amino acids are

The peptide bond Peptides and proteins are linear polymers of amino acids. The amino acids are Introduction to Protein Structure Proteins are large heteropolymers usually comprised of 50 2500 monomer units, although larger proteins are observed 7. The monomer units of proteins are amino acids. The

More information

Overview'of'Solid-Phase'Peptide'Synthesis'(SPPS)'and'Secondary'Structure'Determination'by'FTIR'

Overview'of'Solid-Phase'Peptide'Synthesis'(SPPS)'and'Secondary'Structure'Determination'by'FTIR' verviewofsolid-phasepeptidesynthesis(spps)andsecondarystructuredeterminationbyftir Introduction Proteinsareubiquitousinlivingorganismsandcells,andcanserveavarietyoffunctions.Proteinscanactas enzymes,hormones,antibiotics,receptors,orserveasstructuralsupportsintissuessuchasmuscle,hair,and

More information

Papers listed: Cell2. This weeks papers. Chapt 4. Protein structure and function

Papers listed: Cell2. This weeks papers. Chapt 4. Protein structure and function Papers listed: Cell2 During the semester I will speak of information from several papers. For many of them you will not be required to read these papers, however, you can do so for the fun of it (and it

More information

NO CALCULATORS OR CELL PHONES ALLOWED

NO CALCULATORS OR CELL PHONES ALLOWED Biol 205 Exam 1 TEST FORM A Spring 2008 NAME Fill out both sides of the Scantron Sheet. On Side 2 be sure to indicate that you have TEST FORM A The answers to Part I should be placed on the SCANTRON SHEET.

More information

PROTEINS THE PEPTIDE BOND. The peptide bond, shown above enclosed in the blue curves, generates the basic structural unit for proteins.

PROTEINS THE PEPTIDE BOND. The peptide bond, shown above enclosed in the blue curves, generates the basic structural unit for proteins. Ca 2+ The contents of this module were developed under grant award # P116B-001338 from the Fund for the Improvement of Postsecondary Education (FIPSE), United States Department of Education. However, those

More information

Molecular Dynamics Simulations

Molecular Dynamics Simulations Molecular Dynamics Simulations Yaoquan Tu Division of Theoretical Chemistry and Biology, Royal Institute of Technology (KTH) 2011-06 1 Outline I. Introduction II. Molecular Mechanics Force Field III. Molecular

More information

Part A: Amino Acids and Peptides (Is the peptide IAG the same as the peptide GAI?)

Part A: Amino Acids and Peptides (Is the peptide IAG the same as the peptide GAI?) ChemActivity 46 Amino Acids, Polypeptides and Proteins 1 ChemActivity 46 Part A: Amino Acids and Peptides (Is the peptide IAG the same as the peptide GAI?) Model 1: The 20 Amino Acids at Biological p See

More information

Biological Databases and Protein Sequence Analysis

Biological Databases and Protein Sequence Analysis Biological Databases and Protein Sequence Analysis Introduction M. Madan Babu, Center for Biotechnology, Anna University, Chennai 25, India Bioinformatics is the application of Information technology to

More information

Steffen Lindert, René Staritzbichler, Nils Wötzel, Mert Karakaş, Phoebe L. Stewart, and Jens Meiler

Steffen Lindert, René Staritzbichler, Nils Wötzel, Mert Karakaş, Phoebe L. Stewart, and Jens Meiler Structure 17 Supplemental Data EM-Fold: De Novo Folding of α-helical Proteins Guided by Intermediate-Resolution Electron Microscopy Density Maps Steffen Lindert, René Staritzbichler, Nils Wötzel, Mert

More information

VTT TECHNICAL RESEARCH CENTRE OF FINLAND

VTT TECHNICAL RESEARCH CENTRE OF FINLAND Figure from: http://www.embl.de/nmr/sattler/teaching Why NMR (instead of X ray crystallography) a great number of macromolecules won't crystallize) natural environmant (water) ligand binding and inter

More information

Structure Determination

Structure Determination 5 Structure Determination Most of the protein structures described and discussed in this book have been determined either by X-ray crystallography or by nuclear magnetic resonance (NMR) spectroscopy. Although

More information

Chapter 3: Biological Molecules. 1. Carbohydrates 2. Lipids 3. Proteins 4. Nucleic Acids

Chapter 3: Biological Molecules. 1. Carbohydrates 2. Lipids 3. Proteins 4. Nucleic Acids Chapter 3: Biological Molecules 1. Carbohydrates 2. Lipids 3. Proteins 4. Nucleic Acids Elements in Biological Molecules Biological macromolecules are made almost entirely of just 6 elements: Carbon (C)

More information

Ionization of amino acids

Ionization of amino acids Amino Acids 20 common amino acids there are others found naturally but much less frequently Common structure for amino acid COOH, -NH 2, H and R functional groups all attached to the a carbon Ionization

More information

Student name ID # 2. (4 pts) What is the terminal electron acceptor in respiration? In photosynthesis? O2, NADP+

Student name ID # 2. (4 pts) What is the terminal electron acceptor in respiration? In photosynthesis? O2, NADP+ 1. Membrane transport. A. (4 pts) What ion couples primary and secondary active transport in animal cells? What ion serves the same function in plant cells? Na+, H+ 2. (4 pts) What is the terminal electron

More information

Transcription and Translation of DNA

Transcription and Translation of DNA Transcription and Translation of DNA Genotype our genetic constitution ( makeup) is determined (controlled) by the sequence of bases in its genes Phenotype determined by the proteins synthesised when genes

More information

Secondary Structure Prediction. Michael Tress CNIO

Secondary Structure Prediction. Michael Tress CNIO Secondary Structure Prediction Michael Tress CNIO Why do we Need to Know About Secondary Structure? Secondary structure prediction is a step towards deducing the fold. In order to arrive at the correct

More information

Structure and properties of proteins. Vladimíra Kvasnicová

Structure and properties of proteins. Vladimíra Kvasnicová Structure and properties of proteins Vladimíra Kvasnicová Chemical nature of proteins biopolymers of amino acids macromolecules (M r > 10 000) Classification of proteins 1) by localization in an organism

More information

Proteins. Proteins. Amino Acids. Most diverse and most important molecule in. Functions: Functions (cont d)

Proteins. Proteins. Amino Acids. Most diverse and most important molecule in. Functions: Functions (cont d) Proteins Proteins Most diverse and most important molecule in living i organisms Functions: 1. Structural (keratin in hair, collagen in ligaments) 2. Storage (casein in mother s milk) 3. Transport (HAEMOGLOBIN!)

More information

The Molecules of Cells

The Molecules of Cells The Molecules of Cells I. Introduction A. Most of the world s population cannot digest milk-based foods. 1. These people are lactose intolerant because they lack the enzyme lactase. 2. This illustrates

More information

Phase determination methods in macromolecular X- ray Crystallography

Phase determination methods in macromolecular X- ray Crystallography Phase determination methods in macromolecular X- ray Crystallography Importance of protein structure determination: Proteins are the life machinery and are very essential for the various functions in the

More information

A disaccharide is formed when a dehydration reaction joins two monosaccharides. This covalent bond is called a glycosidic linkage.

A disaccharide is formed when a dehydration reaction joins two monosaccharides. This covalent bond is called a glycosidic linkage. CH 5 Structure & Function of Large Molecules: Macromolecules Molecules of Life All living things are made up of four classes of large biological molecules: carbohydrates, lipids, proteins, and nucleic

More information

Structure Check. Authors: Eduard Schreiner Leonardo G. Trabuco. February 7, 2012

Structure Check. Authors: Eduard Schreiner Leonardo G. Trabuco. February 7, 2012 University of Illinois at Urbana-Champaign NIH Resource for Macromolecular Modeling and Bioinformatics Beckman Institute Computational Biophysics Workshop Structure Check Authors: Eduard Schreiner Leonardo

More information

Chapter 5: The Structure and Function of Large Biological Molecules

Chapter 5: The Structure and Function of Large Biological Molecules Name Period Concept 5.1 Macromolecules are polymers, built from monomers 1. The large molecules of all living things fall into just four main classes. Name them. 2. Circle the three classes that are called

More information

Pipe Cleaner Proteins. Essential question: How does the structure of proteins relate to their function in the cell?

Pipe Cleaner Proteins. Essential question: How does the structure of proteins relate to their function in the cell? Pipe Cleaner Proteins GPS: SB1 Students will analyze the nature of the relationships between structures and functions in living cells. Essential question: How does the structure of proteins relate to their

More information

How To Understand The Chemistry Of Organic Molecules

How To Understand The Chemistry Of Organic Molecules CHAPTER 3 THE CHEMISTRY OF ORGANIC MOLECULES 3.1 Organic Molecules The chemistry of carbon accounts for the diversity of organic molecules found in living things. Carbon has six electrons, four of which

More information

Sequence Formats and Sequence Database Searches. Gloria Rendon SC11 Education June, 2011

Sequence Formats and Sequence Database Searches. Gloria Rendon SC11 Education June, 2011 Sequence Formats and Sequence Database Searches Gloria Rendon SC11 Education June, 2011 Sequence A is the primary structure of a biological molecule. It is a chain of residues that form a precise linear

More information

BIO 3350: ELEMENTS OF BIOINFORMATICS PARTIALLY ONLINE SYLLABUS

BIO 3350: ELEMENTS OF BIOINFORMATICS PARTIALLY ONLINE SYLLABUS BIO 3350: ELEMENTS OF BIOINFORMATICS PARTIALLY ONLINE SYLLABUS NEW YORK CITY COLLEGE OF TECHNOLOGY The City University Of New York School of Arts and Sciences Biological Sciences Department Course title:

More information

Protein annotation and modelling servers at University College London

Protein annotation and modelling servers at University College London Nucleic Acids Research Advance Access published May 27, 2010 Nucleic Acids Research, 2010, 1 6 doi:10.1093/nar/gkq427 Protein annotation and modelling servers at University College London D. W. A. Buchan*,

More information

Lecture 13-14 Conformation of proteins Conformation of a protein three-dimensional structure native state. native condition

Lecture 13-14 Conformation of proteins Conformation of a protein  three-dimensional structure native state. native condition Lecture 13-14 Conformation of proteins Conformation of a protein refers to the three-dimensional structure in its native state. There are many different possible conformations for a molecule as large as

More information

2007 7.013 Problem Set 1 KEY

2007 7.013 Problem Set 1 KEY 2007 7.013 Problem Set 1 KEY Due before 5 PM on FRIDAY, February 16, 2007. Turn answers in to the box outside of 68-120. PLEASE WRITE YOUR ANSWERS ON THIS PRINTOUT. 1. Where in a eukaryotic cell do you

More information

Basic Concepts of DNA, Proteins, Genes and Genomes

Basic Concepts of DNA, Proteins, Genes and Genomes Basic Concepts of DNA, Proteins, Genes and Genomes Kun-Mao Chao 1,2,3 1 Graduate Institute of Biomedical Electronics and Bioinformatics 2 Department of Computer Science and Information Engineering 3 Graduate

More information

A. A peptide with 12 amino acids has the following amino acid composition: 2 Met, 1 Tyr, 1 Trp, 2 Glu, 1 Lys, 1 Arg, 1 Thr, 1 Asn, 1 Ile, 1 Cys

A. A peptide with 12 amino acids has the following amino acid composition: 2 Met, 1 Tyr, 1 Trp, 2 Glu, 1 Lys, 1 Arg, 1 Thr, 1 Asn, 1 Ile, 1 Cys Questions- Proteins & Enzymes A. A peptide with 12 amino acids has the following amino acid composition: 2 Met, 1 Tyr, 1 Trp, 2 Glu, 1 Lys, 1 Arg, 1 Thr, 1 Asn, 1 Ile, 1 Cys Reaction of the intact peptide

More information

Translation Study Guide

Translation Study Guide Translation Study Guide This study guide is a written version of the material you have seen presented in the replication unit. In translation, the cell uses the genetic information contained in mrna to

More information

Proteins the primary biological macromolecules of living organisms

Proteins the primary biological macromolecules of living organisms Proteins the primary biological macromolecules of living organisms Protein structure and folding Primary Secondary Tertiary Quaternary structure of proteins Structure of Proteins Protein molecules adopt

More information

Consensus alignment server for reliable comparative modeling with distant templates

Consensus alignment server for reliable comparative modeling with distant templates W50 W54 Nucleic Acids Research, 2004, Vol. 32, Web Server issue DOI: 10.1093/nar/gkh456 Consensus alignment server for reliable comparative modeling with distant templates Jahnavi C. Prasad 1, Sandor Vajda

More information

Structures of Proteins. Primary structure - amino acid sequence

Structures of Proteins. Primary structure - amino acid sequence Structures of Proteins Primary structure - amino acid sequence Secondary structure chain of covalently linked amino acids folds into regularly repeating structures. Secondary structure is the result of

More information

1 Peptide bond rotation

1 Peptide bond rotation 1 Peptide bond rotation We now consider an application of data mining that has yielded a result that links the quantum scale with the continnum level electrostatic field. In other cases, we have considered

More information

Chapter 5. The Structure and Function of Macromolecule s

Chapter 5. The Structure and Function of Macromolecule s Chapter 5 The Structure and Function of Macromolecule s Most Macromolecules are polymers: Polymer: (poly: many; mer: part) Large molecules consisting of many identical or similar subunits connected together.

More information

Nafith Abu Tarboush DDS, MSc, PhD natarboush@ju.edu.jo www.facebook.com/natarboush

Nafith Abu Tarboush DDS, MSc, PhD natarboush@ju.edu.jo www.facebook.com/natarboush Nafith Abu Tarboush DDS, MSc, PhD natarboush@ju.edu.jo www.facebook.com/natarboush α-keratins, bundles of α- helices Contain polypeptide chains organized approximately parallel along a single axis: Consist

More information

Oxygen-Binding Proteins

Oxygen-Binding Proteins Oxygen-Binding Proteins Myoglobin, Hemoglobin, Cytochromes bind O 2. Oxygen is transported from lungs to various tissues via blood in association with hemoglobin In muscle, hemoglobin gives up O 2 to myoglobin

More information

RNA & Protein Synthesis

RNA & Protein Synthesis RNA & Protein Synthesis Genes send messages to cellular machinery RNA Plays a major role in process Process has three phases (Genetic) Transcription (Genetic) Translation Protein Synthesis RNA Synthesis

More information

Structural Bioinformatics (C3210) Experimental Methods for Macromolecular Structure Determination

Structural Bioinformatics (C3210) Experimental Methods for Macromolecular Structure Determination Structural Bioinformatics (C3210) Experimental Methods for Macromolecular Structure Determination Introduction Knowing the exact 3D-structure of bio-molecules is essential for any attempt to understand

More information

Computational Systems Biology. Lecture 2: Enzymes

Computational Systems Biology. Lecture 2: Enzymes Computational Systems Biology Lecture 2: Enzymes 1 Images from: David L. Nelson, Lehninger Principles of Biochemistry, IV Edition, Freeman ed. or under creative commons license (search for images at http://search.creativecommons.org/)

More information

AP BIOLOGY 2008 SCORING GUIDELINES

AP BIOLOGY 2008 SCORING GUIDELINES AP BIOLOGY 2008 SCORING GUIDELINES Question 1 1. The physical structure of a protein often reflects and affects its function. (a) Describe THREE types of chemical bonds/interactions found in proteins.

More information

Discovering Bioinformatics

Discovering Bioinformatics Discovering Bioinformatics Sami Khuri Natascha Khuri Alexander Picker Aidan Budd Sophie Chabanis-Davidson Julia Willingale-Theune English version ELLS European Learning Laboratory for the Life Sciences

More information

Lab 3 Organic Molecules of Biological Importance

Lab 3 Organic Molecules of Biological Importance Name Biology 3 ID Number Lab 3 Organic Molecules of Biological Importance Section 1 - Organic Molecules Section 2 - Functional Groups Section 3 - From Building Blocks to Macromolecules Section 4 - Carbohydrates

More information

FTIR Analysis of Protein Structure

FTIR Analysis of Protein Structure FTIR Analysis of Protein Structure Warren Gallagher A. Introduction to protein structure The first structures of proteins at an atomic resolution were determined in the late 1950 s. 1 From that time to

More information

What is molecular dynamics (MD) simulation and how does it work?

What is molecular dynamics (MD) simulation and how does it work? What is molecular dynamics (MD) simulation and how does it work? A lecture for CHM425/525 Fall 2011 The underlying physical laws necessary for the mathematical theory of a large part of physics and the

More information

Biological molecules:

Biological molecules: Biological molecules: All are organic (based on carbon). Monomers vs. polymers: Monomers refer to the subunits that, when polymerized, make up a larger polymer. Monomers may function on their own in some

More information

Replication Study Guide

Replication Study Guide Replication Study Guide This study guide is a written version of the material you have seen presented in the replication unit. Self-reproduction is a function of life that human-engineered systems have

More information

Worksheet 13.1. Chapter 13: Human biochemistry glossary

Worksheet 13.1. Chapter 13: Human biochemistry glossary Worksheet 13.1 Chapter 13: Human biochemistry glossary α-helix Refers to a secondary structure of a protein where the chain is twisted to form a regular helix, held by hydrogen bonds between peptide bonds

More information

In addition to being shorter than a single bond, the double bonds in ethylene don t twist the way single bonds do. In other words, the other atoms

In addition to being shorter than a single bond, the double bonds in ethylene don t twist the way single bonds do. In other words, the other atoms In addition to being shorter than a single bond, the double bonds in ethylene don t twist the way single bonds do. In other words, the other atoms attached to the carbons (hydrogens in this case) can no

More information

Module 1. Sequence Formats and Retrieval. Charles Steward

Module 1. Sequence Formats and Retrieval. Charles Steward The Open Door Workshop Module 1 Sequence Formats and Retrieval Charles Steward 1 Aims Acquaint you with different file formats and associated annotations. Introduce different nucleotide and protein databases.

More information

Syllabus of B.Sc. (Bioinformatics) Subject- Bioinformatics (as one subject) B.Sc. I Year Semester I Paper I: Basic of Bioinformatics 85 marks

Syllabus of B.Sc. (Bioinformatics) Subject- Bioinformatics (as one subject) B.Sc. I Year Semester I Paper I: Basic of Bioinformatics 85 marks Syllabus of B.Sc. (Bioinformatics) Subject- Bioinformatics (as one subject) B.Sc. I Year Semester I Paper I: Basic of Bioinformatics 85 marks Semester II Paper II: Mathematics I 85 marks B.Sc. II Year

More information

Sequence Information. Sequence information. Good web sites. Sequence information. Sequence. Sequence

Sequence Information. Sequence information. Good web sites. Sequence information. Sequence. Sequence Sequence information Multiple Pair-wise SRS Entrez Comparisons Database searches Sequence Information Orthologue clusters Sequence Organell localisation Patterns Protein families Membrane attachment Bengt

More information

COMPUTATIONAL MODELLING OF PROTEIN FOLDING

COMPUTATIONAL MODELLING OF PROTEIN FOLDING COMPUTATIONAL MODELLING OF PROTEIN FOLDING M. Lougher, M. Lücken, T Machon, M. Malcomson, A. Marsden. University Of Warwick The problem of predicting, from a given amino acid sequence, a protein s function,

More information

Introduction to Protein Folding

Introduction to Protein Folding Introduction to Protein Folding Chapter 4 Proteins: Three Dimensional Structure and Function Conformation - three dimensional shape Native conformation - each protein folds into a single stable shape (physiological

More information

LESSON 5. Learning to Use Cn3D: A Bioinformatics Tool. Introduction. Learning Objectives. Key Concepts

LESSON 5. Learning to Use Cn3D: A Bioinformatics Tool. Introduction. Learning Objectives. Key Concepts 5 Learning to Use Cn3D: A Bioinformatics Tool Introduction Up to this point, students have seen the BRCA1 protein represented in a linear, sequential form. In this lesson, students are introduced to the

More information

Chapter 12 - Proteins

Chapter 12 - Proteins Roles of Biomolecules Carbohydrates Lipids Proteins 1) Catalytic 2) Transport 3) Regulatory 4) Structural 5) Contractile 6) Protective 7) Storage Nucleic Acids 12.1 -Amino Acids Chapter 12 - Proteins Amino

More information