Simple trigonometric substitutions with broad results


 Blaze George
 1 years ago
 Views:
Transcription
1 Simple trigonometric substitutions with broad results Vardan Verdiyan, Daniel Campos Salas Often, the key to solve some intricate algebraic inequality is to simplify it by employing a trigonometric substitution. When we make a clever trigonometric substitution the problem may reduce so much that we can see a direct solution immediately. Besides, trigonometric functions have wellknown properties that may help in solving such inequalities. As a result, many algebraic problems can be solved by using an inspired substitution. We start by introducing the readers to such substitutions. After that we present some wellknown trigonometric identities and inequalities. Finally, we discuss some Olympiad problems and leave others for the reader to solve. Theorem. Let α, β, γ be angles in (0, π). Then α, β, γ are the angles of a triangle if and only if tan α tan β + tan β tan γ + tan γ tan α =. Proof. First of all note that if α = β = γ, then the statement clearly holds. Assume without loss of generality that α β. Because 0 < α + β < π, it follows that there exists an angle in ( π, π), say γ, such that α + β + γ = π. Using the addition formulas and the fact that tan x = cot ( π x), we have tan γ = cot α + β = tan α tan β tan α + tan β, yielding Now suppose that tan α tan β + tan β tan γ + tan γ tan α =. () tan α tan β + tan β tan γ + tan γ tan α =, () for some α, β, γ in (0, π). We will prove that γ = γ, and this will imply that α, β, γ are the angles of a triangle. Subtracting () from () we get tan γ γ = tan. Thus γ γ = kπ for some nonnegative integer k. But γ γ γ + γ < π, so it follows that k = 0. That is γ = γ, as desired. Mathematical Reflections 6 (007)
2 Theorem. Let α, β, γ be angles in (0, π). Then α, β, γ are the angles of a triangle if and only if sin α + sin β + sin γ + sin α sin β sin γ =. Proof. As 0 < α + β < π, there exists an angle in ( π, π), say γ, such that α + β + γ = π. Using the producttosum and the double angle formulas we get sin γ + sin α sin β γ sin = cos α + β ( cos α + β + sin α sin β ) = cos α + β cos α β cos α + cos β = ( ) ( ) sin α + sin β = = sin α sin β. Thus Now suppose that sin α + sin β γ + sin + sin α sin β γ sin =. () sin α + sin β + sin γ + sin α sin β sin γ =, () for some α, β, γ in (0, π). Subtracting () from () we obtain sin γ γ sin + sin α sin β ) γ γ (sin sin = 0, that is ( sin γ ) γ γ γ sin (sin + sin + sin α sin β ) = 0. The second factor can be written as sin γ γ + sin + cos α β cos α + β = sin γ + cos α β, which is clearly greater than 0. It follows that sin γ that α, β, γ are the angles of a triangle. = sin γ, and so γ = γ, showing Mathematical Reflections 6 (007)
3 Substitutions and Transformations T. Let α, β, γ be angles of a triangle. Let A = π α, B = π β, C = π γ. Then A + B + C = π, and 0 A, B, C < π. This transformation allows us to switch from angles of an arbitrary triangle to angles of an acute triangle. Note that cyc(sin α = cos A), cyc(cos α = sin A), cyc(tan α = cot A), cyc(cot α = tan A), where by cyc we denote a cyclic permutation of angles. T. Let x, y, z be positive real numbers. Then there is a triangle with sidelengths a = x + y, b = y + z, c = z + x. This transformation is sometimes called Dual Principle. Clearly, s = x+y+z and (x, y, z) = (s a, s b, s c). This transformation already triangle inequality. S. Let a, b, c be positive real numbers such that ab + bc + ca =. Using the function f : (0, π ) (0, + ), for f(x) = tan x, we can do the following substitution a = tan α, b = tan β, c = tan γ, where α, β, γ are the angles of a triangle ABC. S. Let a, b, c be positive real numbers such that ab + bc + ca =. Applying T to S, we have a = cot A, b = cot B, c = cot C, where A, B, C are the angles of an acute triangle. S3. Let a, b, c be positive real numbers such that a + b + c = abc. Dividing by abc it follows that bc + ca + ab =. Due to S, we can substitute that is where α, β, γ are the angles of a triangle. a = tan α, b = tan β, c = tan γ, a = cot α, b = cot β, c = cot γ, S4. Let a, b, c be positive real numbers such that a + b + c = abc. Applying T to S3, we have a = tan A, b = tan B, c = tan C, Mathematical Reflections 6 (007) 3
4 where A, B, C are the angles of an acute triangle. S5. Let a, b, c be positive real numbers such that a + b + c + abc =. Note that since all the numbers are positive it follows that a, b, c <. Usign the function f : (0, π) (0, ), for f(x) = sin x, and recalling Theorem, we can substitute where α, β, γ are the angles of a triangle. a = sin α, b = sin β, c = sin γ, S6. Let a, b, c be positive real numbers such that a +b +c +abc =. Applying T to S5, we have a = cos A, b = cos B, c = cos C, where A, B, C are the angles of an acute triangle. S7. Let x, y, z be positive real numbers. Applying T to expressions yz (x + y)(x + z), zx (y + z)(y + x), xy (z + x)(z + y), they can be substituted by (s b)(s c), bc (s c)(s a), ca (s a)(s b), ab where a, b, c are the sidelengths of a triangle. Recall the following identities sin α = (s b)(s c) bc Thus our expressions can be substituted by where α, β, γ are the angles of a triangle. sin α, sin β, sin γ,, cos α s(s a) =. bc S8. Analogously to S7, the expressions x(x + y + z) (x + y)(x + z), y(x + y + z) (y + z)(y + x), z(x + y + z) (z + x)(z + y), can be substituted by cos α, cos β, cos γ, where α, β, γ are the angles of a triangle. Mathematical Reflections 6 (007) 4
5 Further we present a list of inequalities and equalities that can be helpful in solving many problems or simplify them. Wellknown inequalities Let α, β, γ be angles of a triangle ABC. Then. cos α + cos β + cos γ sin α + sin β + sin γ 3. sin α + sin β + sin γ cos α + cos β + cos γ cos α cos β cos γ sin α sin β sin γ 8 4. sin α sin β sin γ cos α cos β cos γ cot α + cot β + cot C cos α + cos β + cos γ sin α + sin β + sin C sin α + sin β + sin γ cos α + cos β + cos γ cot α + cot β + cot γ tan α + tan β + tan γ 3 Wellknown identities Let α, β, γ be angles of a triangle ABC. Then. cos α + cos β + cos γ = + 4 sin α sin β sin γ. sin α + sin β + sin γ = 4 cos α cos β cos γ 3. sin α + sin β + sin γ = 4 sin α sin β sin γ 4. sin α + sin β + sin γ = + cos α cos β cos γ For arbitrary angles α, β, γ we have sin α + sin β + sin γ sin(α + β + γ) = 4 sin α + β cos α + cos β + cos γ + cos(α + β + γ) = 4 cos α + β sin β + γ cos β + γ sin γ + α. cos γ + α. Mathematical Reflections 6 (007) 5
6 Applications. Let x, y, z be positive real numbers. Prove that x x + (x + y)(x + z) + y y + (y + z)(y + x) + Solution. The inequality is equivalent to (x + y)(x + z) x = z x + (z + x)(z + y). (Walther Janous, Crux Mathematicorum). (x+y)(x+z) + x Beceause the inequality is homogeneous, we can assume that xy +yz +zx =. Let us apply substitution S: cyc(x = tan α ), where α, β, γ are angles of a triangle. We get ( tan α + tan β ) ( tan α + tan γ ) tan α = sin α, and similar expressions for the other terms. The inequality becomes sin α + sin α + sin β + sin β + sin γ + sin γ, that is + sin α + + sin β + + sin γ. On the other hand, using the wellknown inequality sin α + sin β + sin γ 3 and the CauchySchwarz inequality, we have 9 ( + sin α ) + ( + sin β ) + ( + sin γ ) + sin α, and we are done.. Let x, y, z be real numbers greater than such that x + y + z =. Prove that x + y + z x + y + z. (Iran, 997) Mathematical Reflections 6 (007) 6
7 Solution. Let (x, y, z) = (a +, b +, c + ), with a, b, c positive real numbers. Note that the hypothesis is equivalent to ab + bc + ca + abc =. Then it suffices to prove that a + b + c a + b + c + 3. Squaring both sides of the inequality and canceling some terms yields ab + bc + ca 3. Using substitution S5 we get (ab, bc, ca) = (sin α, sin β, sin γ ), where ABC is an arbitrary triangle. The problem reduces to proving that sin α + sin β + sin γ 3, which is wellknown and can be done using Jensen inequality. 3. Let a, b, c be positive real numbers such that a + b + c =. Prove that ab bc ca c + ab + a + bc + b + ca 3. (Open Olympiad of FML No39, Russia) Solution. The inequality is equivalent to ab ((c + a)(c + b) + bc (a + b)(a + c) + ca (b + c)(b + a) 3. Substitution S7 replaces the three terms in the inequality by sin α, sin β, sin γ. Thus it suffices to prove sin α + sin β + sin γ 3, which clearly holds. 4. Let a, b, c be positive real numbers such that (a + b)(b + c)(c + a) =. Prove that ab + bc + ca 3 4. (Cezar Lupu, Romania, 005) Solution. Observe that the inequality is equivalent to ( ab ) 3 ( 3 4 ) 3 (a + b) (b + c) (c + a). Mathematical Reflections 6 (007) 7
8 Because the inequality is homogeneous, we can assume that ab + bc + ca =. We use substitution S: cyc(a = tan α ), where α, β, γ are the angles of a triangle. Note that (a + b)(b + c)(c + a) = ( ) cos γ cos α cos β = cos α cos β cos γ. Thus it suffices to prove that ( ) or cos α cos β cos γ 4 cos α cos β cos γ 3 3. From the identity 4 cos α cos β cos γ = sin α + sin β + sin γ, the inequality is equivalent to sin α + sin β + sin γ 3 3. But f(x) = sin x is a concave function on (0, π) and the conclusion follows from Jensen s inequality. 5. Let a, b, c be positive real numbers such that a + b + c =. Prove that a + b + c + 3abc., (Poland, 999) ( ) bc Solution. Let cyc x = a. It follows that cyc(a = yz). The inequality becomes x y + y z + x z + 3xyz, where x, y, z are positive real numbers such that xy + yz + zx =. Note that the inequality is equivalent to (xy + yz + zx) + 3xyz + xyz(x + y + z), or 3 x + y + z. Applying substitution S cyc(x = tan α ), it suffices to prove tan α + tan β + tan γ 3. The last inequality clearly holds, as f(x) = tan x is convex function on (0, π), and the conclusion follows from Jensen s inequality. Mathematical Reflections 6 (007) 8
9 6. Let x, y, z be positive real numbers. Prove that x(y + z) + y(z + x) + z(x + y) (x + y)(y + z)(z + x) x + y + z (Darij Grinberg) Solution. Rewrite the inequality as x(x + y + z) (x + y)(x + z) + y(x + y + z) (y + z)(y + x) + Applying substitution S8, it suffices to prove that cos α + cos β + cos γ, z(x + y + z) (z + x)(z + y). where α, β, γ are the angles of a triangle. Using transformation T cyc(a = π α ), where A, B, C are angles of an acute triangle, the inequality is equivalent to sin A + sin B + sin C. There are many ways to prove this fact. We prefer to use Jordan s inequality, that is α π sin α α for all α (0, π ). The conclusion immediately follows. 7. Let a, b, c be positive real numbers such that a + b + c + = 4abc. Prove that a + b + c ab bc ca (Daniel Campos Salas, Mathematical Reflections, 007) Solution. Rewrite the condition as bc + ca + ab + abc = 4. Observe that we can use substitution S5 in the following way ( bc, ca, ) ( = sin α ab, β sin, γ ) sin, Mathematical Reflections 6 (007) 9
10 where α, β, γ are angles of a triangle. It follows that ( a, b, ) ( sin β = sin γ c sin α, sin γ sin α sin β, sin β sin ) α sin γ. Then it suffices to prove that sin β sin γ sin α + sin γ sin α sin β + sin β sin α sin γ 3 sin α + sin β + sin γ. The righthand side of the inequality is well known. For the lefthand side we use trasnformation T backwards. Denote by x = s a, y = s b, z = s c, where s is the semiperimeter of the triangle. The lefthand side is equivalent to x y + z + y x + z + z x + y 3, which a famous Nesbitt s inequality, and we are done. 8. Let a, b, c (0, ) be real numbers such that ab + bc + ca =. Prove that a a + b b + c c 3 ( a + b + ) c. 4 a b c (Calin Popa) Solution. We apply substitution S cyc(a tan A ), where A, B, C are angles of a triangle. Because a, b, c (0, ), it follows that tan A, tan B, tan C (0, ), that is A, B, C are angles of an acute triangle. Note that ( a cyc a = sin A cos ) A = tan A. cos A Thus the inequality is equivalent to tan A + tan B + tan C 3 ( tan A + tan B + ). tan C Now observe that if we apply transformation T and the result in Theorem, we get tan A + tan B + tan C = tan A tan B tan C. Hence our inequality is equivalent to (tan A + tan B + tan C) 3 (tan A tan B + tan B tan C + tan A tan C). This can be written as (tan A tan B) + (tan B tan C) + (tan C tan A) 0, and we are done. Mathematical Reflections 6 (007) 0
11 9. Let x, y, z be positive real numbers. Prove that y + z z + x x + y 6(x + y + z) x y z 3(x + y)(y + z)(z + x). (Vo Quoc Ba Can, Mathematical Reflections, 007) Solution. Note that the inequality is equivalent to (x + y)(z + x) 4(x + y + z) (y + z). x(x + y + z) 3 cyc Let use transfromation T and substitution S8. We get ( ) (x + y)(z + x) cyc (y + z) x(x + y + z) = a cos α = 4R sin α, and 4(x + y + z) 4R(sin α + sin β + sin γ) =, 3 3 where α, β, γ are angles of a triangle with circumradius R. Therefore it suffices to prove that ( 3 sin α + sin β + sin γ ) sin α cos α + sin β cos β + sin γ cos γ. Because f(x) = cos x is a concave function on [0, π], from Jensen s inequality we obtain 3 ( cos α 3 + cos β + cos γ ). Finally, we observe that f(x) = sin x is an increasing function on [0, π], while g(x) = cos x is a decreasing function on [0, π]. Using Chebyschev s inequality, we have ( sin α 3 + sin β + sin γ ) ( cos α + cos β + cos γ ) sin α cos α, and the conclusion follows. Mathematical Reflections 6 (007)
12 Problems for independent study. Let a, b, c be positive real numbers such that a + b + c =. Prove that a b c b + c c + a a + b. (Romanian Mathematical Olympiad, 005). Let a, b, c be positive real numbers such that a + b + c =. Prove that a b + b c + c a 6 (A. Teplinsky, Ukraine, 005) 3. Let a, b, c be positive real numbers such that ab + bc + ca =. Prove that a + b b + c c + a 4. Prove that for all positive real numbers a, b, c, (a + )(b + )(c + ) 9(ab + bc + ca). (Le Trung Kien) (APMO, 004) 5. Let x, y, z be positive real numbers such that x + y + z =. Prove that x + yz + x + yz + x + yz xyz + x + y + z. 6. Let a, b, c be positive real numbers. Prove that b + c + c + a + a + b ( a 4 a b c b + c + b c + a + c ). a + b (APMO, 00) (Mircea Lascu) 7. Let a, b, c be positive real numbers, such that a + b + c = abc. Prove that ab + bc + ca 9(a + b + c). (Belarus, 996) Mathematical Reflections 6 (007)
13 8. Let a, b, c be positive real numbers. Prove that b + c + c + a + a + b abc + a b c (a + b)(b + c)(c + a) (Bui Viet Anh) 9. Let a, b, c be positive real numbers such that a + b + c = abc. Prove that (a )(b )(c ) (Gabriel Dospinescu, Marian Tetiva) 0. Let a, b, c be nonnegative real numbers such that a + b + c + abc = 4. Prove that 0 ab + bc + ca abc. (Titu Andreescu, USAMO, 00) REFERENCES [. ] Titu Andreescu, Zuming Feng, 03 Trigonometry Problems: From the Training of the USA IMO Team, Birkhauser, 004 [. ] Titu Andreescu, Vasile Cirtoaje, Gabriel Dospinescu, Mircea Lascu  Old and New Inequalities, GIL Publishing House, 004 [3. ] Tran Phuong, Diamonds in Mathematical Inequalities, Hanoi Publishing House, 007 [4. ] N.M. Sedrakyan Geometricheskie Neravenstva, Yerevan, 004 [5. ] E. Specht, Collected Inequalities, [6. ] H. Lee, Topics in Inequalities  Theorems and Techniques [7. ] H. Lee, Inequalities through problems [8. ] Crux Mathematicorum and Mathematical Mayhem (Canada) Mathematical Reflections 6 (007) 3
Solutions to Homework 6 Mathematics 503 Foundations of Mathematics Spring 2014
Solutions to Homework 6 Mathematics 503 Foundations of Mathematics Spring 2014 3.4: 1. If m is any integer, then m(m + 1) = m 2 + m is the product of m and its successor. That it to say, m 2 + m is the
More informationSwitching Algebra and Logic Gates
Chapter 2 Switching Algebra and Logic Gates The word algebra in the title of this chapter should alert you that more mathematics is coming. No doubt, some of you are itching to get on with digital design
More informationYou know from calculus that functions play a fundamental role in mathematics.
CHPTER 12 Functions You know from calculus that functions play a fundamental role in mathematics. You likely view a function as a kind of formula that describes a relationship between two (or more) quantities.
More informationCritical points of once continuously differentiable functions are important because they are the only points that can be local maxima or minima.
Lecture 0: Convexity and Optimization We say that if f is a once continuously differentiable function on an interval I, and x is a point in the interior of I that x is a critical point of f if f (x) =
More informationhow to use dual base log log slide rules
how to use dual base log log slide rules by Professor Maurice L. Hartung The University of Chicago Pickett The World s Most Accurate Slide Rules Pickett, Inc. Pickett Square Santa Barbara, California 93102
More informationProperties of BMO functions whose reciprocals are also BMO
Properties of BMO functions whose reciprocals are also BMO R. L. Johnson and C. J. Neugebauer The main result says that a nonnegative BMOfunction w, whose reciprocal is also in BMO, belongs to p> A p,and
More informationWHAT ARE MATHEMATICAL PROOFS AND WHY THEY ARE IMPORTANT?
WHAT ARE MATHEMATICAL PROOFS AND WHY THEY ARE IMPORTANT? introduction Many students seem to have trouble with the notion of a mathematical proof. People that come to a course like Math 216, who certainly
More informationOrthogonal Bases and the QR Algorithm
Orthogonal Bases and the QR Algorithm Orthogonal Bases by Peter J Olver University of Minnesota Throughout, we work in the Euclidean vector space V = R n, the space of column vectors with n real entries
More informationI. Vectors and Geometry in Two and Three Dimensions
I. Vectors and Geometry in Two and Three Dimensions I.1 Points and Vectors Each point in two dimensions may be labeled by two coordinates (a,b) which specify the position of the point in some units with
More informationWHICH SCORING RULE MAXIMIZES CONDORCET EFFICIENCY? 1. Introduction
WHICH SCORING RULE MAXIMIZES CONDORCET EFFICIENCY? DAVIDE P. CERVONE, WILLIAM V. GEHRLEIN, AND WILLIAM S. ZWICKER Abstract. Consider an election in which each of the n voters casts a vote consisting of
More informationA Modern Course on Curves and Surfaces. Richard S. Palais
A Modern Course on Curves and Surfaces Richard S. Palais Contents Lecture 1. Introduction 1 Lecture 2. What is Geometry 4 Lecture 3. Geometry of InnerProduct Spaces 7 Lecture 4. Linear Maps and the Euclidean
More informationHow many numbers there are?
How many numbers there are? RADEK HONZIK Radek Honzik: Charles University, Department of Logic, Celetná 20, Praha 1, 116 42, Czech Republic radek.honzik@ff.cuni.cz Contents 1 What are numbers 2 1.1 Natural
More information= 2 + 1 2 2 = 3 4, Now assume that P (k) is true for some fixed k 2. This means that
Instructions. Answer each of the questions on your own paper, and be sure to show your work so that partial credit can be adequately assessed. Credit will not be given for answers (even correct ones) without
More informationONEDIMENSIONAL RANDOM WALKS 1. SIMPLE RANDOM WALK
ONEDIMENSIONAL RANDOM WALKS 1. SIMPLE RANDOM WALK Definition 1. A random walk on the integers with step distribution F and initial state x is a sequence S n of random variables whose increments are independent,
More informationIf A is divided by B the result is 2/3. If B is divided by C the result is 4/7. What is the result if A is divided by C?
Problem 3 If A is divided by B the result is 2/3. If B is divided by C the result is 4/7. What is the result if A is divided by C? Suggested Questions to ask students about Problem 3 The key to this question
More informationIntroduction to Differential Calculus. Christopher Thomas
Mathematics Learning Centre Introduction to Differential Calculus Christopher Thomas c 1997 University of Sydney Acknowledgements Some parts of this booklet appeared in a similar form in the booklet Review
More informationWhat Is Number Theory?
Chapter 1 What Is Number Theory? Number theory is the study of the set of positive whole numbers 1, 2, 3, 4, 5, 6, 7,..., which are often called the set of natural numbers. We will especially want to study
More informationRevised Version of Chapter 23. We learned long ago how to solve linear congruences. ax c (mod m)
Chapter 23 Squares Modulo p Revised Version of Chapter 23 We learned long ago how to solve linear congruences ax c (mod m) (see Chapter 8). It s now time to take the plunge and move on to quadratic equations.
More informationNew Results on Hermitian Matrix RankOne Decomposition
New Results on Hermitian Matrix RankOne Decomposition Wenbao Ai Yongwei Huang Shuzhong Zhang June 22, 2009 Abstract In this paper, we present several new rankone decomposition theorems for Hermitian
More informationSome Basic Techniques of Group Theory
Chapter 5 Some Basic Techniques of Group Theory 5.1 Groups Acting on Sets In this chapter we are going to analyze and classify groups, and, if possible, break down complicated groups into simpler components.
More informationHow to Use Expert Advice
NICOLÒ CESABIANCHI Università di Milano, Milan, Italy YOAV FREUND AT&T Labs, Florham Park, New Jersey DAVID HAUSSLER AND DAVID P. HELMBOLD University of California, Santa Cruz, Santa Cruz, California
More informationGeneralized compact knapsacks, cyclic lattices, and efficient oneway functions
Generalized compact knapsacks, cyclic lattices, and efficient oneway functions Daniele Micciancio University of California, San Diego 9500 Gilman Drive La Jolla, CA 920930404, USA daniele@cs.ucsd.edu
More informationThis document has been written by Michaël Baudin from the Scilab Consortium. December 2010 The Scilab Consortium Digiteo. All rights reserved.
SCILAB IS NOT NAIVE This document has been written by Michaël Baudin from the Scilab Consortium. December 2010 The Scilab Consortium Digiteo. All rights reserved. December 2010 Abstract Most of the time,
More informationInversion. Chapter 7. 7.1 Constructing The Inverse of a Point: If P is inside the circle of inversion: (See Figure 7.1)
Chapter 7 Inversion Goal: In this chapter we define inversion, give constructions for inverses of points both inside and outside the circle of inversion, and show how inversion could be done using Geometer
More informationAlgorithms for Designing PopUp Cards
Algorithms for Designing PopUp Cards Zachary Abel Erik D. Demaine Martin L. Demaine Sarah Eisenstat Anna Lubiw André Schulz Diane L. Souvaine Giovanni Viglietta Andrew Winslow Abstract We prove that every
More informationDiscreteTime Signals and Systems
2 DiscreteTime Signals and Systems 2.0 INTRODUCTION The term signal is generally applied to something that conveys information. Signals may, for example, convey information about the state or behavior
More information(LMCS, p. 317) V.1. First Order Logic. This is the most powerful, most expressive logic that we will examine.
(LMCS, p. 317) V.1 First Order Logic This is the most powerful, most expressive logic that we will examine. Our version of firstorder logic will use the following symbols: variables connectives (,,,,
More informationIntroduction to finite fields and their applications
Introduction to finite fields and their applications RUDOLF LIDL University of Tasmania, Hobart, Australia HARALD NIEDERREITER Austrian Academy of Sciences. Vienna, Austria ree'wi d18e U,l,muy of W, t
More informationGeneralized Compact Knapsacks are Collision Resistant
Generalized Compact Knapsacks are Collision Resistant Vadim Lyubashevsky Daniele Micciancio University of California, San Diego 9500 Gilman Drive, La Jolla, CA 920930404, USA {vlyubash,daniele}@cs.ucsd.edu
More informationMatthias Beck Gerald Marchesi Dennis Pixton Lucas Sabalka
Matthias Beck Gerald Marchesi Dennis Pixton Lucas Sabalka Version.5 Matthias Beck A First Course in Complex Analysis Version.5 Gerald Marchesi Department of Mathematics Department of Mathematical Sciences
More information