# Simple trigonometric substitutions with broad results

Save this PDF as:

Size: px
Start display at page:

## Transcription

1 Simple trigonometric substitutions with broad results Vardan Verdiyan, Daniel Campos Salas Often, the key to solve some intricate algebraic inequality is to simplify it by employing a trigonometric substitution. When we make a clever trigonometric substitution the problem may reduce so much that we can see a direct solution immediately. Besides, trigonometric functions have well-known properties that may help in solving such inequalities. As a result, many algebraic problems can be solved by using an inspired substitution. We start by introducing the readers to such substitutions. After that we present some well-known trigonometric identities and inequalities. Finally, we discuss some Olympiad problems and leave others for the reader to solve. Theorem. Let α, β, γ be angles in (0, π). Then α, β, γ are the angles of a triangle if and only if tan α tan β + tan β tan γ + tan γ tan α =. Proof. First of all note that if α = β = γ, then the statement clearly holds. Assume without loss of generality that α β. Because 0 < α + β < π, it follows that there exists an angle in ( π, π), say γ, such that α + β + γ = π. Using the addition formulas and the fact that tan x = cot ( π x), we have tan γ = cot α + β = tan α tan β tan α + tan β, yielding Now suppose that tan α tan β + tan β tan γ + tan γ tan α =. () tan α tan β + tan β tan γ + tan γ tan α =, () for some α, β, γ in (0, π). We will prove that γ = γ, and this will imply that α, β, γ are the angles of a triangle. Subtracting () from () we get tan γ γ = tan. Thus γ γ = kπ for some nonnegative integer k. But γ γ γ + γ < π, so it follows that k = 0. That is γ = γ, as desired. Mathematical Reflections 6 (007)

2 Theorem. Let α, β, γ be angles in (0, π). Then α, β, γ are the angles of a triangle if and only if sin α + sin β + sin γ + sin α sin β sin γ =. Proof. As 0 < α + β < π, there exists an angle in ( π, π), say γ, such that α + β + γ = π. Using the product-to-sum and the double angle formulas we get sin γ + sin α sin β γ sin = cos α + β ( cos α + β + sin α sin β ) = cos α + β cos α β cos α + cos β = ( ) ( ) sin α + sin β = = sin α sin β. Thus Now suppose that sin α + sin β γ + sin + sin α sin β γ sin =. () sin α + sin β + sin γ + sin α sin β sin γ =, () for some α, β, γ in (0, π). Subtracting () from () we obtain sin γ γ sin + sin α sin β ) γ γ (sin sin = 0, that is ( sin γ ) γ γ γ sin (sin + sin + sin α sin β ) = 0. The second factor can be written as sin γ γ + sin + cos α β cos α + β = sin γ + cos α β, which is clearly greater than 0. It follows that sin γ that α, β, γ are the angles of a triangle. = sin γ, and so γ = γ, showing Mathematical Reflections 6 (007)

3 Substitutions and Transformations T. Let α, β, γ be angles of a triangle. Let A = π α, B = π β, C = π γ. Then A + B + C = π, and 0 A, B, C < π. This transformation allows us to switch from angles of an arbitrary triangle to angles of an acute triangle. Note that cyc(sin α = cos A), cyc(cos α = sin A), cyc(tan α = cot A), cyc(cot α = tan A), where by cyc we denote a cyclic permutation of angles. T. Let x, y, z be positive real numbers. Then there is a triangle with sidelengths a = x + y, b = y + z, c = z + x. This transformation is sometimes called Dual Principle. Clearly, s = x+y+z and (x, y, z) = (s a, s b, s c). This transformation already triangle inequality. S. Let a, b, c be positive real numbers such that ab + bc + ca =. Using the function f : (0, π ) (0, + ), for f(x) = tan x, we can do the following substitution a = tan α, b = tan β, c = tan γ, where α, β, γ are the angles of a triangle ABC. S. Let a, b, c be positive real numbers such that ab + bc + ca =. Applying T to S, we have a = cot A, b = cot B, c = cot C, where A, B, C are the angles of an acute triangle. S3. Let a, b, c be positive real numbers such that a + b + c = abc. Dividing by abc it follows that bc + ca + ab =. Due to S, we can substitute that is where α, β, γ are the angles of a triangle. a = tan α, b = tan β, c = tan γ, a = cot α, b = cot β, c = cot γ, S4. Let a, b, c be positive real numbers such that a + b + c = abc. Applying T to S3, we have a = tan A, b = tan B, c = tan C, Mathematical Reflections 6 (007) 3

4 where A, B, C are the angles of an acute triangle. S5. Let a, b, c be positive real numbers such that a + b + c + abc =. Note that since all the numbers are positive it follows that a, b, c <. Usign the function f : (0, π) (0, ), for f(x) = sin x, and recalling Theorem, we can substitute where α, β, γ are the angles of a triangle. a = sin α, b = sin β, c = sin γ, S6. Let a, b, c be positive real numbers such that a +b +c +abc =. Applying T to S5, we have a = cos A, b = cos B, c = cos C, where A, B, C are the angles of an acute triangle. S7. Let x, y, z be positive real numbers. Applying T to expressions yz (x + y)(x + z), zx (y + z)(y + x), xy (z + x)(z + y), they can be substituted by (s b)(s c), bc (s c)(s a), ca (s a)(s b), ab where a, b, c are the sidelengths of a triangle. Recall the following identities sin α = (s b)(s c) bc Thus our expressions can be substituted by where α, β, γ are the angles of a triangle. sin α, sin β, sin γ,, cos α s(s a) =. bc S8. Analogously to S7, the expressions x(x + y + z) (x + y)(x + z), y(x + y + z) (y + z)(y + x), z(x + y + z) (z + x)(z + y), can be substituted by cos α, cos β, cos γ, where α, β, γ are the angles of a triangle. Mathematical Reflections 6 (007) 4

5 Further we present a list of inequalities and equalities that can be helpful in solving many problems or simplify them. Well-known inequalities Let α, β, γ be angles of a triangle ABC. Then. cos α + cos β + cos γ sin α + sin β + sin γ 3. sin α + sin β + sin γ cos α + cos β + cos γ cos α cos β cos γ sin α sin β sin γ 8 4. sin α sin β sin γ cos α cos β cos γ cot α + cot β + cot C cos α + cos β + cos γ sin α + sin β + sin C sin α + sin β + sin γ cos α + cos β + cos γ cot α + cot β + cot γ tan α + tan β + tan γ 3 Well-known identities Let α, β, γ be angles of a triangle ABC. Then. cos α + cos β + cos γ = + 4 sin α sin β sin γ. sin α + sin β + sin γ = 4 cos α cos β cos γ 3. sin α + sin β + sin γ = 4 sin α sin β sin γ 4. sin α + sin β + sin γ = + cos α cos β cos γ For arbitrary angles α, β, γ we have sin α + sin β + sin γ sin(α + β + γ) = 4 sin α + β cos α + cos β + cos γ + cos(α + β + γ) = 4 cos α + β sin β + γ cos β + γ sin γ + α. cos γ + α. Mathematical Reflections 6 (007) 5

6 Applications. Let x, y, z be positive real numbers. Prove that x x + (x + y)(x + z) + y y + (y + z)(y + x) + Solution. The inequality is equivalent to (x + y)(x + z) x = z x + (z + x)(z + y). (Walther Janous, Crux Mathematicorum). (x+y)(x+z) + x Beceause the inequality is homogeneous, we can assume that xy +yz +zx =. Let us apply substitution S: cyc(x = tan α ), where α, β, γ are angles of a triangle. We get ( tan α + tan β ) ( tan α + tan γ ) tan α = sin α, and similar expressions for the other terms. The inequality becomes sin α + sin α + sin β + sin β + sin γ + sin γ, that is + sin α + + sin β + + sin γ. On the other hand, using the well-known inequality sin α + sin β + sin γ 3 and the Cauchy-Schwarz inequality, we have 9 ( + sin α ) + ( + sin β ) + ( + sin γ ) + sin α, and we are done.. Let x, y, z be real numbers greater than such that x + y + z =. Prove that x + y + z x + y + z. (Iran, 997) Mathematical Reflections 6 (007) 6

7 Solution. Let (x, y, z) = (a +, b +, c + ), with a, b, c positive real numbers. Note that the hypothesis is equivalent to ab + bc + ca + abc =. Then it suffices to prove that a + b + c a + b + c + 3. Squaring both sides of the inequality and canceling some terms yields ab + bc + ca 3. Using substitution S5 we get (ab, bc, ca) = (sin α, sin β, sin γ ), where ABC is an arbitrary triangle. The problem reduces to proving that sin α + sin β + sin γ 3, which is well-known and can be done using Jensen inequality. 3. Let a, b, c be positive real numbers such that a + b + c =. Prove that ab bc ca c + ab + a + bc + b + ca 3. (Open Olympiad of FML No-39, Russia) Solution. The inequality is equivalent to ab ((c + a)(c + b) + bc (a + b)(a + c) + ca (b + c)(b + a) 3. Substitution S7 replaces the three terms in the inequality by sin α, sin β, sin γ. Thus it suffices to prove sin α + sin β + sin γ 3, which clearly holds. 4. Let a, b, c be positive real numbers such that (a + b)(b + c)(c + a) =. Prove that ab + bc + ca 3 4. (Cezar Lupu, Romania, 005) Solution. Observe that the inequality is equivalent to ( ab ) 3 ( 3 4 ) 3 (a + b) (b + c) (c + a). Mathematical Reflections 6 (007) 7

8 Because the inequality is homogeneous, we can assume that ab + bc + ca =. We use substitution S: cyc(a = tan α ), where α, β, γ are the angles of a triangle. Note that (a + b)(b + c)(c + a) = ( ) cos γ cos α cos β = cos α cos β cos γ. Thus it suffices to prove that ( ) or cos α cos β cos γ 4 cos α cos β cos γ 3 3. From the identity 4 cos α cos β cos γ = sin α + sin β + sin γ, the inequality is equivalent to sin α + sin β + sin γ 3 3. But f(x) = sin x is a concave function on (0, π) and the conclusion follows from Jensen s inequality. 5. Let a, b, c be positive real numbers such that a + b + c =. Prove that a + b + c + 3abc., (Poland, 999) ( ) bc Solution. Let cyc x = a. It follows that cyc(a = yz). The inequality becomes x y + y z + x z + 3xyz, where x, y, z are positive real numbers such that xy + yz + zx =. Note that the inequality is equivalent to (xy + yz + zx) + 3xyz + xyz(x + y + z), or 3 x + y + z. Applying substitution S cyc(x = tan α ), it suffices to prove tan α + tan β + tan γ 3. The last inequality clearly holds, as f(x) = tan x is convex function on (0, π), and the conclusion follows from Jensen s inequality. Mathematical Reflections 6 (007) 8

9 6. Let x, y, z be positive real numbers. Prove that x(y + z) + y(z + x) + z(x + y) (x + y)(y + z)(z + x) x + y + z (Darij Grinberg) Solution. Rewrite the inequality as x(x + y + z) (x + y)(x + z) + y(x + y + z) (y + z)(y + x) + Applying substitution S8, it suffices to prove that cos α + cos β + cos γ, z(x + y + z) (z + x)(z + y). where α, β, γ are the angles of a triangle. Using transformation T cyc(a = π α ), where A, B, C are angles of an acute triangle, the inequality is equivalent to sin A + sin B + sin C. There are many ways to prove this fact. We prefer to use Jordan s inequality, that is α π sin α α for all α (0, π ). The conclusion immediately follows. 7. Let a, b, c be positive real numbers such that a + b + c + = 4abc. Prove that a + b + c ab bc ca (Daniel Campos Salas, Mathematical Reflections, 007) Solution. Rewrite the condition as bc + ca + ab + abc = 4. Observe that we can use substitution S5 in the following way ( bc, ca, ) ( = sin α ab, β sin, γ ) sin, Mathematical Reflections 6 (007) 9

10 where α, β, γ are angles of a triangle. It follows that ( a, b, ) ( sin β = sin γ c sin α, sin γ sin α sin β, sin β sin ) α sin γ. Then it suffices to prove that sin β sin γ sin α + sin γ sin α sin β + sin β sin α sin γ 3 sin α + sin β + sin γ. The right-hand side of the inequality is well known. For the left-hand side we use trasnformation T backwards. Denote by x = s a, y = s b, z = s c, where s is the semiperimeter of the triangle. The left-hand side is equivalent to x y + z + y x + z + z x + y 3, which a famous Nesbitt s inequality, and we are done. 8. Let a, b, c (0, ) be real numbers such that ab + bc + ca =. Prove that a a + b b + c c 3 ( a + b + ) c. 4 a b c (Calin Popa) Solution. We apply substitution S cyc(a tan A ), where A, B, C are angles of a triangle. Because a, b, c (0, ), it follows that tan A, tan B, tan C (0, ), that is A, B, C are angles of an acute triangle. Note that ( a cyc a = sin A cos ) A = tan A. cos A Thus the inequality is equivalent to tan A + tan B + tan C 3 ( tan A + tan B + ). tan C Now observe that if we apply transformation T and the result in Theorem, we get tan A + tan B + tan C = tan A tan B tan C. Hence our inequality is equivalent to (tan A + tan B + tan C) 3 (tan A tan B + tan B tan C + tan A tan C). This can be written as (tan A tan B) + (tan B tan C) + (tan C tan A) 0, and we are done. Mathematical Reflections 6 (007) 0

11 9. Let x, y, z be positive real numbers. Prove that y + z z + x x + y 6(x + y + z) x y z 3(x + y)(y + z)(z + x). (Vo Quoc Ba Can, Mathematical Reflections, 007) Solution. Note that the inequality is equivalent to (x + y)(z + x) 4(x + y + z) (y + z). x(x + y + z) 3 cyc Let use transfromation T and substitution S8. We get ( ) (x + y)(z + x) cyc (y + z) x(x + y + z) = a cos α = 4R sin α, and 4(x + y + z) 4R(sin α + sin β + sin γ) =, 3 3 where α, β, γ are angles of a triangle with circumradius R. Therefore it suffices to prove that ( 3 sin α + sin β + sin γ ) sin α cos α + sin β cos β + sin γ cos γ. Because f(x) = cos x is a concave function on [0, π], from Jensen s inequality we obtain 3 ( cos α 3 + cos β + cos γ ). Finally, we observe that f(x) = sin x is an increasing function on [0, π], while g(x) = cos x is a decreasing function on [0, π]. Using Chebyschev s inequality, we have ( sin α 3 + sin β + sin γ ) ( cos α + cos β + cos γ ) sin α cos α, and the conclusion follows. Mathematical Reflections 6 (007)

12 Problems for independent study. Let a, b, c be positive real numbers such that a + b + c =. Prove that a b c b + c c + a a + b. (Romanian Mathematical Olympiad, 005). Let a, b, c be positive real numbers such that a + b + c =. Prove that a b + b c + c a 6 (A. Teplinsky, Ukraine, 005) 3. Let a, b, c be positive real numbers such that ab + bc + ca =. Prove that a + b b + c c + a 4. Prove that for all positive real numbers a, b, c, (a + )(b + )(c + ) 9(ab + bc + ca). (Le Trung Kien) (APMO, 004) 5. Let x, y, z be positive real numbers such that x + y + z =. Prove that x + yz + x + yz + x + yz xyz + x + y + z. 6. Let a, b, c be positive real numbers. Prove that b + c + c + a + a + b ( a 4 a b c b + c + b c + a + c ). a + b (APMO, 00) (Mircea Lascu) 7. Let a, b, c be positive real numbers, such that a + b + c = abc. Prove that ab + bc + ca 9(a + b + c). (Belarus, 996) Mathematical Reflections 6 (007)

13 8. Let a, b, c be positive real numbers. Prove that b + c + c + a + a + b abc + a b c (a + b)(b + c)(c + a) (Bui Viet Anh) 9. Let a, b, c be positive real numbers such that a + b + c = abc. Prove that (a )(b )(c ) (Gabriel Dospinescu, Marian Tetiva) 0. Let a, b, c be nonnegative real numbers such that a + b + c + abc = 4. Prove that 0 ab + bc + ca abc. (Titu Andreescu, USAMO, 00) REFERENCES [. ] Titu Andreescu, Zuming Feng, 03 Trigonometry Problems: From the Training of the USA IMO Team, Birkhauser, 004 [. ] Titu Andreescu, Vasile Cirtoaje, Gabriel Dospinescu, Mircea Lascu - Old and New Inequalities, GIL Publishing House, 004 [3. ] Tran Phuong, Diamonds in Mathematical Inequalities, Hanoi Publishing House, 007 [4. ] N.M. Sedrakyan Geometricheskie Neravenstva, Yerevan, 004 [5. ] E. Specht, Collected Inequalities, [6. ] H. Lee, Topics in Inequalities - Theorems and Techniques [7. ] H. Lee, Inequalities through problems [8. ] Crux Mathematicorum and Mathematical Mayhem (Canada) Mathematical Reflections 6 (007) 3

### Some strong sufficient conditions for cyclic homogeneous polynomial inequalities of degree four in nonnegative variables

Available online at www.tjnsa.com J. Nonlinear Sci. Appl. 6 (013), 74 85 Research Article Some strong sufficient conditions for cyclic homogeneous polynomial inequalities of degree four in nonnegative

### 436 Index of Problems

Index of Problems Chapter 1 1.8 BMO 2001 1.17 Russia MO 2002 Chapter 2 2.4 Viorel Vâjâitu, Alexandra Zaharescu, Gazeta Matematică 2.15 Ireland MO 2000 Chapter 3 3.6 IMO, shortlist 1969 (Romania) 3.8 India

### Adding vectors We can do arithmetic with vectors. We ll start with vector addition and related operations. Suppose you have two vectors

1 Chapter 13. VECTORS IN THREE DIMENSIONAL SPACE Let s begin with some names and notation for things: R is the set (collection) of real numbers. We write x R to mean that x is a real number. A real number

### 1. Introduction identity algbriac factoring identities

1. Introduction An identity is an equality relationship between two mathematical expressions. For example, in basic algebra students are expected to master various algbriac factoring identities such as

### HYPERBOLIC TRIGONOMETRY

HYPERBOLIC TRIGONOMETRY STANISLAV JABUKA Consider a hyperbolic triangle ABC with angle measures A) = α, B) = β and C) = γ. The purpose of this note is to develop formulae that allow for a computation of

### The Australian Journal of Mathematical Analysis and Applications

The Australian Journal of Mathematical Analysis and Applications Volume 7, Issue, Article 11, pp. 1-14, 011 SOME HOMOGENEOUS CYCLIC INEQUALITIES OF THREE VARIABLES OF DEGREE THREE AND FOUR TETSUYA ANDO

### Complex Numbers in Trig Identities II

Complex Numbers in Trig Identities II vincenthuang7505 October, 04 Introduction Trigonometry is generally considered bashy, and perhaps that is in its nature. In fact, throughout this article, I will refer

### Recitation 4. 24xy for 0 < x < 1, 0 < y < 1, x + y < 1 0 elsewhere

Recitation. Exercise 3.5: If the joint probability density of X and Y is given by xy for < x

### TRIANGLES ON THE LATTICE OF INTEGERS. Department of Mathematics Rowan University Glassboro, NJ Andrew Roibal and Abdulkadir Hassen

TRIANGLES ON THE LATTICE OF INTEGERS Andrew Roibal and Abdulkadir Hassen Department of Mathematics Rowan University Glassboro, NJ 08028 I. Introduction In this article we will be studying triangles whose

### Applications of Fermat s Little Theorem and Congruences

Applications of Fermat s Little Theorem and Congruences Definition: Let m be a positive integer. Then integers a and b are congruent modulo m, denoted by a b mod m, if m (a b). Example: 3 1 mod 2, 6 4

### MATH REVIEW KIT. Reproduced with permission of the Certified General Accountant Association of Canada.

MATH REVIEW KIT Reproduced with permission of the Certified General Accountant Association of Canada. Copyright 00 by the Certified General Accountant Association of Canada and the UBC Real Estate Division.

### PUTNAM TRAINING POLYNOMIALS. Exercises 1. Find a polynomial with integral coefficients whose zeros include 2 + 5.

PUTNAM TRAINING POLYNOMIALS (Last updated: November 17, 2015) Remark. This is a list of exercises on polynomials. Miguel A. Lerma Exercises 1. Find a polynomial with integral coefficients whose zeros include

### Unit 3 Boolean Algebra (Continued)

Unit 3 Boolean Algebra (Continued) 1. Exclusive-OR Operation 2. Consensus Theorem Department of Communication Engineering, NCTU 1 3.1 Multiplying Out and Factoring Expressions Department of Communication

### Winter Camp 2011 Polynomials Alexander Remorov. Polynomials. Alexander Remorov alexanderrem@gmail.com

Polynomials Alexander Remorov alexanderrem@gmail.com Warm-up Problem 1: Let f(x) be a quadratic polynomial. Prove that there exist quadratic polynomials g(x) and h(x) such that f(x)f(x + 1) = g(h(x)).

### 1.4 Variable Expressions

1.4 Variable Expressions Now that we can properly deal with all of our numbers and numbering systems, we need to turn our attention to actual algebra. Algebra consists of dealing with unknown values. These

### THREE DIMENSIONAL GEOMETRY

Chapter 8 THREE DIMENSIONAL GEOMETRY 8.1 Introduction In this chapter we present a vector algebra approach to three dimensional geometry. The aim is to present standard properties of lines and planes,

### LESSON 6.2 POLYNOMIAL OPERATIONS I

LESSON 6.2 POLYNOMIAL OPERATIONS I Overview In business, people use algebra everyday to find unknown quantities. For example, a manufacturer may use algebra to determine a product s selling price in order

### UNIT 2 MATRICES - I 2.0 INTRODUCTION. Structure

UNIT 2 MATRICES - I Matrices - I Structure 2.0 Introduction 2.1 Objectives 2.2 Matrices 2.3 Operation on Matrices 2.4 Invertible Matrices 2.5 Systems of Linear Equations 2.6 Answers to Check Your Progress

### k, then n = p2α 1 1 pα k

Powers of Integers An integer n is a perfect square if n = m for some integer m. Taking into account the prime factorization, if m = p α 1 1 pα k k, then n = pα 1 1 p α k k. That is, n is a perfect square

### Angle Bisectors in a Triangle

346/ ANGLE BISECTORS IN A TRIANGLE Angle Bisectors in a Triangle I. F. Sharygin In this article, we have collected some geometric facts which are directly or tangentially related to the angle bisectors

### 1.4. Arithmetic of Algebraic Fractions. Introduction. Prerequisites. Learning Outcomes

Arithmetic of Algebraic Fractions 1.4 Introduction Just as one whole number divided by another is called a numerical fraction, so one algebraic expression divided by another is known as an algebraic fraction.

### 5 Indefinite integral

5 Indefinite integral The most of the mathematical operations have inverse operations: the inverse operation of addition is subtraction, the inverse operation of multiplication is division, the inverse

### Negative Integer Exponents

7.7 Negative Integer Exponents 7.7 OBJECTIVES. Define the zero exponent 2. Use the definition of a negative exponent to simplify an expression 3. Use the properties of exponents to simplify expressions

### An Interesting Way to Combine Numbers

An Interesting Way to Combine Numbers Joshua Zucker and Tom Davis November 28, 2007 Abstract This exercise can be used for middle school students and older. The original problem seems almost impossibly

### Boolean Algebra Part 1

Boolean Algebra Part 1 Page 1 Boolean Algebra Objectives Understand Basic Boolean Algebra Relate Boolean Algebra to Logic Networks Prove Laws using Truth Tables Understand and Use First Basic Theorems

### 1.5. Factorisation. Introduction. Prerequisites. Learning Outcomes. Learning Style

Factorisation 1.5 Introduction In Block 4 we showed the way in which brackets were removed from algebraic expressions. Factorisation, which can be considered as the reverse of this process, is dealt with

### 2 : two cube. 5 : five cube. 10 : ten cube.

Math 105 TOPICS IN MATHEMATICS REVIEW OF LECTURES VI Instructor: Line #: 52920 Yasuyuki Kachi 6 Cubes February 2 Mon, 2015 We can similarly define the notion of cubes/cubing Like we did last time, 3 2

### Sample Problems. 10. 1 2 cos 2 x = tan2 x 1. 11. tan 2 = csc 2 tan 2 1. 12. sec x + tan x = cos x 13. 14. sin 4 x cos 4 x = 1 2 cos 2 x

Lecture Notes Trigonometric Identities page Sample Problems Prove each of the following identities.. tan x x + sec x 2. tan x + tan x x 3. x x 3 x 4. 5. + + + x 6. 2 sec + x 2 tan x csc x tan x + cot x

### STUDY GUIDE FOR SOME BASIC INTERMEDIATE ALGEBRA SKILLS

STUDY GUIDE FOR SOME BASIC INTERMEDIATE ALGEBRA SKILLS The intermediate algebra skills illustrated here will be used extensively and regularly throughout the semester Thus, mastering these skills is an

### Solutions Manual for How to Read and Do Proofs

Solutions Manual for How to Read and Do Proofs An Introduction to Mathematical Thought Processes Sixth Edition Daniel Solow Department of Operations Weatherhead School of Management Case Western Reserve

### FACTORING ANGLE EQUATIONS:

FACTORING ANGLE EQUATIONS: For convenience, algebraic names are assigned to the angles comprising the Standard Hip kernel. The names are completely arbitrary, and can vary from kernel to kernel. On the

### Boolean Algebra (cont d) UNIT 3 BOOLEAN ALGEBRA (CONT D) Guidelines for Multiplying Out and Factoring. Objectives. Iris Hui-Ru Jiang Spring 2010

Boolean Algebra (cont d) 2 Contents Multiplying out and factoring expressions Exclusive-OR and Exclusive-NOR operations The consensus theorem Summary of algebraic simplification Proving validity of an

### Factoring, Solving. Equations, and Problem Solving REVISED PAGES

05-W4801-AM1.qxd 8/19/08 8:45 PM Page 241 Factoring, Solving Equations, and Problem Solving 5 5.1 Factoring by Using the Distributive Property 5.2 Factoring the Difference of Two Squares 5.3 Factoring

### 5 =5. Since 5 > 0 Since 4 7 < 0 Since 0 0

a p p e n d i x e ABSOLUTE VALUE ABSOLUTE VALUE E.1 definition. The absolute value or magnitude of a real number a is denoted by a and is defined by { a if a 0 a = a if a

### Vectors, Gradient, Divergence and Curl.

Vectors, Gradient, Divergence and Curl. 1 Introduction A vector is determined by its length and direction. They are usually denoted with letters with arrows on the top a or in bold letter a. We will use

### FURTHER VECTORS (MEI)

Mathematics Revision Guides Further Vectors (MEI) (column notation) Page of MK HOME TUITION Mathematics Revision Guides Level: AS / A Level - MEI OCR MEI: C FURTHER VECTORS (MEI) Version : Date: -9-7 Mathematics

### Lesson A - Natural Exponential Function and Natural Logarithm Functions

A- Lesson A - Natural Exponential Function and Natural Logarithm Functions Natural Exponential Function In Lesson 2, we explored the world of logarithms in base 0. The natural logarithm has a base of e.

### CH3 Boolean Algebra (cont d)

CH3 Boolean Algebra (cont d) Lecturer: 吳 安 宇 Date:2005/10/7 ACCESS IC LAB v Today, you ll know: Introduction 1. Guidelines for multiplying out/factoring expressions 2. Exclusive-OR and Equivalence operations

### Baltic Way 1995. Västerås (Sweden), November 12, 1995. Problems and solutions

Baltic Way 995 Västerås (Sweden), November, 995 Problems and solutions. Find all triples (x, y, z) of positive integers satisfying the system of equations { x = (y + z) x 6 = y 6 + z 6 + 3(y + z ). Solution.

### 2 Integrating Both Sides

2 Integrating Both Sides So far, the only general method we have for solving differential equations involves equations of the form y = f(x), where f(x) is any function of x. The solution to such an equation

### BEGINNING ALGEBRA ACKNOWLEDMENTS

BEGINNING ALGEBRA The Nursing Department of Labouré College requested the Department of Academic Planning and Support Services to help with mathematics preparatory materials for its Bachelor of Science

### ( 1)2 + 2 2 + 2 2 = 9 = 3 We would like to make the length 6. The only vectors in the same direction as v are those

1.(6pts) Which of the following vectors has the same direction as v 1,, but has length 6? (a), 4, 4 (b),, (c) 4,, 4 (d), 4, 4 (e) 0, 6, 0 The length of v is given by ( 1) + + 9 3 We would like to make

### Notes on spherical geometry

Notes on spherical geometry Math 130 Course web site: www.courses.fas.harvard.edu/5811 This handout covers some spherical trigonometry (following yan s exposition) and the topic of dual triangles. 1. Some

### 1 3 4 = 8i + 20j 13k. x + w. y + w

) Find the point of intersection of the lines x = t +, y = 3t + 4, z = 4t + 5, and x = 6s + 3, y = 5s +, z = 4s + 9, and then find the plane containing these two lines. Solution. Solve the system of equations

### MATH 304 Linear Algebra Lecture 20: Inner product spaces. Orthogonal sets.

MATH 304 Linear Algebra Lecture 20: Inner product spaces. Orthogonal sets. Norm The notion of norm generalizes the notion of length of a vector in R n. Definition. Let V be a vector space. A function α

### 1 TRIGONOMETRY. 1.0 Introduction. 1.1 Sum and product formulae. Objectives

TRIGONOMETRY Chapter Trigonometry Objectives After studying this chapter you should be able to handle with confidence a wide range of trigonometric identities; be able to express linear combinations of

### Trigonometric Identities

Trigonometric Identities Dr. Philippe B. Laval Kennesaw STate University April 0, 005 Abstract This handout dpresents some of the most useful trigonometric identities. It also explains how to derive new

### INTRODUCTION TO PROOFS: HOMEWORK SOLUTIONS

INTRODUCTION TO PROOFS: HOMEWORK SOLUTIONS STEVEN HEILMAN Contents 1. Homework 1 1 2. Homework 2 6 3. Homework 3 10 4. Homework 4 16 5. Homework 5 19 6. Homework 6 21 7. Homework 7 25 8. Homework 8 28

### Answer: = π cm. Solution:

Round #1, Problem A: (4 points/10 minutes) The perimeter of a semicircular region in centimeters is numerically equal to its area in square centimeters. What is the radius of the semicircle in centimeters?

### P.E.R.T. Math Study Guide

A guide to help you prepare for the Math subtest of Florida s Postsecondary Education Readiness Test or P.E.R.T. P.E.R.T. Math Study Guide www.perttest.com PERT - A Math Study Guide 1. Linear Equations

### Sample Test Questions

mathematics College Algebra Geometry Trigonometry Sample Test Questions A Guide for Students and Parents act.org/compass Note to Students Welcome to the ACT Compass Sample Mathematics Test! You are about

### Operations with Algebraic Expressions: Multiplication of Polynomials

Operations with Algebraic Expressions: Multiplication of Polynomials The product of a monomial x monomial To multiply a monomial times a monomial, multiply the coefficients and add the on powers with the

### 2. Equilateral Triangles

2. Equilateral Triangles Recall the well-known theorem of van Schooten. Theorem 1 If ABC is an equilateral triangle and M is a point on the arc BC of C(ABC) then MA = MB + MC. Proof Use Ptolemy on the

### Problem Set 1 Solutions Math 109

Problem Set 1 Solutions Math 109 Exercise 1.6 Show that a regular tetrahedron has a total of twenty-four symmetries if reflections and products of reflections are allowed. Identify a symmetry which is

### CHAPTER 2. Inequalities

CHAPTER 2 Inequalities In this section we add the axioms describe the behavior of inequalities (the order axioms) to the list of axioms begun in Chapter 1. A thorough mastery of this section is essential

### STRAIGHT LINES. , y 1. tan. and m 2. 1 mm. If we take the acute angle between two lines, then tan θ = = 1. x h x x. x 1. ) (x 2

STRAIGHT LINES Chapter 10 10.1 Overview 10.1.1 Slope of a line If θ is the angle made by a line with positive direction of x-axis in anticlockwise direction, then the value of tan θ is called the slope

### 1.4. Removing Brackets. Introduction. Prerequisites. Learning Outcomes. Learning Style

Removing Brackets 1. Introduction In order to simplify an expression which contains brackets it is often necessary to rewrite the expression in an equivalent form but without any brackets. This process

### Section 1.1. Introduction to R n

The Calculus of Functions of Several Variables Section. Introduction to R n Calculus is the study of functional relationships and how related quantities change with each other. In your first exposure to

### 4 BOOLEAN ALGEBRA AND LOGIC SIMPLIFICATION

4 BOOLEAN ALGEBRA AND LOGIC SIMPLIFICATION BOOLEAN OPERATIONS AND EXPRESSIONS Variable, complement, and literal are terms used in Boolean algebra. A variable is a symbol used to represent a logical quantity.

### Solution Guide for Chapter 6: The Geometry of Right Triangles

Solution Guide for Chapter 6: The Geometry of Right Triangles 6. THE THEOREM OF PYTHAGORAS E-. Another demonstration: (a) Each triangle has area ( ). ab, so the sum of the areas of the triangles is 4 ab

### Factoring Polynomials

UNIT 11 Factoring Polynomials You can use polynomials to describe framing for art. 396 Unit 11 factoring polynomials A polynomial is an expression that has variables that represent numbers. A number can

### Projective Geometry. Stoienescu Paul. International Computer High School Of Bucharest,

Projective Geometry Stoienescu Paul International Computer High School Of Bucharest, paul98stoienescu@gmail.com Abstract. In this note, I will present some olympiad problems which can be solved using projective

### On Triangles with Vertices on the Angle Bisectors

Forum Geometricorum Volume 6 (2006) 247 253. FORUM GEOM SSN 1534-1178 On Triangles with Vertices on the ngle isectors Eric Danneels bstract. We study interesting properties of triangles whose vertices

### Rotation Matrices and Homogeneous Transformations

Rotation Matrices and Homogeneous Transformations A coordinate frame in an n-dimensional space is defined by n mutually orthogonal unit vectors. In particular, for a two-dimensional (2D) space, i.e., n

### Name Intro to Algebra 2. Unit 1: Polynomials and Factoring

Name Intro to Algebra 2 Unit 1: Polynomials and Factoring Date Page Topic Homework 9/3 2 Polynomial Vocabulary No Homework 9/4 x In Class assignment None 9/5 3 Adding and Subtracting Polynomials Pg. 332

Mathematics 0N1 Solutions 1 1. Write the following sets in list form. 1(i) The set of letters in the word banana. {a, b, n}. 1(ii) {x : x 2 + 3x 10 = 0}. 3(iv) C A. True 3(v) B = {e, e, f, c}. True 3(vi)

### Math 150, Fall 2009 Solutions to Practice Final Exam [1] The equation of the tangent line to the curve. cosh y = x + sin y + cos y

Math 150, Fall 2009 Solutions to Practice Final Exam [1] The equation of the tangent line to the curve at the point (0, 0) is cosh y = x + sin y + cos y Answer : y = x Justification: The equation of the

### References. Logic (Mathematics 1BA1) Introduction to Logic. Introduction to Logic. Expressions. State and Evaluation.

References Logic (Mathematics 1BA1) Rozenn Dahyot Room 128 Lloyd Institute School of Computer Science and Statistics Trinity College Dublin, IRELAND https://www.cs.tcd.ie/rozenn.dahyot/ Rozenn.Dahyot@cs.tcd.ie

### Recall that the gradient of a differentiable scalar field ϕ on an open set D in R n is given by the formula:

Chapter 7 Div, grad, and curl 7.1 The operator and the gradient: Recall that the gradient of a differentiable scalar field ϕ on an open set D in R n is given by the formula: ( ϕ ϕ =, ϕ,..., ϕ. (7.1 x 1

### Using the ac Method to Factor

4.6 Using the ac Method to Factor 4.6 OBJECTIVES 1. Use the ac test to determine factorability 2. Use the results of the ac test 3. Completely factor a trinomial In Sections 4.2 and 4.3 we used the trial-and-error

### If a question asks you to find all or list all and you think there are none, write None.

If a question asks you to find all or list all and you think there are none, write None 1 Simplify 1/( 1 3 1 4 ) 2 The price of an item increases by 10% and then by another 10% What is the overall price

### MATH Fundamental Mathematics II.

MATH 10032 Fundamental Mathematics II http://www.math.kent.edu/ebooks/10032/fun-math-2.pdf Department of Mathematical Sciences Kent State University December 29, 2008 2 Contents 1 Fundamental Mathematics

### 25 The Law of Cosines and Its Applications

Arkansas Tech University MATH 103: Trigonometry Dr Marcel B Finan 5 The Law of Cosines and Its Applications The Law of Sines is applicable when either two angles and a side are given or two sides and an

### 15. Symmetric polynomials

15. Symmetric polynomials 15.1 The theorem 15.2 First examples 15.3 A variant: discriminants 1. The theorem Let S n be the group of permutations of {1,, n}, also called the symmetric group on n things.

### Define the set of rational numbers to be the set of equivalence classes under #.

Rational Numbers There are four standard arithmetic operations: addition, subtraction, multiplication, and division. Just as we took differences of natural numbers to represent integers, here the essence

### Solutions for Review Problems

olutions for Review Problems 1. Let be the triangle with vertices A (,, ), B (4,, 1) and C (,, 1). (a) Find the cosine of the angle BAC at vertex A. (b) Find the area of the triangle ABC. (c) Find a vector

### Understanding Basic Calculus

Understanding Basic Calculus S.K. Chung Dedicated to all the people who have helped me in my life. i Preface This book is a revised and expanded version of the lecture notes for Basic Calculus and other

### ALGEBRA 2/ TRIGONOMETRY

The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION ALGEBRA 2/ TRIGONOMETRY Friday, June 14, 2013 1:15 4:15 p.m. SAMPLE RESPONSE SET Table of Contents Practice Papers Question 28.......................

### Chapter 5. Rational Expressions

5.. Simplify Rational Expressions KYOTE Standards: CR ; CA 7 Chapter 5. Rational Expressions Definition. A rational expression is the quotient P Q of two polynomials P and Q in one or more variables, where

### Mathematical Procedures

CHAPTER 6 Mathematical Procedures 168 CHAPTER 6 Mathematical Procedures The multidisciplinary approach to medicine has incorporated a wide variety of mathematical procedures from the fields of physics,

### SMT 2014 Algebra Test Solutions February 15, 2014

1. Alice and Bob are painting a house. If Alice and Bob do not take any breaks, they will finish painting the house in 20 hours. If, however, Bob stops painting once the house is half-finished, then the

PYTHAGOREAN TRIPLES KEITH CONRAD 1. Introduction A Pythagorean triple is a triple of positive integers (a, b, c) where a + b = c. Examples include (3, 4, 5), (5, 1, 13), and (8, 15, 17). Below is an ancient

### Complex Numbers and the Complex Exponential

Complex Numbers and the Complex Exponential Frank R. Kschischang The Edward S. Rogers Sr. Department of Electrical and Computer Engineering University of Toronto September 5, 2005 Numbers and Equations

### NONASSOCIATIVE ALGEBRAS SATISFYING IDENTITIES OF DEGREE THREE(i)

NONASSOCIATIVE ALGEBRAS SATISFYING IDENTITIES OF DEGREE THREE(i) BY FRANK ROSIER AND J. MARSHALL OSBORN A number of different authors have studied classes of nonassociative algebras or rings satisfying

### Matrices: 2.3 The Inverse of Matrices

September 4 Goals Define inverse of a matrix. Point out that not every matrix A has an inverse. Discuss uniqueness of inverse of a matrix A. Discuss methods of computing inverses, particularly by row operations.

### CM2202: Scientific Computing and Multimedia Applications General Maths: 2. Algebra - Factorisation

CM2202: Scientific Computing and Multimedia Applications General Maths: 2. Algebra - Factorisation Prof. David Marshall School of Computer Science & Informatics Factorisation Factorisation is a way of

### Math 209 Solutions to Assignment 7. x + 2y. 1 x + 2y i + 2. f x = cos(y/z)), f y = x z sin(y/z), f z = xy z 2 sin(y/z).

Math 29 Solutions to Assignment 7. Find the gradient vector field of the following functions: a fx, y lnx + 2y; b fx, y, z x cosy/z. Solution. a f x x + 2y, f 2 y x + 2y. Thus, the gradient vector field

### (1.) The air speed of an airplane is 380 km/hr at a bearing of. Find the ground speed of the airplane as well as its

(1.) The air speed of an airplane is 380 km/hr at a bearing of 78 o. The speed of the wind is 20 km/hr heading due south. Find the ground speed of the airplane as well as its direction. Here is the diagram:

### You know from calculus that functions play a fundamental role in mathematics.

CHPTER 12 Functions You know from calculus that functions play a fundamental role in mathematics. You likely view a function as a kind of formula that describes a relationship between two (or more) quantities.

### Geometry in a Nutshell

Geometry in a Nutshell Henry Liu, 26 November 2007 This short handout is a list of some of the very basic ideas and results in pure geometry. Draw your own diagrams with a pencil, ruler and compass where

### MATH2001 Development of Mathematical Ideas History of Solving Polynomial Equations

MATH2001 Development of Mathematical Ideas History of Solving Polynomial Equations 19/24 April 2012 Lagrange s work on general solution formulae for polynomial equations The formulae for the cubic and

### Conic Construction of a Triangle from the Feet of Its Angle Bisectors

Journal for Geometry and Graphics Volume 12 (2008), No. 2, 171 182. onic onstruction of a Triangle from the Feet of Its ngle isectors Paul Yiu Department of Mathematical Sciences, Florida tlantic University

### Pythagorean theorems in the alpha plane

MATHEMATICAL COMMUNICATIONS 211 Math. Commun., Vol. 14, No. 2, pp. 211-221 (2009) Pythagorean theorems in the alpha plane Harun Baris Çolakoğlu 1,, Özcan Gelişgen1 and Rüstem Kaya 1 1 Department of Mathematics

### Ira Fine and Thomas J. Osler Department of Mathematics Rowan University Glassboro, NJ 08028. osler@rowan.edu. 1. Introduction

1 08/0/00 THE REMARKABLE INCIRCLE OF A TRIANGLE Ira Fine and Thomas J. Osler Department of Mathematics Rowan University Glassboro, NJ 0808 osler@rowan.edu 1. Introduction The incircle of a triangle is

### discuss how to describe points, lines and planes in 3 space.

Chapter 2 3 Space: lines and planes In this chapter we discuss how to describe points, lines and planes in 3 space. introduce the language of vectors. discuss various matters concerning the relative position

### MOP 2007 Black Group Integer Polynomials Yufei Zhao. Integer Polynomials. June 29, 2007 Yufei Zhao yufeiz@mit.edu

Integer Polynomials June 9, 007 Yufei Zhao yufeiz@mit.edu We will use Z[x] to denote the ring of polynomials with integer coefficients. We begin by summarizing some of the common approaches used in dealing

### Find all of the real numbers x that satisfy the algebraic equation:

Appendix C: Factoring Algebraic Expressions Factoring algebraic equations is the reverse of expanding algebraic expressions discussed in Appendix B. Factoring algebraic equations can be a great help when