# NONASSOCIATIVE ALGEBRAS SATISFYING IDENTITIES OF DEGREE THREE(i)

Save this PDF as:

Size: px
Start display at page:

## Transcription

1 NONASSOCIATIVE ALGEBRAS SATISFYING IDENTITIES OF DEGREE THREE(i) BY FRANK ROSIER AND J. MARSHALL OSBORN A number of different authors have studied classes of nonassociative algebras or rings satisfying a multilinear identity in three variables (see Bibliography). In this paper we are interested in the structure of those rings which satisfy a multilinear identity in three variables, but which do not fall into certain of the well-known classes of such rings (the latter turn out to be the exceptional cases of the general theory). In order to rule out certain less interesting cases, we shall, however, find it convenient to restrict our attention to those identities which are satisfied by at least one algebra with unity element. We show in 1, that, up to quasi-equivalence, every such identity either implies one of a certain one-parameter class of identities, or implies one of seven other identities, all but one of which have been treated in the literature. Rings satisfying x2x = xx2 and an identity from our one-parameter class are treated in another paper appearing in this issue [6]. Some remarks on the remaining seven identities are to be found in Let / be a homogeneous multilinear identity in the three variables x, y, z over the field F. Then / is given by (1) p\xy z + ß2yz x + ß3zx y ß4yx z ß5zy x ß6xz y + 7iX yz + y2y zx + y3z xy y4y xz ysz yx y6x.- zy= 0 for some ßx,---,ß6, yx,, y6 e F. Defining (x, y, z) = xyz x-yz and [x, y] = xy yx, we first prove Theorem 1. Let A be a (possibly infinite-dimensional) algebra with unity element 1 satisfying an identity of the form (I). Then A satisfies either (2) (x, y, z) + (y, z, x) + (z, x, y) - (y, x, z) - (x, z, y) - (z, y, x) = 0 or (3) aj(y, x, x) + a,(x, y, x) + a3(x, x, y) + a4[[y, x], x] = 0 for some choice of the a 's. Presented to the Society, August 29, 1962; received by the editors July 30, 1962 and, in revised form, March 15, (i) This research was supported by National Science Foundation Grant G and by the Wisconsin Alumni Research Foundation. 484

2 1964] NONASSOCIATIVE ALGEBRAS 485 Since a commutative algebra satisfies (2), we may restrict ourselves to the noncommutative case in the proof of this theorem. Let us assume first that the identity (1) satisfied by A vanishes identically when any two of the variables are set equal. Then setting y = x in (1) gives the relations ßy = ß4, ß2 = ß6, ß3 = ß5, yi =?4, J2 = 7&, y i = y s- Similarly, setting z = x in (1) gives ßy = ßs, ß2 =ß4, ßi ßt>?i =?s>?2 =?4>?3 =?6> and au" these relations together imply that the >S;*s are all equal and that the y,'s are all equal. Replacing z by the unity element of A in (1) now gives ßi(xy yx) + yt(xy yx) = 0, which shows that ßy + yt = 0, since A is not commutative. Thus (1) reduces to (2) in this case. On the other hand, if (1) does not vanish when z is set equal to x, then A satisfies an identity of the form (4) <5jyx x + ô2xy x + ô3x2y + 4yx2 + ö5x yx + ö6x xy = 0. Replacing x by x + 1 in (4) and subtracting (4) yields 2èyyx + ôyy + <52(xy + yx) + S2y + 2ô3xy + ô3y + 2<54yx + 4y + 5(xy + yx) + S5y + 2<56xy + ô6y = 0, which leads to the relations 2öt + <52 + 2<54 + ô5 = 0 and (52 + 2ô3 + ôs + 2<56 = 0 using the fact that A is not commutative. Writing (4) in the form 4(yx x yx2) + ( 2 + öy + 4)(xy x x yx) + 3(x2y x xy) + (<54 + <5i)(yx x x- yx xy x + x xy) + (2<5X + t>2 + 2<54 + <55) x yx x xy J + ( 2 + 2ô3 + <55 + 2á6)x xy = 0 and using the relations just derived gives (3) for an appropriate choice of the a 's in terms of the 's. Next, let us consider what happens to (3) when A is changed by quasi-equivalence. We shall say that A0 is quasi-equivalent to A if A0 has the same set of elements as A under the same operation of addition and if the operation of multiplication "» " in Aa is related to multiplication in A by (5) xy = A(x y)+p(y x), where X and p are fixed scalars such that X + p = 1 and X^ p[2]. Lemma 1. If A satisfies (3) and if A0 is related to A by (5), then A0 satisfies (6) iayx - a3p)(y,x,x) + a2(a - p)(x,y,x) + (a3a - a4p)(x,x,y) + [(«3 - «lw + «4Í - 0)2][L>,*],X] = 0.

3 486 FRANK ROSIER AND J. M. OSBORN [March Hence, at a3 is invariant under this quasi-equivalence, at + a2 + a3 and ai + a3-2a2 are multiplied by (X p), and a, - a3 + 4a4 is multiplied by (X-p)2. We have put zero superscripts on the associators and commutators in (6) to indicate that they are in Aa rather than in A. To derive (6) we compute that (x,y,z) = xyz-x- yz = X(x y)- z + p(y x)-z - Xx-(y z) - px-(z y) = A2[(x y)» z] + Xp[z o (x y)] + Xp[(y o x) z] + p2[z (y x)] - A2[x (y z)] - Xp[(y z) x'] - Xp[x (z0y)~\ - /t2[(z y) x] = l2(x,y,z) -/i2(z,y,x) + A/i[zo(xoy)+(yox) z-xo(zoy)-(yo2)ox]. The three special cases of this equation that we need are : (y, x, x) = X2(y, x, x) - p2(x, x, y) + Xp[x (y x) + (x o y) o x -y (xox)-(xox)!y] = (X2 + Xp)(y,x,x) - (p2 + Xp)(x,x,y) + Xp[xo(yoX) (x y) x - (y x) x x (x y)] = X(y,x,x) -p(x,x,y) -Xp[[y,x']0,x']0, (x,y,x) = X\x,y,xy - p2(x,y,xy = (X- p)(x,y,x), (x,x,y)= X2(x,x,yy-p2(y,x,x) + Xp[y (x x) + (xox)oy x (y x) (x»y)»x] = (A2 +Au)(x,x,y) - (p2 + Xp)(y,x,x) + Xp[(y x) x + x (x y) x (y x) (x y) x] = X(x,x,y) -p(y,x,x) + A/t[[y,x],x]. We also have [x,y] = xy -yx = Ax y + pyox - XyoX - pxoy=(x-p)[x,y] which may be iterated to give [[y,x],x] = (A- ^)2[[y,x],x]. Substituting these expressions into (3) immediately yields (6). The second half of Lemma 1 may be easily verified from (6). Lemma 2. Every algebra A satisfying (3) with ai,a2,a3 not all equal satisfies an identity of the form (3) with at + a2 + a3 = 0. For characteristic not 3, A satisfies an identity of the form (3) with ax + a2 + a3 ^ 0 if and only if A satisfies (x,x,x) = 0. If A satisfies (3) with at + a2 + a3 # 0 and ax ^ a3 and if F has characteristic not 2 or 3, then A satisfies x3x= x2x2 = xx3. If, furthermore, at + a3-2a2? 0 and if F has characteristic not 5, then A is power-associative.

4 1964] NONASSOCIATIVE ALGEBRAS 487 If A satisfies (3) with at + a2 + a3 # 0, we may set y = x in (3) to get (ax + a2 + a3)(x,x,x) = 0, or (x,x,x) = 0. Conversely, (x,x,x) = 0 may be partly linearized to get (7) iy, x, x) + (x,y,x) + (x,x, y) = 0, which is an identity of the form (3) with at + a2 + a3 # 0 for characteristic not 3. If A satisfies (3) with a!,a2,a3 not all equal, either a! + a2 + a3 = 0 already, or A satisfies (7) and we may subtract an appropriate multiple of (7) from (3) to achieve at +a2 + a3 = 0. If A satisfies (3) with al + a2 + a3 ^ 0 and at ^ a3, then A satisfies (x, x, x) = 0 as well as (3) with ax + a2 + a3 = 0. Setting y = x2 in (7) gives x3x - x2x2 + x3x - xx3 + x2x2 xx3 = 0, or x3x = xx3. Then setting y = x2 in (3) with at + a2 + a3 = 0 gives at(x3x - x2x2) 4- a3(x2x2 - xx3) = 0, or x3x = x2x2, since a, # a3. If the field has characteristic zero, the powerassociativity of A follows from this. Otherwise, we only know that A +is powerassociative [1]. Letting x'denote the ith power of x in A+, we shall prove that x"_,x' = x" for each n and i < n using induction on n. Replacing x and y in (3) by x' and x"-2' respectively gives a^x'-v- x"-2ix2') + a2(x""'x'- x'x"-') + aj(x2x"-2,-x'x"_< ) = 0, where x"_2,x' = x'x"-2^ x"-' and x'x' = x2' by the inductive hypothesis. In the case of (7), this simplifies to (8) 2[x"-i,xi] = [x"-2i,x2i], and with the assumption a! 4- a2 + a3 = 0, it simplifies to (9) - a3xb"'x'' + a^'x""'- aixn~2ix2i + a3x2ix""2'= 0. Defining z = [xb_i,x'], we get xn~'xl = x'x""' + z and x2ix""2i = x""2ix2i - 2z from (8), and substituting these into (9) gives - ajx'x""' - a3z + a^'x"-' -aixn~2ix2' + a3x""2ix2i- 2a3z = 0, or (a1-a3)(x,x""1-x""2'x2,)=3a3z. But putting x'x"_l = x"~x'-z and x'~2ix" = x2ix""2i + 2z in here gives (10) (ax - «3)(x""'x'- x2ix""2i) = 3a,z, and adding these two equations yields K - a3)(x'x""' + x"-ix' - x"-2ix2i - x2ixb_2i) = 3(ax 4- a3)z. Since A+ is power-associative, the left side of this vanishes, leading to (at 4- a3)z = 0. Now the hypothesis ax + a3 2a2 0 remains valid if any multiple of (7) is subtracted from (3), and hence is still true when we assume ay +a2 +a3 = 0, in

5 488 FRANK ROSIER AND J. M. OSBORN [March which case it becomes at + a3 ^ 0. But, under this hypothesis, (at + a3)z = 0 leads to z = [x""',x!] = 0. Thus, x"~'x' = x'x"~'= i(x""'x' + xix"~i) = x", as was to be shown. We are now in a position to prove Theorem 2. Let A be an algebra of characteristic not two satisfying an identity of the form (3) not implied by (7). If ax # a3 and a, a3 + 4a4 # 0 then either A or a quadratic scalar extension of A is quasi-equivalent to an algebra satisfying (11) a(y, x, x) - (a + 1) (x, y, x) + (x, x, y) = 0 for some scalar a?= 1. Otherwise, A is quasi-equivalent one of the following identities: to an algebra satisfying (y,x,x) = (x,x,y) +-[[y,x],x], (y,x,x) = (x, y,x)+-[[y,x],x], [[y, x], x] = 0, iy, x, x) + (x, x, y) = 2(x, y, x), iy, x, x) + (x, x, y) = 2(x, y, x) - [[y, x], x]. Corollary. Let A be an algebra satisfying an identity which is a linear combination of associators, but which is not implied by (x,x,x) = 0. 77zew A satisfies (y, x,x) = (x, y, x), (2), or (11) for some scalar a ipossibly equal to 1). If A is an algebra satisfying the hypothesis of this theorem, it follows from Lemma 2 that we may assume that ax + a2 + a3 = 0. Let us investigate first under what conditions the last term of (3) may be made to vanish under quasiequivalence. Thus we wish to find X such that 0 = (a3 ay)xp + a4(2 p)2 = (a3 - ay)xil - X) + a4(2a - l)2 = (at - a3 + 4a4) (A2 - X) + a4. If at = a3 and <Xy a3 + 4a4 # 0, there exists a permissible value of X satisfying this condition after possibly performing an appropriate quadratic extension of the field. Then, in this case, A or a quadratic scalar extension of A is quasiequivalent to an algebra satisfying (3) with a4 = 0, a! ^ a3, and at +a2 +a3 = 0. Note that the latter two conditions remain valid under quasi-equivalence by Lemma 1. If aj = 0, this leads to (y, x, x)=(x,y, x), and^4 is anti-isomorphic(and thus quasi-equivalent) to an algebra satisfying (11) with a = 0. Otherwise we may divide (3) by a3 and obtain (11) with a = a! /a3. In case at ^ a3 and at a3 + 4a4 = 0, we have a3 = aj + 4a4 and a2 = ax a3 = 2ax 4a4. If 2a + 4a4 = 0, (3) is iy, x, x) = (x, x, y) + [[y, x], x]. Otherwise, we may choose X so that the coefficient of the third term vanishes, or so that (ax + 4a4)A a1p=i2a1 +4a4)yl at = 0. This leads to (y, x, x) = (x, y, x) + i[[y, x], x], since the conditions oí y # a3, at a^-h 4a4 = 0, aj + a2 + a3 = 0 are preserved under quasiequivalence.

6 1964] NONASSOCIATIVE ALGEBRAS 489 There remains the case at = a3. From aj + a2 + a3 = 0 we get a2 = 2at. If either ax or a4 is zero, we get [[y, x], x] = 0 or (y, x, x) + (x, x, y) = 2(x, y, x), respectively. Otherwise, we observe from (6) that, when ax = a3, each of the first three coefficients in (3) is multiplied by (X p) under quasi-equivalence, while a4 is multiplied by (X p)2. Thus the ratio of a! to a4 may be taken to be any nonzero element of F. Although it will be most convenient in 2 to have this ratio be 3, we have selected at / a4 = 1 for this theorem to avoid having to exclude characteristic 3. This gives (y, x, x) + (x, x, y) = 2(x, y, x) [[y, x],x]. In essence, the results of this section showthatthe study of multilinear identities in three variables may be reduced to the study of the infinite class (11) and seven exceptions, namely, (7), (2), and the five identities listed at the end of Theorem 2. None of these identities alone seems to be strong enough to imply much structure without further assumptions. However, in [6] it is shown that any identity of type (11) implies a good deal when (x, x, x) = 0 is also assumed. This is already known for the case a \ (a = 2), when (11) and (x, x, x) = 0 together are equivalent to the left (right) alternative law. 2. Since the structure of rings satisfying (x, x, x) = 0 and (11) is treated elsewhere, we devote the rest of this paper to a brief discussion of the remaining casesmentioned in 1. We begin by proving a result on algebras which are quasi-equivalent to an algebra satisfying (11) only after a quadratic extension of the base field has been made. The proof of this result depends on the structure theory developed in [6]. Theorem 3. Let Abe a simple (possibly infinite-dimensional) algebra over a field F of characteristic not 2 or 3 satisfying (x, x, x) = 0 and (3) for a, # a3 and at + a3 2a2 # 0, and containing an idempotent e not the unity element. Furthermore, suppose that neither A nor a quadratic scalar extension of A is quasi-equivalent to an algebra that is right alternative. Then A is a noncommutative Jordan algebra. If A is already quasi-equivalent to an algebra satisfying (11) without having to make a quadratic scalar extension then the result follows from [6, Theorem 6] and the fact that flexibility and lordan admissibility are preserved under quasiequivalence. Otherwise let K be the quadratic extension field of F such that the scalar extension AK of A is quasi-equivalent to an algebra A' satisfying (11) for some a. Then we may regard AK as an algebra over F containing A and having twice the dimension of A. Hence any idempotent e of A is also an idempotent of AK and A', and the set L= A[oA'0i + A'10 + A'01 + A'01A'i0 is an ideal of A' by [6, Lemma 4]. But then the elements of L also form an ideal of AK, and Ln A will be an ideal of A. Since A was assumed simple, either L n A = 0 or L O A = A. Suppose first that L n A = 0. But considering the half-spaces with respect to e, we have A1/2 c (AK)1/2 = A'U2 = A'l0 + A'ol cl so that A = Ax + A0. Then

7 490 FRANK ROSIER AND J. M. OSBORN [March the hypothesis at + a3 2a2 ^ 0 for (3) is equivalent to the hypothesis a^-1 for (11) which allows us to conclude that (A'lt)2 c A'IX, (A'0o)2 <= A00, and A'íiA'oo = A'Q0A'11 = 0 from [6, Theorem 3]. It follows from this that A\ c Au Ale A0, and AXA0 = A0AX = 0, and hence that A = A{ A0. But if e is chosen not equal to the unity element of A, then A0 = 0 and A is not simple, contrary to hypothesis. Hence we must have LnA = A, or A a L. This inclusion relation leads immediately to AK c L, since L is closed under multiplication by elements of K and since A generates AK under multiplication by elements of K. Therefore A' = L and A'a = A[jA'n. We may now use [6, Theorem 4] and [6, Lemma 5] to conclude that A' is alternative, and hence flexible and Jordan admissible. But then AK and A are also flexible and Jordan admissible, since these properties are preserved under quasi-equivalence. Thus, A is a noncommutative Jordan algebra [12]. Next we take a brief look at the various identities mentioned in 1 which are not connected with the infinite class (11). We start by treating the two remaining cases of (3) where a, 7e a3. Lemma 5. A ring A of characteristic relatively prime to 2 and 3 satisfies (y,x,x) = (x,x,y) + i[[y,x],x] if and only if A+ is associative. After simplification this identity may be put in the form (yx)x + x(yx) + (xy)x + x(xy) = 2yx2 + 2x2y, which states that A + is alternative. But it is known that a commutative alternative ring of characteristic relatively prime to 3 is associative and the converse is trivial. Lemma 6. Let A be a ring of characteristic (x,x,x) = 0 and relatively prime to 2 satisfying (12) (y,x,x) = (x,y,x) + ^-[[y,x],x]. Then, for any idempotent e, A = Setting y = x2 in (12) gives xx3 = x2x2, and hence, A = At + A1/2 + A0 with respect to e. Suppose now that yea1/2. Then setting x = e in (12) and using (y, e, e) = ye e ye = ey e gives ey e = ey e e ye + i [ye-e e-ye eye + e-ey], or 0 = 7eye 5e- ye + ye-e + e-ey. Replacing ye by y ey yields 0 = 7ey e 5ey + 5e-ey + ye ey e + e ey = 6ey e - 5ey + 6e ey + y ey, or 6[ey ey e - e ey] = y. But then 6(ey) [/ - Re - Lj2 = y[i - Re - Le] = 0, implying that 0 = 6(ey) [/ - Re Le~] = y. Thus A is the additive direct sum of the subgroups At and A0, which are orthogonal by a well-known consequence of (x,x,x) = 0. To prove the lemma it therefore suffices to establish that AX and A0 are subrings. But putting x, ye Ae(l) and e in the linearization of (12) gives

8 1964] NONASSOCIATIVE ALGEBRAS 491 4(yx e yx) = 4(xy e xy + yx e yx) + (yx e xy e e- yx + e- xy), or yx[ - 3Re - 5Le + 8/] + xy[3re + Le - 4/] = 0. Setting yx = Sy + s0 and xy = ty + t0 gives 8s0-4i0 = 0, or 2s0 = i0. By symmetry, 2f0 = s0, giving s0 = í0 = 0or^42cz A. The proof that A\ c A0 is identical. Consider next the identity (13) (y,x,x) + (x,x,y) = 2(x,y,x) - [[y,x],x]. It will be recalled that in the proof of Theorem 2 we found that, up to quasiequivalence, the coefficient of the double commutator in this equation may be chosen as any nonzero element of the field. Let us here assume characteristic not 3 and choose this coefficient as 3. Then subtracting (7) from this modified identity gives 3[[y,x],x] = 3(x,y,x), or (yx)x + x(xy) = 2(xy)x. This identity has been studied in some detail in [9]. Thus, when (x,x,x) = 0 is assumed, (13) gives nothing new except for characteristic 3. Now linearizing (7) and adding to (2) gives ix,y,z) + iy,z,x) + iz,x,y) = 0, which has been employed in [5], [8], and [9]. And finally, [[y,x],x] = 0 has been used in [9] and [13]. Therefore with the exception of (12), the identities not of the form (11) are not basically new. Recalling that (7) and (11) with a = 1 give the flexible law and with a = \ and 2 give the left and right alternative laws we may combine the above remarks with [6, Theorem 6] to get Theorem 4. Let A be a simple algebra of characteristic not 2 or 3 satisfying (x,x,x) = 0 and a homogeneous identity in three variables not implied by (x,x,x) = 0. Furthermore, let A have a unity element 1 and an idempotent e # 1. Then one of the following statements holds: (i) A+ is associative. (ii) A satisfies one of the identities (x,y,x) = 0, [[y,x],x]=0, or (x, y, z) + iy, z, x) + (z, x, y) = 0. (hi) A is quasi-equivalent to an algebra satisfying (>x)x = x(xy) = 2(xy)x. (iv) Either A or a quadratic scalar extension of A is quasi-equivalent to an algebra satisfying either (y,x,x) = 0 or (y,x,x) = (x,x,y). Bibliography 1. A. A. Albert, Power-associative rings, Trans. Amer. Math. Soc. 64 (1948), , Almost alternative algebras, Portugaliae Math. 8 (1949), , Structure of right alternative algebras, Ann. of Math. (2) 59 (1954), Erwin Kleinfeld, Simple alternative rings, Ann. of Math. (2) 58 (1953), , Simple algebras of type (1,1) are associative, Canad. J. Math. 13 (1961), Erwin Kleinfeld, Frank Rosier, J. M. Osborn, and D. J. Rodabaugh, The structure of associator dependent rings, Trans. Amer. Math. Soc. 110 (1963), L. A. Kokoris, A class of almost alternative algebras, Canad. J. Math. 8 (1956), , On rings of(y,ô)-type, Proc. Amer. Math. Soc. 9 (1958),

9 492 FRANK ROSIER AND J. M. OSBORN 9. Frank Rosier, On a class of nonflexible algebras, Trans. Amer. Math. Soc. 102 (1962), Robert Oehmke, On flexible algebras, Ann. of Math. (2) 68 (1958), R. D. Schäfer, Alternative algebras over an arbitrary field, Bull. Amer. Math. Soc. 49 (1943), , Noncommutative Jordan algebras of characteristic 0, Proc. Amer. Math. Soc. 6 (1955), , On a class of quadratic algebras, Proc. Amer. Math. Soc. 13 (1962), University of Wisconsin, Madison, Wisconsin

### RINGS WITH A POLYNOMIAL IDENTITY

RINGS WITH A POLYNOMIAL IDENTITY IRVING KAPLANSKY 1. Introduction. In connection with his investigation of projective planes, M. Hall [2, Theorem 6.2]* proved the following theorem: a division ring D in

### Associativity condition for some alternative algebras of degree three

Associativity condition for some alternative algebras of degree three Mirela Stefanescu and Cristina Flaut Abstract In this paper we find an associativity condition for a class of alternative algebras

### Adding vectors We can do arithmetic with vectors. We ll start with vector addition and related operations. Suppose you have two vectors

1 Chapter 13. VECTORS IN THREE DIMENSIONAL SPACE Let s begin with some names and notation for things: R is the set (collection) of real numbers. We write x R to mean that x is a real number. A real number

### ON THE EMBEDDING OF BIRKHOFF-WITT RINGS IN QUOTIENT FIELDS

ON THE EMBEDDING OF BIRKHOFF-WITT RINGS IN QUOTIENT FIELDS DOV TAMARI 1. Introduction and general idea. In this note a natural problem arising in connection with so-called Birkhoff-Witt algebras of Lie

### Algebraic expressions are a combination of numbers and variables. Here are examples of some basic algebraic expressions.

Page 1 of 13 Review of Linear Expressions and Equations Skills involving linear equations can be divided into the following groups: Simplifying algebraic expressions. Linear expressions. Solving linear

### MATH10212 Linear Algebra. Systems of Linear Equations. Definition. An n-dimensional vector is a row or a column of n numbers (or letters): a 1.

MATH10212 Linear Algebra Textbook: D. Poole, Linear Algebra: A Modern Introduction. Thompson, 2006. ISBN 0-534-40596-7. Systems of Linear Equations Definition. An n-dimensional vector is a row or a column

### (a) Write each of p and q as a polynomial in x with coefficients in Z[y, z]. deg(p) = 7 deg(q) = 9

Homework #01, due 1/20/10 = 9.1.2, 9.1.4, 9.1.6, 9.1.8, 9.2.3 Additional problems for study: 9.1.1, 9.1.3, 9.1.5, 9.1.13, 9.2.1, 9.2.2, 9.2.4, 9.2.5, 9.2.6, 9.3.2, 9.3.3 9.1.1 (This problem was not assigned

### FACTORING POLYNOMIALS IN THE RING OF FORMAL POWER SERIES OVER Z

FACTORING POLYNOMIALS IN THE RING OF FORMAL POWER SERIES OVER Z DANIEL BIRMAJER, JUAN B GIL, AND MICHAEL WEINER Abstract We consider polynomials with integer coefficients and discuss their factorization

### How to get the Simplified Expanded Form of a polynomial, II

How to get the Simplified Expanded Form of a polynomial, II Nikos Apostolakis September 29, 2010 Recall. Recall that the distributive law states that multiplication distributes over addition and subtraction:

### THREE DIMENSIONAL GEOMETRY

Chapter 8 THREE DIMENSIONAL GEOMETRY 8.1 Introduction In this chapter we present a vector algebra approach to three dimensional geometry. The aim is to present standard properties of lines and planes,

### 15. Symmetric polynomials

15. Symmetric polynomials 15.1 The theorem 15.2 First examples 15.3 A variant: discriminants 1. The theorem Let S n be the group of permutations of {1,, n}, also called the symmetric group on n things.

### F. ABTAHI and M. ZARRIN. (Communicated by J. Goldstein)

Journal of Algerian Mathematical Society Vol. 1, pp. 1 6 1 CONCERNING THE l p -CONJECTURE FOR DISCRETE SEMIGROUPS F. ABTAHI and M. ZARRIN (Communicated by J. Goldstein) Abstract. For 2 < p

### Factorization in Polynomial Rings

Factorization in Polynomial Rings These notes are a summary of some of the important points on divisibility in polynomial rings from 17 and 18 of Gallian s Contemporary Abstract Algebra. Most of the important

### PUTNAM TRAINING POLYNOMIALS. Exercises 1. Find a polynomial with integral coefficients whose zeros include 2 + 5.

PUTNAM TRAINING POLYNOMIALS (Last updated: November 17, 2015) Remark. This is a list of exercises on polynomials. Miguel A. Lerma Exercises 1. Find a polynomial with integral coefficients whose zeros include

### Quotient Rings and Field Extensions

Chapter 5 Quotient Rings and Field Extensions In this chapter we describe a method for producing field extension of a given field. If F is a field, then a field extension is a field K that contains F.

### 9 Multiplication of Vectors: The Scalar or Dot Product

Arkansas Tech University MATH 934: Calculus III Dr. Marcel B Finan 9 Multiplication of Vectors: The Scalar or Dot Product Up to this point we have defined what vectors are and discussed basic notation

### 1.5. Factorisation. Introduction. Prerequisites. Learning Outcomes. Learning Style

Factorisation 1.5 Introduction In Block 4 we showed the way in which brackets were removed from algebraic expressions. Factorisation, which can be considered as the reverse of this process, is dealt with

### UNIT 2 MATRICES - I 2.0 INTRODUCTION. Structure

UNIT 2 MATRICES - I Matrices - I Structure 2.0 Introduction 2.1 Objectives 2.2 Matrices 2.3 Operation on Matrices 2.4 Invertible Matrices 2.5 Systems of Linear Equations 2.6 Answers to Check Your Progress

### FOUNDATIONS OF ALGEBRAIC GEOMETRY CLASS 22

FOUNDATIONS OF ALGEBRAIC GEOMETRY CLASS 22 RAVI VAKIL CONTENTS 1. Discrete valuation rings: Dimension 1 Noetherian regular local rings 1 Last day, we discussed the Zariski tangent space, and saw that it

### Chapter 4, Arithmetic in F [x] Polynomial arithmetic and the division algorithm.

Chapter 4, Arithmetic in F [x] Polynomial arithmetic and the division algorithm. We begin by defining the ring of polynomials with coefficients in a ring R. After some preliminary results, we specialize

### Vectors, Gradient, Divergence and Curl.

Vectors, Gradient, Divergence and Curl. 1 Introduction A vector is determined by its length and direction. They are usually denoted with letters with arrows on the top a or in bold letter a. We will use

### COMMUTATIVE RINGS. Definition: A domain is a commutative ring R that satisfies the cancellation law for multiplication:

COMMUTATIVE RINGS Definition: A commutative ring R is a set with two operations, addition and multiplication, such that: (i) R is an abelian group under addition; (ii) ab = ba for all a, b R (commutative

### Introduction to Algebraic Geometry. Bézout s Theorem and Inflection Points

Introduction to Algebraic Geometry Bézout s Theorem and Inflection Points 1. The resultant. Let K be a field. Then the polynomial ring K[x] is a unique factorisation domain (UFD). Another example of a

### minimal polyonomial Example

Minimal Polynomials Definition Let α be an element in GF(p e ). We call the monic polynomial of smallest degree which has coefficients in GF(p) and α as a root, the minimal polyonomial of α. Example: We

### SECOND DERIVATIVE TEST FOR CONSTRAINED EXTREMA

SECOND DERIVATIVE TEST FOR CONSTRAINED EXTREMA This handout presents the second derivative test for a local extrema of a Lagrange multiplier problem. The Section 1 presents a geometric motivation for the

### Solutions A ring A is called a Boolean ring if x 2 = x for all x A.

1. A ring A is called a Boolean ring if x 2 = x for all x A. (a) Let E be a set and 2 E its power set. Show that a Boolean ring structure is defined on 2 E by setting AB = A B, and A + B = (A B c ) (B

### ZERO-DIVISOR GRAPHS OF POLYNOMIALS AND POWER SERIES OVER COMMUTATIVE RINGS

ZERO-DIVISOR GRAPHS OF POLYNOMIALS AND POWER SERIES OVER COMMUTATIVE RINGS M. AXTELL, J. COYKENDALL, AND J. STICKLES Abstract. We recall several results of zero divisor graphs of commutative rings. We

### Rotation Matrices and Homogeneous Transformations

Rotation Matrices and Homogeneous Transformations A coordinate frame in an n-dimensional space is defined by n mutually orthogonal unit vectors. In particular, for a two-dimensional (2D) space, i.e., n

### it is easy to see that α = a

21. Polynomial rings Let us now turn out attention to determining the prime elements of a polynomial ring, where the coefficient ring is a field. We already know that such a polynomial ring is a UF. Therefore

### Gröbner Bases and their Applications

Gröbner Bases and their Applications Kaitlyn Moran July 30, 2008 1 Introduction We know from the Hilbert Basis Theorem that any ideal in a polynomial ring over a field is finitely generated [3]. However,

Factoring the trinomial ax 2 + bx + c when a = 1 A trinomial in the form x 2 + bx + c can be factored to equal (x + m)(x + n) when the product of m x n equals c and the sum of m + n equals b. (Note: the

### ZERO-DIVISOR AND IDEAL-DIVISOR GRAPHS OF COMMUTATIVE RINGS

ZERO-DIVISOR AND IDEAL-DIVISOR GRAPHS OF COMMUTATIVE RINGS T. BRAND, M. JAMESON, M. MCGOWAN, AND J.D. MCKEEL Abstract. For a commutative ring R, we can form the zero-divisor graph Γ(R) or the ideal-divisor

### H/wk 13, Solutions to selected problems

H/wk 13, Solutions to selected problems Ch. 4.1, Problem 5 (a) Find the number of roots of x x in Z 4, Z Z, any integral domain, Z 6. (b) Find a commutative ring in which x x has infinitely many roots.

### Notes from February 11

Notes from February 11 Math 130 Course web site: www.courses.fas.harvard.edu/5811 Two lemmas Before proving the theorem which was stated at the end of class on February 8, we begin with two lemmas. The

### 26 Ideals and Quotient Rings

Arkansas Tech University MATH 4033: Elementary Modern Algebra Dr. Marcel B. Finan 26 Ideals and Quotient Rings In this section we develop some theory of rings that parallels the theory of groups discussed

### STRUCTURE THEORY OF RINGS AND ALGEBRAS

STRUCTURE THEORY OF RINGS AND ALGEBRAS POWER-ASSOCIATIVE ALGEBRAS A. A. ALBERT An algebra is a mathematical system SI consisting of an n-dimensional vector space over a field g and a product xy which is

### Chapter 13: Basic ring theory

Chapter 3: Basic ring theory Matthew Macauley Department of Mathematical Sciences Clemson University http://www.math.clemson.edu/~macaule/ Math 42, Spring 24 M. Macauley (Clemson) Chapter 3: Basic ring

### a 1 x + a 0 =0. (3) ax 2 + bx + c =0. (4)

ROOTS OF POLYNOMIAL EQUATIONS In this unit we discuss polynomial equations. A polynomial in x of degree n, where n 0 is an integer, is an expression of the form P n (x) =a n x n + a n 1 x n 1 + + a 1 x

### Recall that the gradient of a differentiable scalar field ϕ on an open set D in R n is given by the formula:

Chapter 7 Div, grad, and curl 7.1 The operator and the gradient: Recall that the gradient of a differentiable scalar field ϕ on an open set D in R n is given by the formula: ( ϕ ϕ =, ϕ,..., ϕ. (7.1 x 1

### α = u v. In other words, Orthogonal Projection

Orthogonal Projection Given any nonzero vector v, it is possible to decompose an arbitrary vector u into a component that points in the direction of v and one that points in a direction orthogonal to v

### The Dirichlet Unit Theorem

Chapter 6 The Dirichlet Unit Theorem As usual, we will be working in the ring B of algebraic integers of a number field L. Two factorizations of an element of B are regarded as essentially the same if

### Recitation 4. 24xy for 0 < x < 1, 0 < y < 1, x + y < 1 0 elsewhere

Recitation. Exercise 3.5: If the joint probability density of X and Y is given by xy for < x

### BEGINNING ALGEBRA ACKNOWLEDMENTS

BEGINNING ALGEBRA The Nursing Department of Labouré College requested the Department of Academic Planning and Support Services to help with mathematics preparatory materials for its Bachelor of Science

### 1 Homework 1. [p 0 q i+j +... + p i 1 q j+1 ] + [p i q j ] + [p i+1 q j 1 +... + p i+j q 0 ]

1 Homework 1 (1) Prove the ideal (3,x) is a maximal ideal in Z[x]. SOLUTION: Suppose we expand this ideal by including another generator polynomial, P / (3, x). Write P = n + x Q with n an integer not

### a 11 x 1 + a 12 x 2 + + a 1n x n = b 1 a 21 x 1 + a 22 x 2 + + a 2n x n = b 2.

Chapter 1 LINEAR EQUATIONS 1.1 Introduction to linear equations A linear equation in n unknowns x 1, x,, x n is an equation of the form a 1 x 1 + a x + + a n x n = b, where a 1, a,..., a n, b are given

### 3 1. Note that all cubes solve it; therefore, there are no more

Math 13 Problem set 5 Artin 11.4.7 Factor the following polynomials into irreducible factors in Q[x]: (a) x 3 3x (b) x 3 3x + (c) x 9 6x 6 + 9x 3 3 Solution: The first two polynomials are cubics, so if

### I. GROUPS: BASIC DEFINITIONS AND EXAMPLES

I GROUPS: BASIC DEFINITIONS AND EXAMPLES Definition 1: An operation on a set G is a function : G G G Definition 2: A group is a set G which is equipped with an operation and a special element e G, called

### Recall that two vectors in are perpendicular or orthogonal provided that their dot

Orthogonal Complements and Projections Recall that two vectors in are perpendicular or orthogonal provided that their dot product vanishes That is, if and only if Example 1 The vectors in are orthogonal

### LINEAR ALGEBRA W W L CHEN

LINEAR ALGEBRA W W L CHEN c W W L Chen, 1997, 2008 This chapter is available free to all individuals, on understanding that it is not to be used for financial gain, and may be downloaded and/or photocopied,

### ON GENERALIZED RELATIVE COMMUTATIVITY DEGREE OF A FINITE GROUP. A. K. Das and R. K. Nath

International Electronic Journal of Algebra Volume 7 (2010) 140-151 ON GENERALIZED RELATIVE COMMUTATIVITY DEGREE OF A FINITE GROUP A. K. Das and R. K. Nath Received: 12 October 2009; Revised: 15 December

### The Scalar Algebra of Means, Covariances, and Correlations

3 The Scalar Algebra of Means, Covariances, and Correlations In this chapter, we review the definitions of some key statistical concepts: means, covariances, and correlations. We show how the means, variances,

### Factoring, Solving. Equations, and Problem Solving REVISED PAGES

05-W4801-AM1.qxd 8/19/08 8:45 PM Page 241 Factoring, Solving Equations, and Problem Solving 5 5.1 Factoring by Using the Distributive Property 5.2 Factoring the Difference of Two Squares 5.3 Factoring

### DETERMINANTS. b 2. x 2

DETERMINANTS 1 Systems of two equations in two unknowns A system of two equations in two unknowns has the form a 11 x 1 + a 12 x 2 = b 1 a 21 x 1 + a 22 x 2 = b 2 This can be written more concisely in

### Simple trigonometric substitutions with broad results

Simple trigonometric substitutions with broad results Vardan Verdiyan, Daniel Campos Salas Often, the key to solve some intricate algebraic inequality is to simplify it by employing a trigonometric substitution.

### Operations on ideals in polynomial rings

U.U.D.M. Project Report 2014:5 Operations on ideals in polynomial rings Christofer Östlin Examensarbete i matematik, 15 hp Handledare och examinator: Veronica Crispin Februari 2014 Department of Mathematics

### 3. Let A and B be two n n orthogonal matrices. Then prove that AB and BA are both orthogonal matrices. Prove a similar result for unitary matrices.

Exercise 1 1. Let A be an n n orthogonal matrix. Then prove that (a) the rows of A form an orthonormal basis of R n. (b) the columns of A form an orthonormal basis of R n. (c) for any two vectors x,y R

### Mth 95 Module 2 Spring 2014

Mth 95 Module Spring 014 Section 5.3 Polynomials and Polynomial Functions Vocabulary of Polynomials A term is a number, a variable, or a product of numbers and variables raised to powers. Terms in an expression

### MATH PROBLEMS, WITH SOLUTIONS

MATH PROBLEMS, WITH SOLUTIONS OVIDIU MUNTEANU These are free online notes that I wrote to assist students that wish to test their math skills with some problems that go beyond the usual curriculum. These

### Appendix F: Mathematical Induction

Appendix F: Mathematical Induction Introduction In this appendix, you will study a form of mathematical proof called mathematical induction. To see the logical need for mathematical induction, take another

### Inverses and powers: Rules of Matrix Arithmetic

Contents 1 Inverses and powers: Rules of Matrix Arithmetic 1.1 What about division of matrices? 1.2 Properties of the Inverse of a Matrix 1.2.1 Theorem (Uniqueness of Inverse) 1.2.2 Inverse Test 1.2.3

### Math 215 HW #1 Solutions

Math 25 HW # Solutions. Problem.2.3. Describe the intersection of the three planes u+v+w+z = 6 and u+w+z = 4 and u + w = 2 (all in four-dimensional space). Is it a line or a point or an empty set? What

### 1.4 Variable Expressions

1.4 Variable Expressions Now that we can properly deal with all of our numbers and numbering systems, we need to turn our attention to actual algebra. Algebra consists of dealing with unknown values. These

### Continued Fractions and the Euclidean Algorithm

Continued Fractions and the Euclidean Algorithm Lecture notes prepared for MATH 326, Spring 997 Department of Mathematics and Statistics University at Albany William F Hammond Table of Contents Introduction

### Modern Algebra Lecture Notes: Rings and fields set 4 (Revision 2)

Modern Algebra Lecture Notes: Rings and fields set 4 (Revision 2) Kevin Broughan University of Waikato, Hamilton, New Zealand May 13, 2010 Remainder and Factor Theorem 15 Definition of factor If f (x)

### Negative Integer Exponents

7.7 Negative Integer Exponents 7.7 OBJECTIVES. Define the zero exponent 2. Use the definition of a negative exponent to simplify an expression 3. Use the properties of exponents to simplify expressions

### 2.3. Finding polynomial functions. An Introduction:

2.3. Finding polynomial functions. An Introduction: As is usually the case when learning a new concept in mathematics, the new concept is the reverse of the previous one. Remember how you first learned

### Section 1.4. Lines, Planes, and Hyperplanes. The Calculus of Functions of Several Variables

The Calculus of Functions of Several Variables Section 1.4 Lines, Planes, Hyperplanes In this section we will add to our basic geometric understing of R n by studying lines planes. If we do this carefully,

### LINEAR DIFFERENTIAL EQUATIONS IN DISTRIBUTIONS

LINEAR DIFFERENTIAL EQUATIONS IN DISTRIBUTIONS LESLIE D. GATES, JR.1 1. Introduction. The main result of this paper is an extension of the analysis of Laurent Schwartz [l ] concerning the primitive of

### Polynomial Invariants

Polynomial Invariants Dylan Wilson October 9, 2014 (1) Today we will be interested in the following Question 1.1. What are all the possible polynomials in two variables f(x, y) such that f(x, y) = f(y,

### 3 Factorisation into irreducibles

3 Factorisation into irreducibles Consider the factorisation of a non-zero, non-invertible integer n as a product of primes: n = p 1 p t. If you insist that primes should be positive then, since n could

### The Bivariate Normal Distribution

The Bivariate Normal Distribution This is Section 4.7 of the st edition (2002) of the book Introduction to Probability, by D. P. Bertsekas and J. N. Tsitsiklis. The material in this section was not included

### Linear and quadratic Taylor polynomials for functions of several variables.

ams/econ 11b supplementary notes ucsc Linear quadratic Taylor polynomials for functions of several variables. c 010, Yonatan Katznelson Finding the extreme (minimum or maximum) values of a function, is

### Introduction. Appendix D Mathematical Induction D1

Appendix D Mathematical Induction D D Mathematical Induction Use mathematical induction to prove a formula. Find a sum of powers of integers. Find a formula for a finite sum. Use finite differences to

### Jacobi s four squares identity Martin Klazar

Jacobi s four squares identity Martin Klazar (lecture on the 7-th PhD conference) Ostrava, September 10, 013 C. Jacobi [] in 189 proved that for any integer n 1, r (n) = #{(x 1, x, x 3, x ) Z ( i=1 x i

### The Prime Numbers. Definition. A prime number is a positive integer with exactly two positive divisors.

The Prime Numbers Before starting our study of primes, we record the following important lemma. Recall that integers a, b are said to be relatively prime if gcd(a, b) = 1. Lemma (Euclid s Lemma). If gcd(a,

### Linear Algebra I. Ronald van Luijk, 2012

Linear Algebra I Ronald van Luijk, 2012 With many parts from Linear Algebra I by Michael Stoll, 2007 Contents 1. Vector spaces 3 1.1. Examples 3 1.2. Fields 4 1.3. The field of complex numbers. 6 1.4.

### Lecture 14: Section 3.3

Lecture 14: Section 3.3 Shuanglin Shao October 23, 2013 Definition. Two nonzero vectors u and v in R n are said to be orthogonal (or perpendicular) if u v = 0. We will also agree that the zero vector in

### JUST THE MATHS UNIT NUMBER 1.8. ALGEBRA 8 (Polynomials) A.J.Hobson

JUST THE MATHS UNIT NUMBER 1.8 ALGEBRA 8 (Polynomials) by A.J.Hobson 1.8.1 The factor theorem 1.8.2 Application to quadratic and cubic expressions 1.8.3 Cubic equations 1.8.4 Long division of polynomials

### calculating the result modulo 3, as follows: p(0) = 0 3 + 0 + 1 = 1 0,

Homework #02, due 1/27/10 = 9.4.1, 9.4.2, 9.4.5, 9.4.6, 9.4.7. Additional problems recommended for study: (9.4.3), 9.4.4, 9.4.9, 9.4.11, 9.4.13, (9.4.14), 9.4.17 9.4.1 Determine whether the following polynomials

### Definitions 1. A factor of integer is an integer that will divide the given integer evenly (with no remainder).

Math 50, Chapter 8 (Page 1 of 20) 8.1 Common Factors Definitions 1. A factor of integer is an integer that will divide the given integer evenly (with no remainder). Find all the factors of a. 44 b. 32

### Mathematics Course 111: Algebra I Part IV: Vector Spaces

Mathematics Course 111: Algebra I Part IV: Vector Spaces D. R. Wilkins Academic Year 1996-7 9 Vector Spaces A vector space over some field K is an algebraic structure consisting of a set V on which are

### MATH 10034 Fundamental Mathematics IV

MATH 0034 Fundamental Mathematics IV http://www.math.kent.edu/ebooks/0034/funmath4.pdf Department of Mathematical Sciences Kent State University January 2, 2009 ii Contents To the Instructor v Polynomials.

### Integer roots of quadratic and cubic polynomials with integer coefficients

Integer roots of quadratic and cubic polynomials with integer coefficients Konstantine Zelator Mathematics, Computer Science and Statistics 212 Ben Franklin Hall Bloomsburg University 400 East Second Street

### IRREDUCIBLE OPERATOR SEMIGROUPS SUCH THAT AB AND BA ARE PROPORTIONAL. 1. Introduction

IRREDUCIBLE OPERATOR SEMIGROUPS SUCH THAT AB AND BA ARE PROPORTIONAL R. DRNOVŠEK, T. KOŠIR Dedicated to Prof. Heydar Radjavi on the occasion of his seventieth birthday. Abstract. Let S be an irreducible

### Matrix Algebra. Some Basic Matrix Laws. Before reading the text or the following notes glance at the following list of basic matrix algebra laws.

Matrix Algebra A. Doerr Before reading the text or the following notes glance at the following list of basic matrix algebra laws. Some Basic Matrix Laws Assume the orders of the matrices are such that

### Math 345-60 Abstract Algebra I Questions for Section 23: Factoring Polynomials over a Field

Math 345-60 Abstract Algebra I Questions for Section 23: Factoring Polynomials over a Field 1. Throughout this section, F is a field and F [x] is the ring of polynomials with coefficients in F. We will

### 5.1 Commutative rings; Integral Domains

5.1 J.A.Beachy 1 5.1 Commutative rings; Integral Domains from A Study Guide for Beginner s by J.A.Beachy, a supplement to Abstract Algebra by Beachy / Blair 23. Let R be a commutative ring. Prove the following

### Copyrighted Material. Chapter 1 DEGREE OF A CURVE

Chapter 1 DEGREE OF A CURVE Road Map The idea of degree is a fundamental concept, which will take us several chapters to explore in depth. We begin by explaining what an algebraic curve is, and offer two

### 4: SINGLE-PERIOD MARKET MODELS

4: SINGLE-PERIOD MARKET MODELS Ben Goldys and Marek Rutkowski School of Mathematics and Statistics University of Sydney Semester 2, 2015 B. Goldys and M. Rutkowski (USydney) Slides 4: Single-Period Market

### HOMEWORK 5 SOLUTIONS. n!f n (1) lim. ln x n! + xn x. 1 = G n 1 (x). (2) k + 1 n. (n 1)!

Math 7 Fall 205 HOMEWORK 5 SOLUTIONS Problem. 2008 B2 Let F 0 x = ln x. For n 0 and x > 0, let F n+ x = 0 F ntdt. Evaluate n!f n lim n ln n. By directly computing F n x for small n s, we obtain the following

### ON SOME CLASSES OF REGULAR ORDER SEMIGROUPS

Commun. Korean Math. Soc. 23 (2008), No. 1, pp. 29 40 ON SOME CLASSES OF REGULAR ORDER SEMIGROUPS Zhenlin Gao and Guijie Zhang Reprinted from the Communications of the Korean Mathematical Society Vol.

### 4.5 Linear Dependence and Linear Independence

4.5 Linear Dependence and Linear Independence 267 32. {v 1, v 2 }, where v 1, v 2 are collinear vectors in R 3. 33. Prove that if S and S are subsets of a vector space V such that S is a subset of S, then

### Linear Codes. In the V[n,q] setting, the terms word and vector are interchangeable.

Linear Codes Linear Codes In the V[n,q] setting, an important class of codes are the linear codes, these codes are the ones whose code words form a sub-vector space of V[n,q]. If the subspace of V[n,q]

### Row Ideals and Fibers of Morphisms

Michigan Math. J. 57 (2008) Row Ideals and Fibers of Morphisms David Eisenbud & Bernd Ulrich Affectionately dedicated to Mel Hochster, who has been an inspiration to us for many years, on the occasion

### CONTINUED FRACTIONS AND PELL S EQUATION. Contents 1. Continued Fractions 1 2. Solution to Pell s Equation 9 References 12

CONTINUED FRACTIONS AND PELL S EQUATION SEUNG HYUN YANG Abstract. In this REU paper, I will use some important characteristics of continued fractions to give the complete set of solutions to Pell s equation.

### Tim Kerins. Leaving Certificate Honours Maths - Algebra. Tim Kerins. the date

Leaving Certificate Honours Maths - Algebra the date Chapter 1 Algebra This is an important portion of the course. As well as generally accounting for 2 3 questions in examination it is the basis for many

### Reducibility of Second Order Differential Operators with Rational Coefficients

Reducibility of Second Order Differential Operators with Rational Coefficients Joseph Geisbauer University of Arkansas-Fort Smith Advisor: Dr. Jill Guerra May 10, 2007 1. INTRODUCTION In this paper we

### THE FUNDAMENTAL THEOREM OF ALGEBRA VIA PROPER MAPS

THE FUNDAMENTAL THEOREM OF ALGEBRA VIA PROPER MAPS KEITH CONRAD 1. Introduction The Fundamental Theorem of Algebra says every nonconstant polynomial with complex coefficients can be factored into linear