Two Research Schools become ONE

Size: px
Start display at page:

Download "Two Research Schools become ONE"

Transcription

1 Two Research Schools become ONE

2 Collaboration between Two Research Initiatives 2

3 3

4 4

5 People Anders Hast Hans Karlsson Michael Hanke Ingela Nyström Pavlin Mitev Dan Henningsson Elias Jarlebring 5

6 Mission To give basic training in fields where the use of e-science is emerging A meeting place for graduate students using e-science tools and techniques Identify areas where courses within e-science are needed 6

7 What is escience? System Experts Applications Application Experts HPC Storage Visualisation Big Data 7

8 A Typical Course 5 Credits 3 Weeks Study at home university Lectures & Computer Exercises Project Work & Examination 8

9 Benefits for Graduate Students Travel Grant 1 Generally No fees!! Networking Access to top Resources General Topics Special Topics Experienced Teachers 9

10 Some Courses Basic & Advanced Advanced Molecular Dynamics Visualisation Scientific Computing Topics in CFD PDC Summer School High Performance Computing Stochastic Methods 1

11 Scientific Visualisation, 5hp 11

12 Teachers Anders Hast Associate Professor Computer Graphics/ Visualisation Stefan Seipel professor Computer Graphics Johan Nysjö PhD student 12

13 Assignments Two obligatory assignments 13

14 Project Use your own data! Or do a Earthquake visualisation 14

15 A picture is worth a thousand words refers to that complex stories can be described with a single image. This expression is valid also in scientific visualisation. 15

16 When large and complex data sets are resulting from experiments and computations, visualisation is a way to give deeper insight and knowledge. You will learn how! to select appropriate methods, possibilities and limitations with methods,! and to use visualisation toolkits. A focus will be on using script programming: Python in combination with VTK (the Visualisation Toolkit). 16

17 Dictionary vi su al ize! To form a mental image of; envisage: try to visualise the scene as it is described! To make visible Visualisation offers a way to see the unseen

18 Visualisation purposes! Communication of information (emphasizing, narrating)! Improve understanding (illustrating, interpreting, finding)! Decision support (analyzing, extrapolation)! Answering questions (diagnosing, interpreting)! Support creativity (inspiration)! Making new discoveries through interaction!

19 Graphs are one type of visualisation Example: Which Swedish town(s) have warmer than 2 C and less than 1 mm of rain?

20 Visualisations help us getting insight When data is complex: Collected/Computed When numeric data is to bee understood When complex relations must be understood When multiple variables have to be analyzed Visualisation is not a substitute to, but in addition to, statistical analysis and other quantitative methods Visualisation takes advantage of human sensory abilities Pattern recognition, Trend discovery, etc.

21 Graphs are one type of visualisation Example: Which Swedish town(s) have warmer than 2 C and less than 1 mm of rain? 3, 22,5 15, Temp.[C] Rain [mm] 7,5, Kiruna Östersund Umeå Sundsvall Mora Västerås Gävle Uppsala Halmstad Karlskrona Stockholm Örebro Lund Malmö Göteborg

22 Graphs are one type of visualisation Example: Which Swedish town(s) have warmer than 2 C and less than 1 mm of rain? 3, 22,5 15, Temp.[C] Rain [mm] 7,5, Kiruna Östersund Umeå Sundsvall Mora Västerås Gävle Uppsala Halmstad Karlskrona Stockholm Örebro Lund Malmö Göteborg

23 Graphs are one type of visualisation Example: Which Swedish town(s) have warmer than 2 C and less than 1 mm of rain? 3, 22,5 15, Temp.[C] Rain [mm] 7,5, Kiruna Östersund Umeå Sundsvall Mora Västerås Gävle Uppsala Halmstad Karlskrona Stockholm Örebro Lund Malmö Göteborg

24 Graphs are one type of visualisation Example: Which Swedish town(s) have warmer than 2 C and less than 1 mm of rain? 3, 22,5 15, Temp.[C] Rain [mm] 7,5, Kiruna Östersund Umeå Sundsvall Mora Västerås Gävle Uppsala Halmstad Karlskrona Stockholm Örebro Lund Malmö Göteborg

25 Some more sophisticated examples Nuclear, Quantum, and Molecular Modeling Structures, Fluids, and Fields Advanced Imaging and Data Management

26 Some classical examples Dr. John Snow; The Cholera Epidemic in London 1854 Used spot-map to graphically depict cholera incidents. Spatial clusters led to him to the hypothesis that cholera was communicated through contaminated water. Identification and removal of contaminated pump led to reduced mortality and partly confirmed his hypothesis. Note: The visualisation did not prove anything. But was influential to the development of the novel hypothesis which was later proved true.

27 27

28 Florence Nightingale 28

29 Scientific Visualisation! Scientific visualisation is the process of exploring, transforming, and viewing data as images! The data describes natural or physical phenomena or quantities! Often observed (measured) or simulated data! Visualisation is often interactive! We are not trying to create realistic images, but to visualise data in an informative way! Application dependent

30 General development of visualisation Rather new discipline still developing into subareas Tool users vs. tool developers Collaboration among computer scientists and computational scientists Faster computers, high-speed networks, new user-interfaces

31 Ch 3: Computer Graphics Primer Creating images with a computer 3D Pixar Animation Studios, All Rights Reserved.

32 Computer Graphics Computer graphics aims at creating pictures by mimicking the image formation process that occurs in conventional photography. Purposes: Simulate real things (entertainment) Make visible what cannot really be seen -> CG is the foundation of Visualisation Visualisation is more than computer graphics!

33 Computer Graphics - Examples Simulate and visualise real things Interior design (Linus Karlsson, CCG 211) Interactive Games Make visible what cannot really be seen Visualisation of semantic networks in SemNet. Hard-Disk utilization (WinDirStat)

34 Computer Graphics - Ingredients What is needed to mimic photography i.e. to render images with a computer? Virtual objects: 3D models, geometry, material properties Virtual light sources: position, color, attenuation, etc. Virtual camera: position, direction, lens projection Illumination model: Rendering algorithms that model the propagation of light and its interaction with objects in the scene.

35 Computer Graphics & Visualisation Graphical rendering is one pillar of Scientific/Information Visualisation Graphical Model Lights Camera(s) 3D Objects Computer Graphics Rendering Algorithms Colorful Pictures

36 Computer Graphics & Visualisation Graphical rendering is one pillar of Scientific/Information Visualisation Scientific/Information Visualisation Graphical Model Lights Camera(s) 3D Objects Computer Graphics Rendering Algorithms Colorful Pictures We gain Insight Ah Ha!!! Data Transfor- Mation & Mapping Conceptual Model Visualisation is more than computer graphics!

37 3.2 Elements of colour

38 Visible spectrum

39 Colour The eye s and the brain s impression of electromagnetic radiation in the visual spectra How is colour perceived? detector rods & cones light source reflecting object red-sensitive green-sensitive blue-sensitive

40 RGB color space RGB - for additive colour mixing, e.g., on a computer screen

41 HLS colour space Hue Lightness Saturation Hue: dominant wavelength, tone Lightness: intensity, brightness Saturation: purity, dilution by white Important aspects: Intensity decoupled from colour Related to how humans perceive colour

42 Color angles for the hue = Red 6 = Yellow 12 = Green 18 = Cyan 24 = Blue 3 = Magenta

43 3.3 Lights o Point Light: Light is emitted in all directions from a single point in space o Parlallel Light: One can simplify by assuming an infinitely distant point light source! Far distance implies parallel rays o Intensity is constant compared to 1/ distance 2 relationship

44 3.4 Surface properties The Phong reflection model = Ambient reflection + Diffuse reflection + Specular reflection l θ n v φ r

45 Putting it all together ambient + diffuse + specular => composed color

46 46

47 47

48 48

49 3.5 Cameras

50 Camera movements

51 3.6 Coordinate systems 4 coordinate systems Model: where the object is defined World: 3D space where actors are positioned View: what is visible to the camera Display: (x, y) pixel locations See Figure 3-14

52 3.7 Coordinate transformations o 3D to 3D and 3D to 2D o Homogeneous coordinates o 4x4 transformation matrices o Rotation, translation, scaling o (Perspective) projection

53 Coordinate transformations o Matrix-Vector Multiplication Transformation represented as a M n,k where n=4, k=4. The resulting matrix has n=4 rows and l=1 columns m 11 m 12 m 13 m 14 P = M. m P = 21 m 22 m 23 m 24 y = m 31 m 32 m 33 m 34 m 41 m 42 m 43 m 44 x z 1 m 11 x + m 12 y + m 13 z + m 14 m 21 x + m 22 y + m 23 z + m 24 m 31 x + m 32 y + m 33 z + m 34 m 41 x + m 42 y + m 43 z + m 44

54 Coordinate transformations o Basic geometric transforms Scale Translation Rotations S = & S $ $ $ % x S y S z #!!!" Doesn t work R x R y & 1 = $ $ cosθ $ % sin θ & cosθ = $ $ $ % sin θ 1 # sin θ!! cosθ!" sin θ #!! cosθ! " R z = & cosθ $ $ sin θ $ % sin θ cosθ #!! 1! "

55 Coordinate transformations o Homogenous Coordinates! Scale Translation Rotations!!!! " # $ $ $ $ % & = z y x d d d T!!!! " # $ $ $ $ % & = 1 z y x S S S S!!!! " # $ $ $ $ % & = 1 1 cos sin sin cos θ θ θ θ R z etc,),, ( z y x = v ),1,, ( z y x p = Vector Point

56 Coordinate transformations o Projective transform (3D -> 2D) (x,y,z,1) -> (x p,y p,const,1) Perspective Projection Matrix: Vertex (normalized homogenous coordinates): Vertex projection: Vertex normalization:

57 3.9 Rasterisation (scan conversion) Converting a explicit geometric representation into raster image Primitives: Point, Line, Polyline, Polygon, Triangle Strip e.g. Line drawing DDA digital differential analyzer (Bresenham algorithm) e.g. Polygon filling Flood filling Scan conversion

58 Rasterization Informationsteknologi "Pixel colour is set in a scanline fashion 3D 2D Projection Rasterization Scanline Institutionen för informationsteknologi

59 Polygonal shading Various shading modes differ in how often the illumination equation is evaluated during rasterization! Flat Gouraud Phong Per polygon Per vertex Per pixel

60 Hidden Surface Removal (HSR) Same object (polygons), shading and and perspective, but different appearance Incorrect occlusion occurs if graphical primitives are rasterized * in arbitrary order * without visibility control

61 z-buffer algorithm z-buffer Algorithm: Image space hidden surface algorithm -> it maintains visibility control per pixel. Objects are rendered without specific order pixel position (x,y) Depth test is performed in the rasterization process for every pixel z-buffer stores the closest distance of an object that has been drawn at pixel position (x,y) z-buffer (depth - value) Maintains correct occlusion Observer Frame Buffer, Color Buffer (pixel color RGBA)

62 z-buffer algorithm (Ed Catmull) fill z-buffer with infinite distance for all polygons for each pixel calculate z-value if z(x,y) is closer than z-buffer(x,y) draw pixel z-buffer(x,y)=z(x,y) end end end

63 Ch 4: The Visualisation Pipeline Visualisation addresses the issues! transformation and representation Transformation:! converting data from its original form into graphics primitives and into computer images Representation:! the internal data structures and the graphics primitives Visualisation transforms a computational form into a graphical form

64 Visualisation pipeline, cont d The pipeline consists of! objects to represent data! objects to operate on data! indicated direction of data flow (arrow connections between objects)

65 Process objects Operate on input data to generate output data New data or new form Source objects initiate (read, generate) visualisation data flow Filter objects maintain visualisation data flow Mapper objects terminate (write, graph) visualisation data flow

66 4.2 A visualisation pipeline Data Object Computational methods, Measured data Process Object Display Source Filter Mapper Procedural, Reader Transforms the data Creates geometric primitives

67 4.4 Executing the pipeline Causing each process object to operate Most frequent executions due to user interaction! change parameters of process object! change input to process object For efficiency reasons, see to that only execute the process objects whose input has changed Synchronization between process objects required prior to execution

68 Conclusion Visualisation helps to understand the data and get insight on the data It also is a tool to discover the data and find hidden truths in the data Visualisation use Computer Graphics 68

SeSE/SNIC-UPPMAX: Scientific Visualisation Workshop 2014

SeSE/SNIC-UPPMAX: Scientific Visualisation Workshop 2014 SeSE/SNIC-UPPMAX: Scientific Visualisation Workshop 2014 Department of 1 Teachers Department of Anders Hast, Associate Professor Computer Graphics/Visualisation Stefan Seipel, Professor Computer Graphics

More information

Monash University Clayton s School of Information Technology CSE3313 Computer Graphics Sample Exam Questions 2007

Monash University Clayton s School of Information Technology CSE3313 Computer Graphics Sample Exam Questions 2007 Monash University Clayton s School of Information Technology CSE3313 Computer Graphics Questions 2007 INSTRUCTIONS: Answer all questions. Spend approximately 1 minute per mark. Question 1 30 Marks Total

More information

A Short Introduction to Computer Graphics

A Short Introduction to Computer Graphics A Short Introduction to Computer Graphics Frédo Durand MIT Laboratory for Computer Science 1 Introduction Chapter I: Basics Although computer graphics is a vast field that encompasses almost any graphical

More information

Introduction to Computer Graphics

Introduction to Computer Graphics Introduction to Computer Graphics Torsten Möller TASC 8021 778-782-2215 torsten@sfu.ca www.cs.sfu.ca/~torsten Today What is computer graphics? Contents of this course Syllabus Overview of course topics

More information

Computer Graphics. Anders Hast

Computer Graphics. Anders Hast Computer Graphics Anders Hast Who am I?! 5 years in Industry after graduation, 2 years as high school teacher.! 1996 Teacher, University of Gävle! 2004 PhD, Computerised Image Processing " Computer Graphics!

More information

Computer Applications in Textile Engineering. Computer Applications in Textile Engineering

Computer Applications in Textile Engineering. Computer Applications in Textile Engineering 3. Computer Graphics Sungmin Kim http://latam.jnu.ac.kr Computer Graphics Definition Introduction Research field related to the activities that includes graphics as input and output Importance Interactive

More information

Lecture Notes, CEng 477

Lecture Notes, CEng 477 Computer Graphics Hardware and Software Lecture Notes, CEng 477 What is Computer Graphics? Different things in different contexts: pictures, scenes that are generated by a computer. tools used to make

More information

VALLIAMMAI ENGNIEERING COLLEGE SRM Nagar, Kattankulathur 603203.

VALLIAMMAI ENGNIEERING COLLEGE SRM Nagar, Kattankulathur 603203. VALLIAMMAI ENGNIEERING COLLEGE SRM Nagar, Kattankulathur 603203. DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING Year & Semester : III Year, V Semester Section : CSE - 1 & 2 Subject Code : CS6504 Subject

More information

CS 325 Computer Graphics

CS 325 Computer Graphics CS 325 Computer Graphics 01 / 25 / 2016 Instructor: Michael Eckmann Today s Topics Review the syllabus Review course policies Color CIE system chromaticity diagram color gamut, complementary colors, dominant

More information

Computer Graphics. Introduction. Computer graphics. What is computer graphics? Yung-Yu Chuang

Computer Graphics. Introduction. Computer graphics. What is computer graphics? Yung-Yu Chuang Introduction Computer Graphics Instructor: Yung-Yu Chuang ( 莊 永 裕 ) E-mail: c@csie.ntu.edu.tw Office: CSIE 527 Grading: a MatchMove project Computer Science ce & Information o Technolog og Yung-Yu Chuang

More information

INTRODUCTION TO RENDERING TECHNIQUES

INTRODUCTION TO RENDERING TECHNIQUES INTRODUCTION TO RENDERING TECHNIQUES 22 Mar. 212 Yanir Kleiman What is 3D Graphics? Why 3D? Draw one frame at a time Model only once X 24 frames per second Color / texture only once 15, frames for a feature

More information

Visualisatie BMT. Introduction, visualization, visualization pipeline. Arjan Kok Huub van de Wetering (h.v.d.wetering@tue.nl)

Visualisatie BMT. Introduction, visualization, visualization pipeline. Arjan Kok Huub van de Wetering (h.v.d.wetering@tue.nl) Visualisatie BMT Introduction, visualization, visualization pipeline Arjan Kok Huub van de Wetering (h.v.d.wetering@tue.nl) 1 Lecture overview Goal Summary Study material What is visualization Examples

More information

Lezione 4: Grafica 3D*(II)

Lezione 4: Grafica 3D*(II) Lezione 4: Grafica 3D*(II) Informatica Multimediale Docente: Umberto Castellani *I lucidi sono tratti da una lezione di Maura Melotti (m.melotti@cineca.it) RENDERING Rendering What is rendering? Rendering

More information

COMP175: Computer Graphics. Lecture 1 Introduction and Display Technologies

COMP175: Computer Graphics. Lecture 1 Introduction and Display Technologies COMP175: Computer Graphics Lecture 1 Introduction and Display Technologies Course mechanics Number: COMP 175-01, Fall 2009 Meetings: TR 1:30-2:45pm Instructor: Sara Su (sarasu@cs.tufts.edu) TA: Matt Menke

More information

Course Overview. CSCI 480 Computer Graphics Lecture 1. Administrative Issues Modeling Animation Rendering OpenGL Programming [Angel Ch.

Course Overview. CSCI 480 Computer Graphics Lecture 1. Administrative Issues Modeling Animation Rendering OpenGL Programming [Angel Ch. CSCI 480 Computer Graphics Lecture 1 Course Overview January 14, 2013 Jernej Barbic University of Southern California http://www-bcf.usc.edu/~jbarbic/cs480-s13/ Administrative Issues Modeling Animation

More information

Introduction to Computer Graphics. Reading: Angel ch.1 or Hill Ch1.

Introduction to Computer Graphics. Reading: Angel ch.1 or Hill Ch1. Introduction to Computer Graphics Reading: Angel ch.1 or Hill Ch1. What is Computer Graphics? Synthesis of images User Computer Image Applications 2D Display Text User Interfaces (GUI) - web - draw/paint

More information

Image Processing and Computer Graphics. Rendering Pipeline. Matthias Teschner. Computer Science Department University of Freiburg

Image Processing and Computer Graphics. Rendering Pipeline. Matthias Teschner. Computer Science Department University of Freiburg Image Processing and Computer Graphics Rendering Pipeline Matthias Teschner Computer Science Department University of Freiburg Outline introduction rendering pipeline vertex processing primitive processing

More information

Introduction Week 1, Lecture 1

Introduction Week 1, Lecture 1 CS 430/536 Computer Graphics I Introduction Week 1, Lecture 1 David Breen, William Regli and Maxim Peysakhov Geometric and Intelligent Computing Laboratory Department of Computer Science Drexel University

More information

1. INTRODUCTION Graphics 2

1. INTRODUCTION Graphics 2 1. INTRODUCTION Graphics 2 06-02408 Level 3 10 credits in Semester 2 Professor Aleš Leonardis Slides by Professor Ela Claridge What is computer graphics? The art of 3D graphics is the art of fooling the

More information

GRAFICA - A COMPUTER GRAPHICS TEACHING ASSISTANT. Andreas Savva, George Ioannou, Vasso Stylianou, and George Portides, University of Nicosia Cyprus

GRAFICA - A COMPUTER GRAPHICS TEACHING ASSISTANT. Andreas Savva, George Ioannou, Vasso Stylianou, and George Portides, University of Nicosia Cyprus ICICTE 2014 Proceedings 1 GRAFICA - A COMPUTER GRAPHICS TEACHING ASSISTANT Andreas Savva, George Ioannou, Vasso Stylianou, and George Portides, University of Nicosia Cyprus Abstract This paper presents

More information

Overview. Raster Graphics and Color. Overview. Display Hardware. Liquid Crystal Display (LCD) Cathode Ray Tube (CRT)

Overview. Raster Graphics and Color. Overview. Display Hardware. Liquid Crystal Display (LCD) Cathode Ray Tube (CRT) Raster Graphics and Color Greg Humphreys CS445: Intro Graphics University of Virginia, Fall 2004 Color models Color models Display Hardware Video display devices Cathode Ray Tube (CRT) Liquid Crystal Display

More information

Scan-Line Fill. Scan-Line Algorithm. Sort by scan line Fill each span vertex order generated by vertex list

Scan-Line Fill. Scan-Line Algorithm. Sort by scan line Fill each span vertex order generated by vertex list Scan-Line Fill Can also fill by maintaining a data structure of all intersections of polygons with scan lines Sort by scan line Fill each span vertex order generated by vertex list desired order Scan-Line

More information

1. Introduction to image processing

1. Introduction to image processing 1 1. Introduction to image processing 1.1 What is an image? An image is an array, or a matrix, of square pixels (picture elements) arranged in columns and rows. Figure 1: An image an array or a matrix

More information

A System for Capturing High Resolution Images

A System for Capturing High Resolution Images A System for Capturing High Resolution Images G.Voyatzis, G.Angelopoulos, A.Bors and I.Pitas Department of Informatics University of Thessaloniki BOX 451, 54006 Thessaloniki GREECE e-mail: pitas@zeus.csd.auth.gr

More information

How Landsat Images are Made

How Landsat Images are Made How Landsat Images are Made Presentation by: NASA s Landsat Education and Public Outreach team June 2006 1 More than just a pretty picture Landsat makes pretty weird looking maps, and it isn t always easy

More information

Comp 410/510. Computer Graphics Spring 2016. Introduction to Graphics Systems

Comp 410/510. Computer Graphics Spring 2016. Introduction to Graphics Systems Comp 410/510 Computer Graphics Spring 2016 Introduction to Graphics Systems Computer Graphics Computer graphics deals with all aspects of creating images with a computer Hardware (PC with graphics card)

More information

Graphical displays are generally of two types: vector displays and raster displays. Vector displays

Graphical displays are generally of two types: vector displays and raster displays. Vector displays Display technology Graphical displays are generally of two types: vector displays and raster displays. Vector displays Vector displays generally display lines, specified by their endpoints. Vector display

More information

Computer Animation: Art, Science and Criticism

Computer Animation: Art, Science and Criticism Computer Animation: Art, Science and Criticism Tom Ellman Harry Roseman Lecture 12 Ambient Light Emits two types of light: Directional light, coming from a single point Contributes to diffuse shading.

More information

Big Data: Rethinking Text Visualization

Big Data: Rethinking Text Visualization Big Data: Rethinking Text Visualization Dr. Anton Heijs anton.heijs@treparel.com Treparel April 8, 2013 Abstract In this white paper we discuss text visualization approaches and how these are important

More information

Last lecture... Computer Graphics:

Last lecture... Computer Graphics: Last lecture... Computer Graphics: Visualisation can be greatly enhanced through the Introduction to the Visualisation use of 3D computer graphics Toolkit Visualisation Lecture 2 toby.breckon@ed.ac.uk

More information

Outline. Quantizing Intensities. Achromatic Light. Optical Illusion. Quantizing Intensities. CS 430/585 Computer Graphics I

Outline. Quantizing Intensities. Achromatic Light. Optical Illusion. Quantizing Intensities. CS 430/585 Computer Graphics I CS 430/585 Computer Graphics I Week 8, Lecture 15 Outline Light Physical Properties of Light and Color Eye Mechanism for Color Systems to Define Light and Color David Breen, William Regli and Maxim Peysakhov

More information

GUI GRAPHICS AND USER INTERFACES. Welcome to GUI! Mechanics. Mihail Gaianu 26/02/2014 1

GUI GRAPHICS AND USER INTERFACES. Welcome to GUI! Mechanics. Mihail Gaianu 26/02/2014 1 Welcome to GUI! Mechanics 26/02/2014 1 Requirements Info If you don t know C++, you CAN take this class additional time investment required early on GUI Java to C++ transition tutorial on course website

More information

Path Tracing. Michael Doggett Department of Computer Science Lund university. 2012 Michael Doggett

Path Tracing. Michael Doggett Department of Computer Science Lund university. 2012 Michael Doggett Path Tracing Michael Doggett Department of Computer Science Lund university 2012 Michael Doggett Outline Light transport notation Radiometry - Measuring light Illumination Rendering Equation Monte Carlo

More information

2: Introducing image synthesis. Some orientation how did we get here? Graphics system architecture Overview of OpenGL / GLU / GLUT

2: Introducing image synthesis. Some orientation how did we get here? Graphics system architecture Overview of OpenGL / GLU / GLUT COMP27112 Computer Graphics and Image Processing 2: Introducing image synthesis Toby.Howard@manchester.ac.uk 1 Introduction In these notes we ll cover: Some orientation how did we get here? Graphics system

More information

Visualization methods for patent data

Visualization methods for patent data Visualization methods for patent data Treparel 2013 Dr. Anton Heijs (CTO & Founder) Delft, The Netherlands Introduction Treparel can provide advanced visualizations for patent data. This document describes

More information

Instructor. Goals. Image Synthesis Examples. Applications. Computer Graphics. Why Study 3D Computer Graphics?

Instructor. Goals. Image Synthesis Examples. Applications. Computer Graphics. Why Study 3D Computer Graphics? Computer Graphics Motivation: Why do we study 3D Graphics? http://www.cs.ucsd.edu/~ravir Instructor http://www.cs.ucsd.edu/~ravir PhD Stanford, 2002. PhD thesis developed Spherical Harmonic Lighting widely

More information

Lesson 3: Behind the Scenes with Production

Lesson 3: Behind the Scenes with Production Lesson 3: Behind the Scenes with Production Overview: Being in production is the second phase of the production process and involves everything that happens from the first shot to the final wrap. In this

More information

Blender Notes. Introduction to Digital Modelling and Animation in Design Blender Tutorial - week 9 The Game Engine

Blender Notes. Introduction to Digital Modelling and Animation in Design Blender Tutorial - week 9 The Game Engine Blender Notes Introduction to Digital Modelling and Animation in Design Blender Tutorial - week 9 The Game Engine The Blender Game Engine This week we will have an introduction to the Game Engine build

More information

An introduction to Global Illumination. Tomas Akenine-Möller Department of Computer Engineering Chalmers University of Technology

An introduction to Global Illumination. Tomas Akenine-Möller Department of Computer Engineering Chalmers University of Technology An introduction to Global Illumination Tomas Akenine-Möller Department of Computer Engineering Chalmers University of Technology Isn t ray tracing enough? Effects to note in Global Illumination image:

More information

B2.53-R3: COMPUTER GRAPHICS. NOTE: 1. There are TWO PARTS in this Module/Paper. PART ONE contains FOUR questions and PART TWO contains FIVE questions.

B2.53-R3: COMPUTER GRAPHICS. NOTE: 1. There are TWO PARTS in this Module/Paper. PART ONE contains FOUR questions and PART TWO contains FIVE questions. B2.53-R3: COMPUTER GRAPHICS NOTE: 1. There are TWO PARTS in this Module/Paper. PART ONE contains FOUR questions and PART TWO contains FIVE questions. 2. PART ONE is to be answered in the TEAR-OFF ANSWER

More information

Visualization. For Novices. ( Ted Hall ) University of Michigan 3D Lab Digital Media Commons, Library http://um3d.dc.umich.edu

Visualization. For Novices. ( Ted Hall ) University of Michigan 3D Lab Digital Media Commons, Library http://um3d.dc.umich.edu Visualization For Novices ( Ted Hall ) University of Michigan 3D Lab Digital Media Commons, Library http://um3d.dc.umich.edu Data Visualization Data visualization deals with communicating information about

More information

SkillsUSA 2014 Contest Projects 3-D Visualization and Animation

SkillsUSA 2014 Contest Projects 3-D Visualization and Animation SkillsUSA Contest Projects 3-D Visualization and Animation Click the Print this Section button above to automatically print the specifications for this contest. Make sure your printer is turned on before

More information

Using Photorealistic RenderMan for High-Quality Direct Volume Rendering

Using Photorealistic RenderMan for High-Quality Direct Volume Rendering Using Photorealistic RenderMan for High-Quality Direct Volume Rendering Cyrus Jam cjam@sdsc.edu Mike Bailey mjb@sdsc.edu San Diego Supercomputer Center University of California San Diego Abstract With

More information

The Visualization Pipeline

The Visualization Pipeline The Visualization Pipeline Conceptual perspective Implementation considerations Algorithms used in the visualization Structure of the visualization applications Contents The focus is on presenting the

More information

How To Teach Computer Graphics

How To Teach Computer Graphics Computer Graphics Thilo Kielmann Lecture 1: 1 Introduction (basic administrative information) Course Overview + Examples (a.o. Pixar, Blender, ) Graphics Systems Hands-on Session General Introduction http://www.cs.vu.nl/~graphics/

More information

ADVANCED THEORIES FOR CG LIGHTING

ADVANCED THEORIES FOR CG LIGHTING ADVANCED THEORIES FOR CG LIGHTING 0.1 INTRODUCTION To become skilled at 3D lighting, one must have an understanding of how light works. CG lighting has been established based on rules from cinematography,

More information

Cork Education and Training Board. Programme Module for. 3 Dimensional Computer Graphics. Leading to. Level 5 FETAC

Cork Education and Training Board. Programme Module for. 3 Dimensional Computer Graphics. Leading to. Level 5 FETAC Cork Education and Training Board Programme Module for 3 Dimensional Computer Graphics Leading to Level 5 FETAC 3 Dimensional Computer Graphics 5N5029 3 Dimensional Computer Graphics 5N5029 1 Version 3

More information

CS 4204 Computer Graphics

CS 4204 Computer Graphics CS 4204 Computer Graphics 3D views and projection Adapted from notes by Yong Cao 1 Overview of 3D rendering Modeling: *Define object in local coordinates *Place object in world coordinates (modeling transformation)

More information

INTRODUCTION IMAGE PROCESSING >INTRODUCTION & HUMAN VISION UTRECHT UNIVERSITY RONALD POPPE

INTRODUCTION IMAGE PROCESSING >INTRODUCTION & HUMAN VISION UTRECHT UNIVERSITY RONALD POPPE INTRODUCTION IMAGE PROCESSING >INTRODUCTION & HUMAN VISION UTRECHT UNIVERSITY RONALD POPPE OUTLINE Course info Image processing Definition Applications Digital images Human visual system Human eye Reflectivity

More information

CUBE-MAP DATA STRUCTURE FOR INTERACTIVE GLOBAL ILLUMINATION COMPUTATION IN DYNAMIC DIFFUSE ENVIRONMENTS

CUBE-MAP DATA STRUCTURE FOR INTERACTIVE GLOBAL ILLUMINATION COMPUTATION IN DYNAMIC DIFFUSE ENVIRONMENTS ICCVG 2002 Zakopane, 25-29 Sept. 2002 Rafal Mantiuk (1,2), Sumanta Pattanaik (1), Karol Myszkowski (3) (1) University of Central Florida, USA, (2) Technical University of Szczecin, Poland, (3) Max- Planck-Institut

More information

Computer Graphics Hardware An Overview

Computer Graphics Hardware An Overview Computer Graphics Hardware An Overview Graphics System Monitor Input devices CPU/Memory GPU Raster Graphics System Raster: An array of picture elements Based on raster-scan TV technology The screen (and

More information

Teaching Introductory Computer Graphics Via Ray Tracing

Teaching Introductory Computer Graphics Via Ray Tracing Teaching Introductory Computer Graphics Via Ray Tracing Helen H. Hu Westminster College, Salt Lake City, UT hhu@westminstercollege.edu Figure 1. Examples of student work. For fun, enthusiastic students

More information

MMGD0203 Multimedia Design MMGD0203 MULTIMEDIA DESIGN. Chapter 3 Graphics and Animations

MMGD0203 Multimedia Design MMGD0203 MULTIMEDIA DESIGN. Chapter 3 Graphics and Animations MMGD0203 MULTIMEDIA DESIGN Chapter 3 Graphics and Animations 1 Topics: Definition of Graphics Why use Graphics? Graphics Categories Graphics Qualities File Formats Types of Graphics Graphic File Size Introduction

More information

The Information Processing model

The Information Processing model The Information Processing model A model for understanding human cognition. 1 from: Wickens, Lee, Liu, & Becker (2004) An Introduction to Human Factors Engineering. p. 122 Assumptions in the IP model Each

More information

Green = 0,255,0 (Target Color for E.L. Gray Construction) CIELAB RGB Simulation Result for E.L. Gray Match (43,215,35) Equal Luminance Gray for Green

Green = 0,255,0 (Target Color for E.L. Gray Construction) CIELAB RGB Simulation Result for E.L. Gray Match (43,215,35) Equal Luminance Gray for Green Red = 255,0,0 (Target Color for E.L. Gray Construction) CIELAB RGB Simulation Result for E.L. Gray Match (184,27,26) Equal Luminance Gray for Red = 255,0,0 (147,147,147) Mean of Observer Matches to Red=255

More information

Polarization of Light

Polarization of Light Polarization of Light References Halliday/Resnick/Walker Fundamentals of Physics, Chapter 33, 7 th ed. Wiley 005 PASCO EX997A and EX999 guide sheets (written by Ann Hanks) weight Exercises and weights

More information

Introduction to Computer Graphics. Jürgen P. Schulze, Ph.D. University of California, San Diego Fall Quarter 2012

Introduction to Computer Graphics. Jürgen P. Schulze, Ph.D. University of California, San Diego Fall Quarter 2012 CSE 167: Introduction to Computer Graphics Jürgen P. Schulze, Ph.D. University of California, San Diego Fall Quarter 2012 Today Course organization Course overview 2 Course Staff Instructor Jürgen Schulze,

More information

CPIT-285 Computer Graphics

CPIT-285 Computer Graphics Department of Information Technology B.S.Information Technology ABET Course Binder CPIT-85 Computer Graphics Prepared by Prof. Alhasanain Muhammad Albarhamtoushi Page of Sunday December 4 0 : PM Cover

More information

DATA VISUALIZATION GABRIEL PARODI STUDY MATERIAL: PRINCIPLES OF GEOGRAPHIC INFORMATION SYSTEMS AN INTRODUCTORY TEXTBOOK CHAPTER 7

DATA VISUALIZATION GABRIEL PARODI STUDY MATERIAL: PRINCIPLES OF GEOGRAPHIC INFORMATION SYSTEMS AN INTRODUCTORY TEXTBOOK CHAPTER 7 DATA VISUALIZATION GABRIEL PARODI STUDY MATERIAL: PRINCIPLES OF GEOGRAPHIC INFORMATION SYSTEMS AN INTRODUCTORY TEXTBOOK CHAPTER 7 Contents GIS and maps The visualization process Visualization and strategies

More information

Jan Köhnlein and Helmut Weberpals 01.12.99

Jan Köhnlein and Helmut Weberpals 01.12.99 1 Graphics Primitives Graphics Primitives 3-dimensional point class Point3d 3-dimensional (directional) vector class Vector3d Class of 3-dimensional line segments LineArray 2 Modeling of 3D Objects Modeling

More information

Advanced Rendering for Engineering & Styling

Advanced Rendering for Engineering & Styling Advanced Rendering for Engineering & Styling Prof. B.Brüderlin Brüderlin,, M Heyer 3Dinteractive GmbH & TU-Ilmenau, Germany SGI VizDays 2005, Rüsselsheim Demands in Engineering & Styling Engineering: :

More information

Interactive Visualization of Magnetic Fields

Interactive Visualization of Magnetic Fields JOURNAL OF APPLIED COMPUTER SCIENCE Vol. 21 No. 1 (2013), pp. 107-117 Interactive Visualization of Magnetic Fields Piotr Napieralski 1, Krzysztof Guzek 1 1 Institute of Information Technology, Lodz University

More information

Faculty of Computer Science Computer Graphics Group. Final Diploma Examination

Faculty of Computer Science Computer Graphics Group. Final Diploma Examination Faculty of Computer Science Computer Graphics Group Final Diploma Examination Communication Mechanisms for Parallel, Adaptive Level-of-Detail in VR Simulations Author: Tino Schwarze Advisors: Prof. Dr.

More information

Two hours UNIVERSITY OF MANCHESTER SCHOOL OF COMPUTER SCIENCE. M.Sc. in Advanced Computer Science. Friday 18 th January 2008.

Two hours UNIVERSITY OF MANCHESTER SCHOOL OF COMPUTER SCIENCE. M.Sc. in Advanced Computer Science. Friday 18 th January 2008. COMP60321 Two hours UNIVERSITY OF MANCHESTER SCHOOL OF COMPUTER SCIENCE M.Sc. in Advanced Computer Science Computer Animation Friday 18 th January 2008 Time: 09:45 11:45 Please answer any THREE Questions

More information

P R E A M B L E. Facilitated workshop problems for class discussion (1.5 hours)

P R E A M B L E. Facilitated workshop problems for class discussion (1.5 hours) INSURANCE SCAM OPTICS - LABORATORY INVESTIGATION P R E A M B L E The original form of the problem is an Experimental Group Research Project, undertaken by students organised into small groups working as

More information

Computer Graphics Global Illumination (2): Monte-Carlo Ray Tracing and Photon Mapping. Lecture 15 Taku Komura

Computer Graphics Global Illumination (2): Monte-Carlo Ray Tracing and Photon Mapping. Lecture 15 Taku Komura Computer Graphics Global Illumination (2): Monte-Carlo Ray Tracing and Photon Mapping Lecture 15 Taku Komura In the previous lectures We did ray tracing and radiosity Ray tracing is good to render specular

More information

Computers in Film Making

Computers in Film Making Computers in Film Making Snow White (1937) Computers in Film Making Slide 1 Snow White - Disney s Folly Moral: Original Budget $250,000 Production Cost $1,488,422 Frames 127,000 Production time 3.5 years

More information

Realtime 3D Computer Graphics Virtual Reality

Realtime 3D Computer Graphics Virtual Reality Realtime 3D Computer Graphics Virtual Realit Viewing and projection Classical and General Viewing Transformation Pipeline CPU Pol. DL Pixel Per Vertex Texture Raster Frag FB object ee clip normalized device

More information

A Proposal for OpenEXR Color Management

A Proposal for OpenEXR Color Management A Proposal for OpenEXR Color Management Florian Kainz, Industrial Light & Magic Revision 5, 08/05/2004 Abstract We propose a practical color management scheme for the OpenEXR image file format as used

More information

http://aeon.co/video/society/the-forensic-photographer-why-expertise-still-matters-aeon/

http://aeon.co/video/society/the-forensic-photographer-why-expertise-still-matters-aeon/ 1 2 Meet Nick Marsh, a forensic photographer in London. I was introduced to Nick through a video created by David Beazley. The point of the video was to highlight that the greatest tool for a forensic

More information

The 3D rendering pipeline (our version for this class)

The 3D rendering pipeline (our version for this class) The 3D rendering pipeline (our version for this class) 3D models in model coordinates 3D models in world coordinates 2D Polygons in camera coordinates Pixels in image coordinates Scene graph Camera Rasterization

More information

Learning about light and optics in on-line general education classes using at-home experimentation.

Learning about light and optics in on-line general education classes using at-home experimentation. Learning about light and optics in on-line general education classes using at-home experimentation. Jacob Millspaw, Gang Wang, and Mark F. Masters Department of Physics, Indiana University Purdue University

More information

Lecture 16: A Camera s Image Processing Pipeline Part 1. Kayvon Fatahalian CMU 15-869: Graphics and Imaging Architectures (Fall 2011)

Lecture 16: A Camera s Image Processing Pipeline Part 1. Kayvon Fatahalian CMU 15-869: Graphics and Imaging Architectures (Fall 2011) Lecture 16: A Camera s Image Processing Pipeline Part 1 Kayvon Fatahalian CMU 15-869: Graphics and Imaging Architectures (Fall 2011) Today (actually all week) Operations that take photons to an image Processing

More information

How To Create A Data Visualization

How To Create A Data Visualization CSCI 552 Data Visualization Shiaofen Fang What Is Visualization? We observe and draw conclusions A picture says more than a thousand words/numbers Seeing is believing, seeing is understanding Beware of

More information

Solving Simultaneous Equations and Matrices

Solving Simultaneous Equations and Matrices Solving Simultaneous Equations and Matrices The following represents a systematic investigation for the steps used to solve two simultaneous linear equations in two unknowns. The motivation for considering

More information

CS130 - Intro to computer graphics. Dr. Victor B. Zordan vbz@cs.ucr.edu www.cs.ucr.edu/~vbz. Objectives

CS130 - Intro to computer graphics. Dr. Victor B. Zordan vbz@cs.ucr.edu www.cs.ucr.edu/~vbz. Objectives CS130 - Intro to computer graphics Dr. Victor B. Zordan vbz@cs.ucr.edu www.cs.ucr.edu/~vbz Objectives Explore basics of computer graphics Survey application areas Today, brief introduction to graphics

More information

COMP-557: Fundamentals of Computer Graphics McGill University, Fall 2010

COMP-557: Fundamentals of Computer Graphics McGill University, Fall 2010 COMP-557: Fundamentals of Computer Graphics McGill University, Fall 2010 Class times 2:25 PM - 3:55 PM Mondays and Wednesdays Lecture room Trottier Building 2120 Instructor Paul Kry, kry@cs.mcgill.ca Course

More information

3 hours One paper 70 Marks. Areas of Learning Theory

3 hours One paper 70 Marks. Areas of Learning Theory GRAPHIC DESIGN CODE NO. 071 Class XII DESIGN OF THE QUESTION PAPER 3 hours One paper 70 Marks Section-wise Weightage of the Theory Areas of Learning Theory Section A (Reader) Section B Application of Design

More information

TWO-DIMENSIONAL TRANSFORMATION

TWO-DIMENSIONAL TRANSFORMATION CHAPTER 2 TWO-DIMENSIONAL TRANSFORMATION 2.1 Introduction As stated earlier, Computer Aided Design consists of three components, namely, Design (Geometric Modeling), Analysis (FEA, etc), and Visualization

More information

Silverlight for Windows Embedded Graphics and Rendering Pipeline 1

Silverlight for Windows Embedded Graphics and Rendering Pipeline 1 Silverlight for Windows Embedded Graphics and Rendering Pipeline 1 Silverlight for Windows Embedded Graphics and Rendering Pipeline Windows Embedded Compact 7 Technical Article Writers: David Franklin,

More information

The RADIANCE Lighting Simulation and Rendering System

The RADIANCE Lighting Simulation and Rendering System The RADIANCE Lighting Simulation and Rendering System Written by Gregory J. Ward Lighting Group Building Technologies Program Lawrence Berkeley Laboratory COMPUTER GRAPHICS Proceedings, Annual Conference

More information

Dhiren Bhatia Carnegie Mellon University

Dhiren Bhatia Carnegie Mellon University Dhiren Bhatia Carnegie Mellon University University Course Evaluations available online Please Fill! December 4 : In-class final exam Held during class time All students expected to give final this date

More information

MassArt Studio Foundation: Visual Language Digital Media Cookbook, Fall 2013

MassArt Studio Foundation: Visual Language Digital Media Cookbook, Fall 2013 INPUT OUTPUT 08 / IMAGE QUALITY & VIEWING In this section we will cover common image file formats you are likely to come across and examine image quality in terms of resolution and bit depth. We will cover

More information

Environmental Remote Sensing GEOG 2021

Environmental Remote Sensing GEOG 2021 Environmental Remote Sensing GEOG 2021 Lecture 4 Image classification 2 Purpose categorising data data abstraction / simplification data interpretation mapping for land cover mapping use land cover class

More information

Shader Model 3.0. Ashu Rege. NVIDIA Developer Technology Group

Shader Model 3.0. Ashu Rege. NVIDIA Developer Technology Group Shader Model 3.0 Ashu Rege NVIDIA Developer Technology Group Talk Outline Quick Intro GeForce 6 Series (NV4X family) New Vertex Shader Features Vertex Texture Fetch Longer Programs and Dynamic Flow Control

More information

Color Accurate Digital Photography of Artworks

Color Accurate Digital Photography of Artworks Color Accurate Digital Photography of Artworks Robin D. Myers Better Light, Inc. 30 October 2000 2000 Better Light, Inc., all rights reserved. Introduction In the world of photography, some colors are

More information

Game Development in Android Disgruntled Rats LLC. Sean Godinez Brian Morgan Michael Boldischar

Game Development in Android Disgruntled Rats LLC. Sean Godinez Brian Morgan Michael Boldischar Game Development in Android Disgruntled Rats LLC Sean Godinez Brian Morgan Michael Boldischar Overview Introduction Android Tools Game Development OpenGL ES Marketing Summary Questions Introduction Disgruntled

More information

CS 4810 Introduction to Computer Graphics

CS 4810 Introduction to Computer Graphics CS 4810 Introduction to Computer Graphics Connelly Barnes University of Virginia Acknowledgement: slides by Jason Lawrence, Misha Kazhdan, Allison Klein, Tom Funkhouser, Adam Finkelstein and David Dobkin

More information

Visualizing Electromagnetic Fields: The Visualization Toolkit. Michael Selvanayagam

Visualizing Electromagnetic Fields: The Visualization Toolkit. Michael Selvanayagam Visualizing Electromagnetic Fields: The Visualization Toolkit Michael Selvanayagam Visualization What is the purpose of visualizing electromagnetic (EM) Fields? Visualization 1. Understand the geometry

More information

CAD and Creativity. Contents

CAD and Creativity. Contents CAD and Creativity K C Hui Department of Automation and Computer- Aided Engineering Contents Various aspects of CAD CAD training in the university and the industry Conveying fundamental concepts in CAD

More information

Vector Treasure Hunt Teacher s Guide

Vector Treasure Hunt Teacher s Guide Vector Treasure Hunt Teacher s Guide 1.0 Summary Vector Treasure Hunt is the first activity to be done after the Pre-Test. This activity should take approximately 30 minutes. 2.0 Learning Goals Driving

More information

UNIVERSITY OF LONDON GOLDSMITHS COLLEGE. B. Sc. Examination Sample CREATIVE COMPUTING. IS52020A (CC227) Creative Computing 2.

UNIVERSITY OF LONDON GOLDSMITHS COLLEGE. B. Sc. Examination Sample CREATIVE COMPUTING. IS52020A (CC227) Creative Computing 2. UNIVERSITY OF LONDON GOLDSMITHS COLLEGE B. Sc. Examination Sample CREATIVE COMPUTING IS52020A (CC227) Creative Computing 2 Duration: 3 hours Date and time: There are six questions in this paper; you should

More information

KINECT PROJECT EITAN BABCOCK REPORT TO RECEIVE FINAL EE CREDIT FALL 2013

KINECT PROJECT EITAN BABCOCK REPORT TO RECEIVE FINAL EE CREDIT FALL 2013 KINECT PROJECT EITAN BABCOCK REPORT TO RECEIVE FINAL EE CREDIT FALL 2013 CONTENTS Introduction... 1 Objective... 1 Procedure... 2 Converting Distance Array to 3D Array... 2 Transformation Matrices... 4

More information

CBIR: Colour Representation. COMPSCI.708.S1.C A/P Georgy Gimel farb

CBIR: Colour Representation. COMPSCI.708.S1.C A/P Georgy Gimel farb CBIR: Colour Representation COMPSCI.708.S1.C A/P Georgy Gimel farb Colour Representation Colour is the most widely used visual feature in multimedia context CBIR systems are not aware of the difference

More information

Teaching Methodology for 3D Animation

Teaching Methodology for 3D Animation Abstract The field of 3d animation has addressed design processes and work practices in the design disciplines for in recent years. There are good reasons for considering the development of systematic

More information

Fundamentals of Computer Animation

Fundamentals of Computer Animation Fundamentals of Computer Animation Quaternions as Orientations () page 1 Visualizing a Unit Quaternion Rotation in 4D Space ( ) = w + x + y z q = Norm q + q = q q [ w, v], v = ( x, y, z) w scalar q =,

More information

Expert Color Choices for Presenting Data

Expert Color Choices for Presenting Data Expert Color Choices for Presenting Data Maureen Stone, StoneSoup Consulting The problem of choosing colors for data visualization is expressed by this quote from information visualization guru Edward

More information

ADVANCED VISUALIZATION

ADVANCED VISUALIZATION Cyberinfrastructure Technology Integration (CITI) Advanced Visualization Division ADVANCED VISUALIZATION Tech-Talk by Vetria L. Byrd Visualization Scientist November 05, 2013 THIS TECH TALK Will Provide

More information

animation animation shape specification as a function of time

animation animation shape specification as a function of time animation animation shape specification as a function of time animation representation many ways to represent changes with time intent artistic motion physically-plausible motion efficiency control typically

More information