CSCI 552 Data Visualization

Save this PDF as:
 WORD  PNG  TXT  JPG

Size: px
Start display at page:

Download "CSCI 552 Data Visualization"

Transcription

1 CSCI 552 Data Visualization Shiaofen Fang What Is Visualization? We observe and draw conclusions A picture says more than a thousand words/numbers Seeing is believing, seeing is understanding Beware of illusions (magicians) Visualization: transformation of data/information into pictures 2 1

2 Different Types of Data Visualization Scientific Visualization From science, engineering, medicine, etc. Is a method of computing: exploration, simulation, discovery, insight. Data are usually homogeneous with predefined spatial structures. Information Visualization Abstract Data: WWW documents, file structures, relationships, financial data, etc. Usually heterogeneous without spatial structures. 3 Functions of Visualization A Representation of Information Aid for Understanding and Analysis Validation of Results A Tool for Communication 4 2

3 Examples Terrain geometry: Terrain Texture: (10,20,21), (12,13,14), (13,32,12),..., (1,2,3), (2,4,5),(3,5,6),... (23,34,54), (23,34,23), (45,26,78),... Time 0: Volumetric cloud cover: 0, 0, 12, 14, 15, 15, 17, 12, 23, 45,... Wind vectors: (0.2, 0.3, 0.93,5), (0.4,0.5,0.76,12),..., Time 1: Volumetric cloud cover: 0, 0, 11, 12, 13, 16, 20, 12, 32, 45,... Wind vectors: (0.4,0.5,0.76,12),(0.5,0.5,0.7,6),

4 Info-graphics 7 8 4

5 9 How Many V s 10 5

6 11 Perpetual Ocean 12 6

7 Visible Human 13 Graphical Design Can be more precise and revealing than numerical display Can capture a large amount of information in a very small space Can extend to time-series display Can be narrative Can represent each data point by visual information (graphic, icon, image, color, pattern) 14 7

8 Cholera map of central London, 1854, by Dr. John Snow 15 Train schedule Paris-Lyon, 1880s 16 8

9 Napoleon s Russia campaign, 1812, plots 6 variables on a 2D graph 17 Graphical Display (example) fear-rage graph 18 9

10 Graphical Integrity -- What To Avoid In Visualization The Lie Factor = Size of effect shown in Graphic Size of effect in Data Example: fuel economy standards 19 Graphical Integrity (2)... Visualizing data bearing some dimension by means of objects of higher dimensions Example: the growing barrel 20 10

11 Graphical Integrity (3)... Quoting data out of context and/or too sparse Example: Connecticut traffic deaths 21 Graphical Integrity (4)... Is cosmetic decoration really needed to make data more interesting Misleading graphical representation Example: NCSA storm model 22 11

12 Visual Perceptions Visual Memory is Limited We are sometimes not very sensitive to small visual changes Visual perception can be influenced contrast and surrounding environment

13 How many black dots?

14 Seeing parallel lines 27 Seeing is not always believing 28 14

15 Visualization Design Principles Show the data Induce the viewer to think about the substance rather than methodology, design, and the technology Avoid distorting what the data have to say Present large data sets coherently and concisely Encourage comparison of different pieces of data Reveal the data at several levels of detail Serve a reasonably clear purpose: description, exploration, tabulation, or decoration Be closely integrated with the statistical and verbal description of a data set 29 Visualization Design Data Filtering Visual Mapping View Selection and Interactions Aesthetics in Visualization Metaphor in Visualization 30 15

16 The Design Process 31 Data Filtering Determining the optimal amount of information a certain visualization process can handle. Two approaches 1. Let the users choose the data scale to visualize 2. Multi-view or multi-display 32 16

17 Visual Mapping From data elements to visual elements People s prior knowledge can help visual perception 33 The Wind Map 34 17

18 View Selection and Interaction Visual Interaction Zoom and Roll Controlling color mapping. Controlling visual mapping of data. Data zooming and filtering Level of Detail control 4D data visualization using scatter plot and parallel coordinates 35 Aesthetics in Visualization Focus Balance Simplicity - Labels - Networks - Color 36 18

19 Visual Metaphor A visual metaphor maps the characteristics of some well understood source domain to a more poorly understood target domain (data) so as to render aspects of the target understandable in terms of the source. 37 Trees 38 19

20 Rivers 39 Ferris Wheel 40 20

21 Sunflower 41 Tools (InfoVis) Google Refine Tableau R Processing D3 (JS) ColorBrewer 42 21

22 Tools (SciVis) 43 22

Based on Chapter 11, Excel 2007 Dashboards & Reports (Alexander) and Create Dynamic Charts in Microsoft Office Excel 2007 and Beyond (Scheck)

Based on Chapter 11, Excel 2007 Dashboards & Reports (Alexander) and Create Dynamic Charts in Microsoft Office Excel 2007 and Beyond (Scheck) Reporting Results: Part 2 Based on Chapter 11, Excel 2007 Dashboards & Reports (Alexander) and Create Dynamic Charts in Microsoft Office Excel 2007 and Beyond (Scheck) Bullet Graph (pp. 200 205, Alexander,

More information

an introduction to VISUALIZING DATA by joel laumans

an introduction to VISUALIZING DATA by joel laumans an introduction to VISUALIZING DATA by joel laumans an introduction to VISUALIZING DATA iii AN INTRODUCTION TO VISUALIZING DATA by Joel Laumans Table of Contents 1 Introduction 1 Definition Purpose 2 Data

More information

On History of Information Visualization

On History of Information Visualization On History of Information Visualization Mária Kmeťová Department of Mathematics, Constantine the Philosopher University in Nitra, Tr. A. Hlinku 1, Nitra, Slovakia mkmetova@ukf.sk Keywords: Abstract: abstract

More information

Resources. A look back 9/21/2015

Resources. A look back 9/21/2015 Module 4: Analyzing Assessment Data: Goals, Purposes, and General Techniques September, 2015 Jeremy Penn, Ph.D. Director Resources Cooper & Shelley, Data Analysis (chapter 6 in the Schuh book) Planning

More information

Visualization. For Novices. ( Ted Hall ) University of Michigan 3D Lab Digital Media Commons, Library http://um3d.dc.umich.edu

Visualization. For Novices. ( Ted Hall ) University of Michigan 3D Lab Digital Media Commons, Library http://um3d.dc.umich.edu Visualization For Novices ( Ted Hall ) University of Michigan 3D Lab Digital Media Commons, Library http://um3d.dc.umich.edu Data Visualization Data visualization deals with communicating information about

More information

Web Data Visualization

Web Data Visualization Web Data Visualization Department of Communication PhD Student Workshop Web Mining for Communication Research April 22-25, 2014 http://weblab.com.cityu.edu.hk/blog/project/workshops Jie Qin & Hexin Chen

More information

LET S GO BACK TO THE VERY FIRST HISTORICAL KNOWN EXAMPLES OF INFORMATION VISUALIZATIONS

LET S GO BACK TO THE VERY FIRST HISTORICAL KNOWN EXAMPLES OF INFORMATION VISUALIZATIONS Introduction to InfoVis and Geovisual Analytics Prof Mikael Jern NCVA, Linköping University Prof http://ncva.itn.liu.se/ Mikael Jern 2014 Discovery consists of seeing what everybody has seen and thinking

More information

Linguistic information visualization and web services

Linguistic information visualization and web services Linguistic information visualization and web services Chris Culy and Verena Lyding European Academy Bolzano-Bozen Bolzano-Bozen, Italy http://www.eurac.edu/linfovis LInfoVis (= Linguistic Information Visualization)

More information

Choosing Colors for Data Visualization Maureen Stone January 17, 2006

Choosing Colors for Data Visualization Maureen Stone January 17, 2006 Choosing Colors for Data Visualization Maureen Stone January 17, 2006 The problem of choosing colors for data visualization is expressed by this quote from information visualization guru Edward Tufte:

More information

Expert Color Choices for Presenting Data

Expert Color Choices for Presenting Data Expert Color Choices for Presenting Data Maureen Stone, StoneSoup Consulting The problem of choosing colors for data visualization is expressed by this quote from information visualization guru Edward

More information

Information Visualization WS 2013/14 11 Visual Analytics

Information Visualization WS 2013/14 11 Visual Analytics 1 11.1 Definitions and Motivation Lot of research and papers in this emerging field: Visual Analytics: Scope and Challenges of Keim et al. Illuminating the path of Thomas and Cook 2 11.1 Definitions and

More information

Big Data in Pictures: Data Visualization

Big Data in Pictures: Data Visualization Big Data in Pictures: Data Visualization Huamin Qu Hong Kong University of Science and Technology What is data visualization? Data visualization is the creation and study of the visual representation of

More information

A Short Introduction on Data Visualization. Guoning Chen

A Short Introduction on Data Visualization. Guoning Chen A Short Introduction on Data Visualization Guoning Chen Data is generated everywhere and everyday Age of Big Data Data in ever increasing sizes need an effective way to understand them History of Visualization

More information

Visualizations for Critical and Creative Thinking

Visualizations for Critical and Creative Thinking Visualizations for Critical and Creative Thinking Visualization Workshop Objectives Explore 3 Uses of Visualizations: To Organize and Highlight Relationships To Synthesize and Create New Knowledge To Persuade

More information

What is Visualization? Information Visualization An Overview. Information Visualization. Definitions

What is Visualization? Information Visualization An Overview. Information Visualization. Definitions What is Visualization? Information Visualization An Overview Jonathan I. Maletic, Ph.D. Computer Science Kent State University Visualize/Visualization: To form a mental image or vision of [some

More information

INTRAFOCUS. DATA VISUALISATION An Intrafocus Guide

INTRAFOCUS. DATA VISUALISATION An Intrafocus Guide DATA VISUALISATION An Intrafocus Guide September 2011 Table of Contents What is Data Visualisation?... 2 Where is Data Visualisation Used?... 3 The Market View... 4 What Should You Look For?... 5 The Key

More information

Universidade de Aveiro Departamento de Electrónica, Telecomunicações e Informática. Introduction to Information Visualization

Universidade de Aveiro Departamento de Electrónica, Telecomunicações e Informática. Introduction to Information Visualization Universidade de Aveiro Departamento de Electrónica, Telecomunicações e Informática Introduction to Information Visualization www.portugal-migration.info Information Visualization Beatriz Sousa Santos,

More information

ADVANCED VISUALIZATION

ADVANCED VISUALIZATION Cyberinfrastructure Technology Integration (CITI) Advanced Visualization Division ADVANCED VISUALIZATION Tech-Talk by Vetria L. Byrd Visualization Scientist November 05, 2013 THIS TECH TALK Will Provide

More information

Tableau's data visualization software is provided through the Tableau for Teaching program.

Tableau's data visualization software is provided through the Tableau for Teaching program. A BEGINNER S GUIDE TO VISUALIZATION Featuring REU Site Collaborative Data Visualization Applications June 10, 2014 Vetria L. Byrd, PhD Advanced Visualization, Director REU Coordinator Visualization Scientist

More information

VISUALIZATION. Improving the Computer Forensic Analysis Process through

VISUALIZATION. Improving the Computer Forensic Analysis Process through By SHELDON TEERLINK and ROBERT F. ERBACHER Improving the Computer Forensic Analysis Process through VISUALIZATION The ability to display mountains of data in a graphical manner significantly enhances the

More information

Outline. Fundamentals. Rendering (of 3D data) Data mappings. Evaluation Interaction

Outline. Fundamentals. Rendering (of 3D data) Data mappings. Evaluation Interaction Outline Fundamentals What is vis? Some history Design principles The visualization process Data sources and data structures Basic visual mapping approaches Rendering (of 3D data) Scalar fields (isosurfaces

More information

COSC 6344 Visualization

COSC 6344 Visualization COSC 64 Visualization University of Houston, Fall 2015 Instructor: Guoning Chen chengu@cs.uh.edu Course Information Location: AH 2 Time: 10am~11:am Tu/Th Office Hours: 11:am~12:pm Tu /Th or by appointment

More information

Design and Deployment of Specialized Visualizations for Weather-Sensitive Electric Distribution Operations

Design and Deployment of Specialized Visualizations for Weather-Sensitive Electric Distribution Operations Fourth Symposium on Policy and Socio-Economic Research 4.1 Design and Deployment of Specialized Visualizations for Weather-Sensitive Electric Distribution Operations Lloyd A. Treinish IBM, Yorktown Heights,

More information

Creating a History Day Exhibit Adapted from materials at the National History Day website

Creating a History Day Exhibit Adapted from materials at the National History Day website Creating a History Day Exhibit Adapted from materials at the National History Day website Exhibits are designed to display visual and written information on topics in an attractive and understandable manner.

More information

(Also, how to do it right, and MOST IMPORTANTLY, how to tell the difference!)

(Also, how to do it right, and MOST IMPORTANTLY, how to tell the difference!) (Also, how to do it right, and MOST IMPORTANTLY, how to tell the difference!) How does Statistics and Graphical Displays (truthful or not) matter in a computer science class??? Data and information are

More information

Topic Maps Visualization

Topic Maps Visualization Topic Maps Visualization Bénédicte Le Grand, Laboratoire d'informatique de Paris 6 Introduction Topic maps provide a bridge between the domains of knowledge representation and information management. Topics

More information

Principles of Data Visualization

Principles of Data Visualization Principles of Data Visualization by James Bernhard Spring 2012 We begin with some basic ideas about data visualization from Edward Tufte (The Visual Display of Quantitative Information (2nd ed.)) He gives

More information

Visualizing Historical Agricultural Data: The Current State of the Art Irwin Anolik (USDA National Agricultural Statistics Service)

Visualizing Historical Agricultural Data: The Current State of the Art Irwin Anolik (USDA National Agricultural Statistics Service) Visualizing Historical Agricultural Data: The Current State of the Art Irwin Anolik (USDA National Agricultural Statistics Service) Abstract This paper reports on methods implemented at the National Agricultural

More information

Computer Graphics AACHEN AACHEN AACHEN AACHEN. Public Perception of CG. Computer Graphics Research. Methodological Approaches - - - - - - - - - -

Computer Graphics AACHEN AACHEN AACHEN AACHEN. Public Perception of CG. Computer Graphics Research. Methodological Approaches - - - - - - - - - - Public Perception of CG Games Computer Graphics Movies Computer Graphics Research algorithms & data structures fundamental continuous & discrete mathematics optimization schemes 3D reconstruction global

More information

The Scientific Data Mining Process

The Scientific Data Mining Process Chapter 4 The Scientific Data Mining Process When I use a word, Humpty Dumpty said, in rather a scornful tone, it means just what I choose it to mean neither more nor less. Lewis Carroll [87, p. 214] In

More information

GRAPHING DATA FOR DECISION-MAKING

GRAPHING DATA FOR DECISION-MAKING GRAPHING DATA FOR DECISION-MAKING Tibor Tóth, Ph.D. Center for Applied Demography and Survey Research (CADSR) University of Delaware Fall, 2006 TABLE OF CONTENTS Introduction... 3 Use High Information

More information

Effective Visualization Techniques for Data Discovery and Analysis

Effective Visualization Techniques for Data Discovery and Analysis WHITE PAPER Effective Visualization Techniques for Data Discovery and Analysis Chuck Pirrello, SAS Institute, Cary, NC Table of Contents Abstract... 1 Introduction... 1 Visual Analytics... 1 Static Graphs...

More information

TEXT-FILLED STACKED AREA GRAPHS Martin Kraus

TEXT-FILLED STACKED AREA GRAPHS Martin Kraus Martin Kraus Text can add a significant amount of detail and value to an information visualization. In particular, it can integrate more of the data that a visualization is based on, and it can also integrate

More information

Norwegian Satellite Earth Observation Database for Marine and Polar Research http://normap.nersc.no USE CASES

Norwegian Satellite Earth Observation Database for Marine and Polar Research http://normap.nersc.no USE CASES Norwegian Satellite Earth Observation Database for Marine and Polar Research http://normap.nersc.no USE CASES The NORMAP Project team has prepared this document to present functionality of the NORMAP portal.

More information

Visualization methods for patent data

Visualization methods for patent data Visualization methods for patent data Treparel 2013 Dr. Anton Heijs (CTO & Founder) Delft, The Netherlands Introduction Treparel can provide advanced visualizations for patent data. This document describes

More information

Computer Graphics and Visualization in a Computational Science Program

Computer Graphics and Visualization in a Computational Science Program Computer Graphics and Visualization in a Computational Science Program Steve Cunningham California State University Stanislaus Oregon State University, October 16, 2000 The imperative to scientific visualization

More information

Real-time Processing and Visualization of Massive Air-Traffic Data in Digital Landscapes

Real-time Processing and Visualization of Massive Air-Traffic Data in Digital Landscapes Real-time Processing and Visualization of Massive Air-Traffic Data in Digital Landscapes Digital Landscape Architecture 2015, Dessau Stefan Buschmann, Matthias Trapp, and Jürgen Döllner Hasso-Plattner-Institut,

More information

Interactive Data Mining and Visualization

Interactive Data Mining and Visualization Interactive Data Mining and Visualization Zhitao Qiu Abstract: Interactive analysis introduces dynamic changes in Visualization. On another hand, advanced visualization can provide different perspectives

More information

Data Visualization - A Very Rough Guide

Data Visualization - A Very Rough Guide Data Visualization - A Very Rough Guide Ken Brodlie University of Leeds 1 What is This Thing Called Visualization? Visualization Use of computersupported, interactive, visual representations of data to

More information

Interactive Information Visualization using Graphics Hardware Študentská vedecká konferencia 2006

Interactive Information Visualization using Graphics Hardware Študentská vedecká konferencia 2006 FAKULTA MATEMATIKY, FYZIKY A INFORMATIKY UNIVERZITY KOMENSKHO V BRATISLAVE Katedra aplikovanej informatiky Interactive Information Visualization using Graphics Hardware Študentská vedecká konferencia 2006

More information

MMGD0203 Multimedia Design MMGD0203 MULTIMEDIA DESIGN. Chapter 3 Graphics and Animations

MMGD0203 Multimedia Design MMGD0203 MULTIMEDIA DESIGN. Chapter 3 Graphics and Animations MMGD0203 MULTIMEDIA DESIGN Chapter 3 Graphics and Animations 1 Topics: Definition of Graphics Why use Graphics? Graphics Categories Graphics Qualities File Formats Types of Graphics Graphic File Size Introduction

More information

CSU, Fresno - Institutional Research, Assessment and Planning - Dmitri Rogulkin

CSU, Fresno - Institutional Research, Assessment and Planning - Dmitri Rogulkin My presentation is about data visualization. How to use visual graphs and charts in order to explore data, discover meaning and report findings. The goal is to show that visual displays can be very effective

More information

COMP 150-04 Visualization. Lecture 11 Interacting with Visualizations

COMP 150-04 Visualization. Lecture 11 Interacting with Visualizations COMP 150-04 Visualization Lecture 11 Interacting with Visualizations Assignment 5: Maps Due Wednesday, March 17th Design a thematic map visualization Option 1: Choropleth Map Implementation in Processing

More information

Numbers as pictures: Examples of data visualization from the Business Employment Dynamics program. October 2009

Numbers as pictures: Examples of data visualization from the Business Employment Dynamics program. October 2009 Numbers as pictures: Examples of data visualization from the Business Employment Dynamics program. October 2009 Charles M. Carson 1 1 U.S. Bureau of Labor Statistics, Washington, DC Abstract The Bureau

More information

<Insert Picture Here> Web 2.0 Data Visualization with JSF. Juan Camilo Ruiz Senior Product Manager Oracle Development Tools

<Insert Picture Here> Web 2.0 Data Visualization with JSF. Juan Camilo Ruiz Senior Product Manager Oracle Development Tools Web 2.0 Data Visualization with JSF Juan Camilo Ruiz Senior Product Manager Oracle Development Tools 1 The preceding is intended to outline our general product direction. It is intended

More information

Files Used in this Tutorial

Files Used in this Tutorial Generate Point Clouds Tutorial This tutorial shows how to generate point clouds from IKONOS satellite stereo imagery. You will view the point clouds in the ENVI LiDAR Viewer. The estimated time to complete

More information

Security visualisation

Security visualisation Security visualisation This thesis provides a guideline of how to generate a visual representation of a given dataset and use visualisation in the evaluation of known security vulnerabilities by Marco

More information

Data Visualization: Some Basics

Data Visualization: Some Basics Time Population (in thousands) September 2015 Data Visualization: Some Basics Graphical Options You have many graphical options but particular types of data are best represented with particular types of

More information

Data Visualization Techniques and Practices Introduction to GIS Technology

Data Visualization Techniques and Practices Introduction to GIS Technology Data Visualization Techniques and Practices Introduction to GIS Technology Michael Greene Advanced Analytics & Modeling, Deloitte Consulting LLP March 16 th, 2010 Antitrust Notice The Casualty Actuarial

More information

DATA VISUALISATION. A practical guide to producing effective visualisations for research communication

DATA VISUALISATION. A practical guide to producing effective visualisations for research communication DATA VISUALISATION A practical guide to producing effective visualisations for research communication Rebecca Wolfe, 2014 Research Uptake Manager, RESYST Consortium London School of Hygiene & Tropical

More information

Visualisatie BMT. Introduction, visualization, visualization pipeline. Arjan Kok Huub van de Wetering (h.v.d.wetering@tue.nl)

Visualisatie BMT. Introduction, visualization, visualization pipeline. Arjan Kok Huub van de Wetering (h.v.d.wetering@tue.nl) Visualisatie BMT Introduction, visualization, visualization pipeline Arjan Kok Huub van de Wetering (h.v.d.wetering@tue.nl) 1 Lecture overview Goal Summary Study material What is visualization Examples

More information

The Flat Shape Everything around us is shaped

The Flat Shape Everything around us is shaped The Flat Shape Everything around us is shaped The shape is the external appearance of the bodies of nature: Objects, animals, buildings, humans. Each form has certain qualities that distinguish it from

More information

An example. Visualization? An example. Scientific Visualization. This talk. Information Visualization & Visual Analytics. 30 items, 30 x 3 values

An example. Visualization? An example. Scientific Visualization. This talk. Information Visualization & Visual Analytics. 30 items, 30 x 3 values Information Visualization & Visual Analytics Jack van Wijk Technische Universiteit Eindhoven An example y 30 items, 30 x 3 values I-science for Astronomy, October 13-17, 2008 Lorentz center, Leiden x An

More information

How is EnSight Uniquely Suited to FLOW-3D Data?

How is EnSight Uniquely Suited to FLOW-3D Data? How is EnSight Uniquely Suited to FLOW-3D Data? July 5, 2011 figure 1. FLOW-3D model of Dam visualized with EnSight If you would like to know how CEI s EnSight offers you more power than other postprocessors

More information

DESURBS Deliverable 3.1: Specification of mapping and visualization

DESURBS Deliverable 3.1: Specification of mapping and visualization DESURBS Deliverable 3.1: Specification of mapping and visualization Project full title: Designing Safer Urban Spaces Grant agreement no.: 261652 Lead beneficiary for Deliverable 3.1: Centre Internacional

More information

. Address the following issues in your solution:

. Address the following issues in your solution: CM 3110 COMSOL INSTRUCTIONS Faith Morrison and Maria Tafur Department of Chemical Engineering Michigan Technological University, Houghton, MI USA 22 November 2012 Zhichao Wang edits 21 November 2013 revised

More information

Best Practices for Dashboard Design with SAP BusinessObjects Design Studio

Best Practices for Dashboard Design with SAP BusinessObjects Design Studio Ingo Hilgefort, SAP Mentor February 2015 Agenda Best Practices on Dashboard Design Performance BEST PRACTICES FOR DASHBOARD DESIGN WITH SAP BUSINESSOBJECTS DESIGN STUDIO DASHBOARD DESIGN What is a dashboard

More information

NakeDB: Database Schema Visualization

NakeDB: Database Schema Visualization NAKEDB: DATABASE SCHEMA VISUALIZATION, APRIL 2008 1 NakeDB: Database Schema Visualization Luis Miguel Cortés-Peña, Yi Han, Neil Pradhan, Romain Rigaux Abstract Current database schema visualization tools

More information

Data Visualization Basics for Students

Data Visualization Basics for Students Data Visualization Basics for Students Dionisia de la Cerda Think about Your Message You want your audience to understand your message. This takes time. Think about your audience and plan your message.

More information

Visualization Techniques in Data Mining

Visualization Techniques in Data Mining Tecniche di Apprendimento Automatico per Applicazioni di Data Mining Visualization Techniques in Data Mining Prof. Pier Luca Lanzi Laurea in Ingegneria Informatica Politecnico di Milano Polo di Milano

More information

Visualization Process. Alark Joshi

Visualization Process. Alark Joshi Visualization Process Alark Joshi Task-specific Visualization Design LA Treinish, Task-specific visualization design, IEEE Computer Graphics and Applications, 1999 Generalized visualization systems are

More information

An interactive 3D visualization system for displaying fieldmonitoring

An interactive 3D visualization system for displaying fieldmonitoring icccbe 2010 Nottingham University Press Proceedings of the International Conference on Computing in Civil and Building Engineering W Tizani (Editor) An interactive 3D visualization system for displaying

More information

Putting the Customer at the Heart of our Companies

Putting the Customer at the Heart of our Companies Putting the Customer at the Heart of our Companies HARNESSING INNOVATIVE TECHNOLOGY TO BUILD LONG-TERM CUSTOMER RELATIONSHIPS 25/06/2014 1 What s Next For BI? A Strategic Outlook Into Current Trends &

More information

Time Series Data Visualization

Time Series Data Visualization Time Series Data Visualization Time Series Data Fundamental chronological component to the data set Random sample of 4000 graphics from 15 of world s newspapers and magazines from 74-80 found that 75%

More information

The Value of Visualization 2

The Value of Visualization 2 The Value of Visualization 2 G Janacek -0.69 1.11-3.1 4.0 GJJ () Visualization 1 / 21 Parallel coordinates Parallel coordinates is a common way of visualising high-dimensional geometry and analysing multivariate

More information

BI solutions with Visio Graphical visualizations with Visio, SharePoint and Visio Services

BI solutions with Visio Graphical visualizations with Visio, SharePoint and Visio Services BI solutions with Visio Graphical visualizations with Visio, SharePoint and Visio Services More or less every user of Microsoft office in an organization knows Visio or gets to know it sooner or later.

More information

Data Visualization. Principles and Practice. Second Edition. Alexandru Telea

Data Visualization. Principles and Practice. Second Edition. Alexandru Telea Data Visualization Principles and Practice Second Edition Alexandru Telea First edition published in 2007 by A K Peters, Ltd. Cover image: The cover shows the combination of scientific visualization and

More information

Visibility optimization for data visualization: A Survey of Issues and Techniques

Visibility optimization for data visualization: A Survey of Issues and Techniques Visibility optimization for data visualization: A Survey of Issues and Techniques Ch Harika, Dr.Supreethi K.P Student, M.Tech, Assistant Professor College of Engineering, Jawaharlal Nehru Technological

More information

Geovisual Analytics Exploring and analyzing large spatial and multivariate data. Prof Mikael Jern & Civ IngTobias Åström. http://ncva.itn.liu.

Geovisual Analytics Exploring and analyzing large spatial and multivariate data. Prof Mikael Jern & Civ IngTobias Åström. http://ncva.itn.liu. Geovisual Analytics Exploring and analyzing large spatial and multivariate data Prof Mikael Jern & Civ IngTobias Åström http://ncva.itn.liu.se/ Agenda Introduction to a Geovisual Analytics Demo Explore

More information

DATA VISUALIZATION WITH TABLEAU PUBLIC. (Data for this tutorial at www.peteraldhous.com/data)

DATA VISUALIZATION WITH TABLEAU PUBLIC. (Data for this tutorial at www.peteraldhous.com/data) DATA VISUALIZATION WITH TABLEAU PUBLIC (Data for this tutorial at www.peteraldhous.com/data) Tableau Public allows you to create a wide variety of interactive graphs, maps and tables and organize them

More information

The Visualization Pipeline

The Visualization Pipeline The Visualization Pipeline Conceptual perspective Implementation considerations Algorithms used in the visualization Structure of the visualization applications Contents The focus is on presenting the

More information

PA Common Core Standards Standards for Mathematical Practice Grade Level Emphasis*

PA Common Core Standards Standards for Mathematical Practice Grade Level Emphasis* Habits of Mind of a Productive Thinker Make sense of problems and persevere in solving them. Attend to precision. PA Common Core Standards The Pennsylvania Common Core Standards cannot be viewed and addressed

More information

Information Visualization and Visual Analytics 可 视 化 与 可 视 分 析 简 介. Xiaoru Yuan School of EECS, Peking University Aug 14th, 2010

Information Visualization and Visual Analytics 可 视 化 与 可 视 分 析 简 介. Xiaoru Yuan School of EECS, Peking University Aug 14th, 2010 Information Visualization and Visual Analytics 可 视 化 与 可 视 分 析 简 介 Xiaoru Yuan School of EECS, Peking University Aug 14th, 2010 1 2 Ted Roslling s Talk 3 What is Visualization 4 Napoleon s March to Moscow,

More information

Easily add Maps and Geo Analytics in MicroStrategy

Easily add Maps and Geo Analytics in MicroStrategy Easily add Maps and Geo Analytics in MicroStrategy Agenda Introduction Configure to use Maps in MicroStrategy MicroStrategy Geo Analysis Capabilities and Examples Key Takeaways and Q&A Why Geospatial Analysis

More information

Data Harvesting, Visualisation and Analytical Tools. John Southall, Data Librarian, LSE Library

Data Harvesting, Visualisation and Analytical Tools. John Southall, Data Librarian, LSE Library Data Harvesting, Visualisation and Analytical Tools. John Southall, Data Librarian, LSE Library Aims Will not talk about doing any of these in detail Will not demonstrate the tools BUT it will Raise some

More information

Information Visualization and Visual Analytics

Information Visualization and Visual Analytics Information Visualization and Visual Analytics Pekka Wartiainen University of Jyväskylä pekka.wartiainen@jyu.fi 23.4.2014 Outline Objectives Introduction Visual Analytics Information Visualization Our

More information

MetroBoston DataCommon Training

MetroBoston DataCommon Training MetroBoston DataCommon Training Whether you are a data novice or an expert researcher, the MetroBoston DataCommon can help you get the information you need to learn more about your community, understand

More information

MARS STUDENT IMAGING PROJECT

MARS STUDENT IMAGING PROJECT MARS STUDENT IMAGING PROJECT Data Analysis Practice Guide Mars Education Program Arizona State University Data Analysis Practice Guide This set of activities is designed to help you organize data you collect

More information

THE 360 TOOLBAR. Classic. 360 (3D environment) The 3D environment: Take a tour. Return to the original (acquisition) orientation.

THE 360 TOOLBAR. Classic. 360 (3D environment) The 3D environment: Take a tour. Return to the original (acquisition) orientation. Neurolucida 360 consists of two windows: Classic and 360. The classic window gives you access to all the tools you re already accustomed to in Neurolucida. Classic THE 360 TOOLBAR Return to the original

More information

3D-GIS in the Cloud USER MANUAL. August, 2014

3D-GIS in the Cloud USER MANUAL. August, 2014 3D-GIS in the Cloud USER MANUAL August, 2014 3D GIS in the Cloud User Manual August, 2014 Table of Contents 1. Quick Reference: Navigating and Exploring in the 3D GIS in the Cloud... 2 1.1 Using the Mouse...

More information

Data Visualization Handbook

Data Visualization Handbook SAP Lumira Data Visualization Handbook www.saplumira.com 1 Table of Content 3 Introduction 20 Ranking 4 Know Your Purpose 23 Part-to-Whole 5 Know Your Data 25 Distribution 9 Crafting Your Message 29 Correlation

More information

Data Visualization for the Practitioner

Data Visualization for the Practitioner Data Visualization for the Practitioner A Quick Introduction and Best Practices for Busy Research Professionals Presented by Brian London, Travel Industry Indicators Data Visualization for Practitioners

More information

3D Interactive Information Visualization: Guidelines from experience and analysis of applications

3D Interactive Information Visualization: Guidelines from experience and analysis of applications 3D Interactive Information Visualization: Guidelines from experience and analysis of applications Richard Brath Visible Decisions Inc., 200 Front St. W. #2203, Toronto, Canada, rbrath@vdi.com 1. EXPERT

More information

Number Visualization

Number Visualization Number Visualization Giuseppe Santucci University of Rome "La Sapienza" santucci@dis.uniroma1.it Thanks to: Ross Ihaka (very inspiring lectures) Number visualization? Obviously information visualization

More information

TIES443. Lecture 9: Visualization. Lecture 9. Course webpage: http://www.cs.jyu.fi/~mpechen/ties443. November 17, 2006

TIES443. Lecture 9: Visualization. Lecture 9. Course webpage: http://www.cs.jyu.fi/~mpechen/ties443. November 17, 2006 TIES443 Lecture 9 Visualization Mykola Pechenizkiy Course webpage: http://www.cs.jyu.fi/~mpechen/ties443 Department of Mathematical Information Technology University of Jyväskylä November 17, 2006 1 Topics

More information

"Form follows function that has been misunderstood. Form and function should be one, joined in a spiritual union."

Form follows function that has been misunderstood. Form and function should be one, joined in a spiritual union. Chapter 1 Visualization design objectives Before we launch in to the first stages of the methodology in Chapter 2, Setting the Purpose and Identifying Key Factors, it is important to acknowledge a handful

More information

2. GRAPHICAL PRESENTATION OF DATA

2. GRAPHICAL PRESENTATION OF DATA 2. GRAPHICAL PRESENTATION OF DATA 2.1 Why do we need to present data graphically? If we take as an example a table of data 1 : x y 1. 7.46 8. 6.77 13. 12.74 9. 7.11 11. 7.81 14. 8.84 6. 6.8 4. 5.39 12.

More information

IC05 Introduction on Networks &Visualization Nov. 2009. <mathieu.bastian@gmail.com>

IC05 Introduction on Networks &Visualization Nov. 2009. <mathieu.bastian@gmail.com> IC05 Introduction on Networks &Visualization Nov. 2009 Overview 1. Networks Introduction Networks across disciplines Properties Models 2. Visualization InfoVis Data exploration

More information

Business Intelligence and Process Modelling

Business Intelligence and Process Modelling Business Intelligence and Process Modelling F.W. Takes Universiteit Leiden Lecture 2: Business Intelligence & Visual Analytics BIPM Lecture 2: Business Intelligence & Visual Analytics 1 / 72 Business Intelligence

More information

Prentice Hall Connected Mathematics 2, 7th Grade Units 2009

Prentice Hall Connected Mathematics 2, 7th Grade Units 2009 Prentice Hall Connected Mathematics 2, 7th Grade Units 2009 Grade 7 C O R R E L A T E D T O from March 2009 Grade 7 Problem Solving Build new mathematical knowledge through problem solving. Solve problems

More information

Visualization Quick Guide

Visualization Quick Guide Visualization Quick Guide A best practice guide to help you find the right visualization for your data WHAT IS DOMO? Domo is a new form of business intelligence (BI) unlike anything before an executive

More information

Spatio-Temporal Networks:

Spatio-Temporal Networks: Spatio-Temporal Networks: Analyzing Change Across Time and Place WHITE PAPER By: Jeremy Peters, Principal Consultant, Digital Commerce Professional Services, Pitney Bowes ABSTRACT ORGANIZATIONS ARE GENERATING

More information

Data Visualization Best Practice. Sophie Sparkes Data Analyst

Data Visualization Best Practice. Sophie Sparkes Data Analyst Data Visualization Best Practice Sophie Sparkes Data Analyst http://graphics.wsj.com/infectious-diseases-and-vaccines/ http://blogs.sas.com/content/jmp/2015/03/05/graph-makeover-measles-heat-map/ http://graphics.wsj.com/infectious-diseases-and-vaccines/

More information

Spatial Data Mining for Customer Segmentation

Spatial Data Mining for Customer Segmentation Spatial Data Mining for Customer Segmentation Data Mining in Practice Seminar, Dortmund, 2003 Dr. Michael May Fraunhofer Institut Autonome Intelligente Systeme Spatial Data Mining, Michael May, Fraunhofer

More information

Data Visualization VINH PHAN AW1 06/01/2014

Data Visualization VINH PHAN AW1 06/01/2014 1 Data Visualization VINH PHAN AW1 06/01/2014 Agenda 2 1. Dealing with Data 2. Foundations of Visualization 3. Some Visualization Techniques 4. Life Cycle of Visualizations 5. Conclusion 6. Key Persons

More information

Data Visualization for Oracle Business Intelligence 11g. Oracle OpenWorld 2014

Data Visualization for Oracle Business Intelligence 11g. Oracle OpenWorld 2014 Data Visualization for Oracle Business Intelligence 11g Oracle OpenWorld 2014 Tim Vlamis Dan Vlamis Vlamis Software Solutions 816-781-2880 http://www.vlamis.com Session #UGF9227 Copyright 2014, Vlamis

More information

McAFEE IDENTITY. October 2011

McAFEE IDENTITY. October 2011 McAFEE IDENTITY 4.2 Our logo is one of our most valuable assets. To ensure that it remains a strong representation of our company, we must present it in a consistent and careful manner across all channels

More information

The basics of storytelling through numbers

The basics of storytelling through numbers Data Visualizations 101 The basics of storytelling through numbers C olleges and universities have a lot of stories to tell to a lot of different people. Prospective students and parents want to know if

More information

Data Visualisation and Statistical Analysis Within the Decision Making Process

Data Visualisation and Statistical Analysis Within the Decision Making Process Data Visualisation and Statistical Analysis Within the Decision Making Process Jamie Mahoney Centre for Educational Research and Development, University of Lincoln, Lincoln, UK. Keywords: Abstract: Data

More information

CHAPTER-24 Mining Spatial Databases

CHAPTER-24 Mining Spatial Databases CHAPTER-24 Mining Spatial Databases 24.1 Introduction 24.2 Spatial Data Cube Construction and Spatial OLAP 24.3 Spatial Association Analysis 24.4 Spatial Clustering Methods 24.5 Spatial Classification

More information