Surgery in Complex Dynamics.

Size: px
Start display at page:

Download "Surgery in Complex Dynamics."

Transcription

1 Surgery in Complex Dynamics. Carsten Lunde Petersen IMFUFA at NSM, Roskilde University Quasi-conformal massage, -maps on drugs -. p. 1/19

2 Introduction Magic Lecture 1: Cut and Past surgery using interpolations. Magic Lecture 2: Quasi-conformal massage, -maps on drugs -. Magic Lecture 3: Quasi-conformal surgery using real conjugacies. Magic Lecture 4: Trans-quasi-conformal surgery. Quasi-conformal massage, -maps on drugs -. p. 2/19

3 Wringing and stretching Wringing and stretching the complex structure Let s H + and define l s : C C by ls (z) = 1 2 (s + 1)z (s 1)z = (s 1)z x + z = sz x + iz y, where z = z x + iz y. Or written as an R-linear selfmap of R 2 : ls ( z x z y ) = ( s x 0 s y 1 ) ( Evidently l s is an o-p q-c homeo with constant dilatation z x z y µ s (z) = µ s = s 1 s + 1. Quasi-conformal massage, -maps on drugs -. p. 3/19 ).

4 Wringing and Stretching II Being an R-linear map l s (z) = sz x + iz y commutes with real multiplication and conjugates translation by Λ C to translation by l s (Λ): C e ls z rz C e ls C e ls z z+λ C e ls C z rz C. C z z+e l s (Λ) C. Furthermore l s (iy) = iy, and l s (x) = sx and thus ls (ir) = ir, ls (R) = sr and ls (R + iy) = sr + iy. Quasi-conformal massage, -maps on drugs -. p. 4/19

5 Wringing and Stretching III For s H + consider likewise the map l s : C C given by l s (z) = z z s 1 = z z z s An easy computation shows that C e z e ls C e z. C l s C. Quasi-conformal massage, -maps on drugs -. p. 5/19

6 Wringing and Stretching IV It immediately follows that l s : a) is an o-p q-c homeo with a coherent dilatation given by µ s (z) = z z s 1 s + 1 = log (z) log z µ s(log(z)). b) fixes pointwise the unit circle and maps the radial line exp(r + iy) to the logaritmic spiral exp(sr + iy), c) commutes with z z d for d N and conjugates multiplication by λ C to multiplication by l s (λ). d) for any z the map s µ s (z) is holomorphic (Möbius). Quasi-conformal massage, -maps on drugs -. p. 6/19

7 Wringing and Stretching V We define a Lie-group structure on H + by requirering that the map s l s is a contravariant group homomorphism, that is l s s = l s l s. An easy computation shows that this amounts to s s = s xs x + i(s ys x + s y ) = s x s + is y = l s (s) When stressing this group structure we shall write R for H +. Quasi-conformal massage, -maps on drugs -. p. 7/19

8 Wringing and Stretching VI The Lie-group (R, ) is non-commutative, but it is generated by the two one-dimensional commutative subgroups: Stretch: (S, ) = (R +, ) and Wring: (W, ) = (1 + ir, ). These two subgroups act on R from left by multiplication and by addition of the imaginary part repsectively: s = s x S, s R s s = ss, w = 1 + iw y W, s R w s = s + iw y. Quasi-conformal massage, -maps on drugs -. p. 8/19

9 Druging a map with an attracting orbit Theorem 1 (Douady and Hubbard). For any hyperbolic component H of the Mandelbrotset M the multiplier map λ : H D for the associated attracting periodic orbit is an isomorphism Theorem 2 (Eremenko and Lyubich). For any hyperbolic component H of the exponential family E κ (z) = exp(z + κ) the multiplier map λ : H D for the associated attracting periodic orbit is a universal covering map. Quasi-conformal massage, -maps on drugs -. p. 9/19

10 Druging II Common features: In both cases we can define a group action by (R, ) on the subset of H consisting of parameters for which the multiplier map is non-zero. In the quadratic case let H denote H deprived of its center(s). Applying this action to a fixed parameter in H defines a surjective and periodic map onto H. Passing to a quotient space essentially yields the result. In the exponential case applying this action to any parameter yields an injective and surjective map and hence the result. Quasi-conformal massage, -maps on drugs -. p. 10/19

11 The action Initially you may choose to think of f 1 as either a quadratic polynomial Q c or an exponetial map f κ. Suppose f1 k(z 1) = z 1 and (f1 k) (z 1 ) = λ 1 D. Let Λ 1 denote the immediate basin of z 1. We shall assume the singular (0)/ critical (c 1 ) value belongs to Λ 1. Let φ 1 : Λ 1 C denote the linearizer say normalized by φ 1 (0) = λ 1 (exponential) / φ 1 (c 1 ) = λ 1 (quadratic). For s R let σ s denote the unique f1 invariant almost complex structure, which satisfies: σ s = (l s φ 1 ) (σ 0 ) on Λ 1, σ s = σ 0 on C \ n 0 f n 1 (Λ 1 ) Quasi-conformal massage, -maps on drugs -. p. 11/19

12 The action II Let h s : C C be an integrating o-p q-c homeomorphism for σ s. As normalization conditions we take h s ( ) = and h s (0) = 0 in both cases, however: If f 1 (z) = exp(z + κ 1 ) we demand h s (i2π) = i2π. If f 1 (z) = z 2 + c 1 we demand h s (z)/z 1 as z. In the later case we find easily that f s (z) := h s f 1 h 1 s = z 2 + c s, where c s = h s (c 1 ). Quasi-conformal massage, -maps on drugs -. p. 12/19

13 The action III In the first exponential case we need first to realize that σ s satisfies σ s (z + i2π) = σ s (z), in order to conclude that h s (z + i2π) = h s (z) + i2π. Then it follows easily that f s (z) := h s f 1 h 1 s = h s (e κ 1 ) e z. Taking κ s = log(h s (e κ 1 )) to be the unique continuous and thus holomorphic choice of logarithm sending 1 to κ 1, we have f s (z) = exp(z + κ s ). Quasi-conformal massage, -maps on drugs -. p. 13/19

14 The action IV We have holomorphic mappings into parameter spaces s κ s, c s : H + C such that f k s (z s ) = z s := h s (z 1 ), and (f k s ) (z s ) = λ s = l s (λ). Where either f s (z) = exp(z + κ s ) or f s (z) = z 2 + c s. These mappings into parameterspaces are in fact group actions on H : s, s R : κ s s = (κ s ) s, and c s s = (c s ) s. Quasi-conformal massage, -maps on drugs -. p. 14/19

15 Exploiting the group action Notice first that by the group action if some map g 1 = f s for some s R, then g s 1 = f 1 and the two group action image sets are equal: {f s s R} = {g s s R}. Moreover this set is a neighbourhood of f 1 (and of g 1 ). Since H is connected it follows that H = {f s s R} Secondly by the group action and the above it suffices to consider the case λ 1 = e 1 so that λ s = l s (λ 1 ) = e s. Quasi-conformal massage, -maps on drugs -. p. 15/19

16 Exploiting the group action II Thirdly by the group action property if f s = f s for some s s R then f s s 1 = f 1 and hence s 1 = s s 1 = 1 + n2πi for some n Z as e 1 = λ 1 = λ s0 = e s 0. Moreover f s = f s1 s for all s R. Suppose s 1 = 1 + n2πi satisfies f s = f s1 s for all s R. Then s k = s k 1 = 1 + kn2πi also satisfies f s = f sk s for all s R. Thus we can suppose s 1 = 1 + n2πi with n N minimal. Quasi-conformal massage, -maps on drugs -. p. 16/19

17 Exploiting the group action II Then the surjective, holomorphic and n2πi periodic map s f s from H + to H descends to a biholomorphic map F = w f w : Dstar H given by f w = f n log w and the multiplier map λ on H is the n-fold covering (F 1 ) n of D. In the case of quadratic polynomials one can prove that the above holds with n = 1 so that the multiplier map is an isomorphism and extends to a biholomorphic map of H onto D. In the case of the exponential family, which we shall pursue here we need to prove that there is no n such that f s1 = f 1 with s 1 = 1 + n2πi: Quasi-conformal massage, -maps on drugs -. p. 17/19

18 Proof of Eremenko-Lyubich Th. Suppose to the contrary that for some n N f s1 = f 1 with s 1 = 1 + n2πi. Then by the above there is a biholomorphic map K : D H such that E K(w) = exp(z + K(w)) = f n log w has a k-periodic orbit of mulitplier w n. That is H is a punctured disk with puncture κ 0 C. Let us first notice that for any κ > 0, the singular value 0 of E κ iterates to so that R + H =. Thus κ 0. Quasi-conformal massage, -maps on drugs -. p. 18/19

19 Proof of Eremenko-Lyubich Th. II Let z 0 (κ),... z k 1 (κ) denote the attracting k-periodic orbit of E κ, κ H. As κ approaches κ 0 the multiplier of this orbit converge to 0 by the above. Hence some point say z 0 (κ) converges to 0 and R(z k 1 (κ)). However by continuity z k 1 (κ) = Eκ k 1 (z 0 (κ)) Eκ k 1 0 (0) C, as κ κ 0. Thus s f s is injective in the exponential case. That is s κ(s) : H + H is biholomorphic and the multiplier map λ(κ) = e s(κ) is a universal covering. Quasi-conformal massage, -maps on drugs -. p. 19/19

Interplay between polynomial and transcendental entire dynamics

Interplay between polynomial and transcendental entire dynamics and Interplay and transcendental Department of Mathematical Sciences, University of Liverpool Oberwolfach, October 2008 Outline and 1 and 2 3 4 Outline and 1 and 2 3 4 Outline and 1 and 2 3 4 Outline and

More information

On the Stability of Julia Sets of Functions having Baker Domains

On the Stability of Julia Sets of Functions having Baker Domains On the Stability of Julia Sets of Functions having Baker Domains Dissertation zur Erlangung des Doktorgrades der Mathematische-Naturwissenschaftlichen Fakultäten der Georg-August-Universität Göttingen

More information

(a) Write each of p and q as a polynomial in x with coefficients in Z[y, z]. deg(p) = 7 deg(q) = 9

(a) Write each of p and q as a polynomial in x with coefficients in Z[y, z]. deg(p) = 7 deg(q) = 9 Homework #01, due 1/20/10 = 9.1.2, 9.1.4, 9.1.6, 9.1.8, 9.2.3 Additional problems for study: 9.1.1, 9.1.3, 9.1.5, 9.1.13, 9.2.1, 9.2.2, 9.2.4, 9.2.5, 9.2.6, 9.3.2, 9.3.3 9.1.1 (This problem was not assigned

More information

How To Prove The Dirichlet Unit Theorem

How To Prove The Dirichlet Unit Theorem Chapter 6 The Dirichlet Unit Theorem As usual, we will be working in the ring B of algebraic integers of a number field L. Two factorizations of an element of B are regarded as essentially the same if

More information

4. Expanding dynamical systems

4. Expanding dynamical systems 4.1. Metric definition. 4. Expanding dynamical systems Definition 4.1. Let X be a compact metric space. A map f : X X is said to be expanding if there exist ɛ > 0 and L > 1 such that d(f(x), f(y)) Ld(x,

More information

Quasiconformal Homeomorphisms and Dynamics III: The Teichmüller space of a holomorphic dynamical system

Quasiconformal Homeomorphisms and Dynamics III: The Teichmüller space of a holomorphic dynamical system Quasiconformal Homeomorphisms and Dynamics III: The Teichmüller space of a holomorphic dynamical system Curtis T. McMullen and Dennis P. Sullivan Harvard University, Cambridge MA 02138 CUNY Grad Center,

More information

FUNCTIONAL ANALYSIS LECTURE NOTES: QUOTIENT SPACES

FUNCTIONAL ANALYSIS LECTURE NOTES: QUOTIENT SPACES FUNCTIONAL ANALYSIS LECTURE NOTES: QUOTIENT SPACES CHRISTOPHER HEIL 1. Cosets and the Quotient Space Any vector space is an abelian group under the operation of vector addition. So, if you are have studied

More information

ON ISOMORPHISMS OF BERS FIBER SPACES

ON ISOMORPHISMS OF BERS FIBER SPACES Annales Academiæ Scientiarum Fennicæ Mathematica Volumen 22, 1997, 255 274 ON ISOMORPHISMS OF BERS FIBER SPACES Chaohui Zhang State University of New York, Mathematics Department, Stony Brook, NY 11794,

More information

Mathematical Research Letters 1, 249 255 (1994) MAPPING CLASS GROUPS ARE AUTOMATIC. Lee Mosher

Mathematical Research Letters 1, 249 255 (1994) MAPPING CLASS GROUPS ARE AUTOMATIC. Lee Mosher Mathematical Research Letters 1, 249 255 (1994) MAPPING CLASS GROUPS ARE AUTOMATIC Lee Mosher Let S be a compact surface, possibly with the extra structure of an orientation or a finite set of distinguished

More information

Ideal Class Group and Units

Ideal Class Group and Units Chapter 4 Ideal Class Group and Units We are now interested in understanding two aspects of ring of integers of number fields: how principal they are (that is, what is the proportion of principal ideals

More information

Critically Periodic Cubic Polynomials

Critically Periodic Cubic Polynomials Critically Periodic Cubic Polynomials John Milnor Stony Brook University (www.math.sunysb.edu) IN MEMORY OF ADRIEN DOUADY Paris, May 26 2008 Parameter Space 1. THE PROBLEM: To study cubic polynomial maps

More information

On the Palis Conjecture

On the Palis Conjecture On the Palis Conjecture Sebastian van Strien (Warwick) Unless stated otherwise, the results are joint with a subset of {H. Bruin, J. Rivera-Letelier, W. Shen, O Kozlovski.} January 10, 2007 1 Contents

More information

COMMUTATIVE RINGS. Definition: A domain is a commutative ring R that satisfies the cancellation law for multiplication:

COMMUTATIVE RINGS. Definition: A domain is a commutative ring R that satisfies the cancellation law for multiplication: COMMUTATIVE RINGS Definition: A commutative ring R is a set with two operations, addition and multiplication, such that: (i) R is an abelian group under addition; (ii) ab = ba for all a, b R (commutative

More information

RANDOM INTERVAL HOMEOMORPHISMS. MICHA L MISIUREWICZ Indiana University Purdue University Indianapolis

RANDOM INTERVAL HOMEOMORPHISMS. MICHA L MISIUREWICZ Indiana University Purdue University Indianapolis RANDOM INTERVAL HOMEOMORPHISMS MICHA L MISIUREWICZ Indiana University Purdue University Indianapolis This is a joint work with Lluís Alsedà Motivation: A talk by Yulij Ilyashenko. Two interval maps, applied

More information

Math 231b Lecture 35. G. Quick

Math 231b Lecture 35. G. Quick Math 231b Lecture 35 G. Quick 35. Lecture 35: Sphere bundles and the Adams conjecture 35.1. Sphere bundles. Let X be a connected finite cell complex. We saw that the J-homomorphism could be defined by

More information

University of Lille I PC first year list of exercises n 7. Review

University of Lille I PC first year list of exercises n 7. Review University of Lille I PC first year list of exercises n 7 Review Exercise Solve the following systems in 4 different ways (by substitution, by the Gauss method, by inverting the matrix of coefficients

More information

9. Quotient Groups Given a group G and a subgroup H, under what circumstances can we find a homomorphism φ: G G ', such that H is the kernel of φ?

9. Quotient Groups Given a group G and a subgroup H, under what circumstances can we find a homomorphism φ: G G ', such that H is the kernel of φ? 9. Quotient Groups Given a group G and a subgroup H, under what circumstances can we find a homomorphism φ: G G ', such that H is the kernel of φ? Clearly a necessary condition is that H is normal in G.

More information

Mathematics. (www.tiwariacademy.com : Focus on free Education) (Chapter 5) (Complex Numbers and Quadratic Equations) (Class XI)

Mathematics. (www.tiwariacademy.com : Focus on free Education) (Chapter 5) (Complex Numbers and Quadratic Equations) (Class XI) ( : Focus on free Education) Miscellaneous Exercise on chapter 5 Question 1: Evaluate: Answer 1: 1 ( : Focus on free Education) Question 2: For any two complex numbers z1 and z2, prove that Re (z1z2) =

More information

DEFINITION 5.1.1 A complex number is a matrix of the form. x y. , y x

DEFINITION 5.1.1 A complex number is a matrix of the form. x y. , y x Chapter 5 COMPLEX NUMBERS 5.1 Constructing the complex numbers One way of introducing the field C of complex numbers is via the arithmetic of matrices. DEFINITION 5.1.1 A complex number is a matrix of

More information

6. Define log(z) so that π < I log(z) π. Discuss the identities e log(z) = z and log(e w ) = w.

6. Define log(z) so that π < I log(z) π. Discuss the identities e log(z) = z and log(e w ) = w. hapter omplex integration. omplex number quiz. Simplify 3+4i. 2. Simplify 3+4i. 3. Find the cube roots of. 4. Here are some identities for complex conjugate. Which ones need correction? z + w = z + w,

More information

The Ideal Class Group

The Ideal Class Group Chapter 5 The Ideal Class Group We will use Minkowski theory, which belongs to the general area of geometry of numbers, to gain insight into the ideal class group of a number field. We have already mentioned

More information

1 = (a 0 + b 0 α) 2 + + (a m 1 + b m 1 α) 2. for certain elements a 0,..., a m 1, b 0,..., b m 1 of F. Multiplying out, we obtain

1 = (a 0 + b 0 α) 2 + + (a m 1 + b m 1 α) 2. for certain elements a 0,..., a m 1, b 0,..., b m 1 of F. Multiplying out, we obtain Notes on real-closed fields These notes develop the algebraic background needed to understand the model theory of real-closed fields. To understand these notes, a standard graduate course in algebra is

More information

NOTES ON THE DYNAMICS OF LINEAR OPERATORS

NOTES ON THE DYNAMICS OF LINEAR OPERATORS NOTES ON THE DYNAMICS OF LINEAR OPERATORS JOEL H. SHAPIRO Abstract. These are notes for a series of lectures that illustrate how continuous linear transformations of infinite dimensional topological vector

More information

Finite dimensional C -algebras

Finite dimensional C -algebras Finite dimensional C -algebras S. Sundar September 14, 2012 Throughout H, K stand for finite dimensional Hilbert spaces. 1 Spectral theorem for self-adjoint opertors Let A B(H) and let {ξ 1, ξ 2,, ξ n

More information

ON GALOIS REALIZATIONS OF THE 2-COVERABLE SYMMETRIC AND ALTERNATING GROUPS

ON GALOIS REALIZATIONS OF THE 2-COVERABLE SYMMETRIC AND ALTERNATING GROUPS ON GALOIS REALIZATIONS OF THE 2-COVERABLE SYMMETRIC AND ALTERNATING GROUPS DANIEL RABAYEV AND JACK SONN Abstract. Let f(x) be a monic polynomial in Z[x] with no rational roots but with roots in Q p for

More information

COMPLEX NUMBERS AND SERIES. Contents

COMPLEX NUMBERS AND SERIES. Contents COMPLEX NUMBERS AND SERIES MIKE BOYLE Contents 1. Complex Numbers Definition 1.1. A complex number is a number z of the form z = x + iy, where x and y are real numbers, and i is another number such that

More information

H/wk 13, Solutions to selected problems

H/wk 13, Solutions to selected problems H/wk 13, Solutions to selected problems Ch. 4.1, Problem 5 (a) Find the number of roots of x x in Z 4, Z Z, any integral domain, Z 6. (b) Find a commutative ring in which x x has infinitely many roots.

More information

GROUP ALGEBRAS. ANDREI YAFAEV

GROUP ALGEBRAS. ANDREI YAFAEV GROUP ALGEBRAS. ANDREI YAFAEV We will associate a certain algebra to a finite group and prove that it is semisimple. Then we will apply Wedderburn s theory to its study. Definition 0.1. Let G be a finite

More information

I. GROUPS: BASIC DEFINITIONS AND EXAMPLES

I. GROUPS: BASIC DEFINITIONS AND EXAMPLES I GROUPS: BASIC DEFINITIONS AND EXAMPLES Definition 1: An operation on a set G is a function : G G G Definition 2: A group is a set G which is equipped with an operation and a special element e G, called

More information

Group Theory. Contents

Group Theory. Contents Group Theory Contents Chapter 1: Review... 2 Chapter 2: Permutation Groups and Group Actions... 3 Orbits and Transitivity... 6 Specific Actions The Right regular and coset actions... 8 The Conjugation

More information

SMALL SKEW FIELDS CÉDRIC MILLIET

SMALL SKEW FIELDS CÉDRIC MILLIET SMALL SKEW FIELDS CÉDRIC MILLIET Abstract A division ring of positive characteristic with countably many pure types is a field Wedderburn showed in 1905 that finite fields are commutative As for infinite

More information

Mathematics Review for MS Finance Students

Mathematics Review for MS Finance Students Mathematics Review for MS Finance Students Anthony M. Marino Department of Finance and Business Economics Marshall School of Business Lecture 1: Introductory Material Sets The Real Number System Functions,

More information

IRREDUCIBLE OPERATOR SEMIGROUPS SUCH THAT AB AND BA ARE PROPORTIONAL. 1. Introduction

IRREDUCIBLE OPERATOR SEMIGROUPS SUCH THAT AB AND BA ARE PROPORTIONAL. 1. Introduction IRREDUCIBLE OPERATOR SEMIGROUPS SUCH THAT AB AND BA ARE PROPORTIONAL R. DRNOVŠEK, T. KOŠIR Dedicated to Prof. Heydar Radjavi on the occasion of his seventieth birthday. Abstract. Let S be an irreducible

More information

Comments on Quotient Spaces and Quotient Maps

Comments on Quotient Spaces and Quotient Maps 22M:132 Fall 07 J. Simon Comments on Quotient Spaces and Quotient Maps There are many situations in topology where we build a topological space by starting with some (often simpler) space[s] and doing

More information

Let H and J be as in the above lemma. The result of the lemma shows that the integral

Let H and J be as in the above lemma. The result of the lemma shows that the integral Let and be as in the above lemma. The result of the lemma shows that the integral ( f(x, y)dy) dx is well defined; we denote it by f(x, y)dydx. By symmetry, also the integral ( f(x, y)dx) dy is well defined;

More information

Math 115A HW4 Solutions University of California, Los Angeles. 5 2i 6 + 4i. (5 2i)7i (6 + 4i)( 3 + i) = 35i + 14 ( 22 6i) = 36 + 41i.

Math 115A HW4 Solutions University of California, Los Angeles. 5 2i 6 + 4i. (5 2i)7i (6 + 4i)( 3 + i) = 35i + 14 ( 22 6i) = 36 + 41i. Math 5A HW4 Solutions September 5, 202 University of California, Los Angeles Problem 4..3b Calculate the determinant, 5 2i 6 + 4i 3 + i 7i Solution: The textbook s instructions give us, (5 2i)7i (6 + 4i)(

More information

RIGIDITY OF HOLOMORPHIC MAPS BETWEEN FIBER SPACES

RIGIDITY OF HOLOMORPHIC MAPS BETWEEN FIBER SPACES RIGIDITY OF HOLOMORPHIC MAPS BETWEEN FIBER SPACES GAUTAM BHARALI AND INDRANIL BISWAS Abstract. In the study of holomorphic maps, the term rigidity refers to certain types of results that give us very specific

More information

Lecture Notes on Polynomials

Lecture Notes on Polynomials Lecture Notes on Polynomials Arne Jensen Department of Mathematical Sciences Aalborg University c 008 Introduction These lecture notes give a very short introduction to polynomials with real and complex

More information

GREATEST COMMON DIVISOR

GREATEST COMMON DIVISOR DEFINITION: GREATEST COMMON DIVISOR The greatest common divisor (gcd) of a and b, denoted by (a, b), is the largest common divisor of integers a and b. THEOREM: If a and b are nonzero integers, then their

More information

Zeros of Polynomial Functions

Zeros of Polynomial Functions Review: Synthetic Division Find (x 2-5x - 5x 3 + x 4 ) (5 + x). Factor Theorem Solve 2x 3-5x 2 + x + 2 =0 given that 2 is a zero of f(x) = 2x 3-5x 2 + x + 2. Zeros of Polynomial Functions Introduction

More information

Classification and Structure of Periodic Fatou Components

Classification and Structure of Periodic Fatou Components Classification and Structure of Periodic Fatou Components Senior Honors Thesis in Mathematics, Harvard College By Benjamin Dozier Adviser: Sarah Koch 3/19/2012 Abstract For a given rational map f : Ĉ Ĉ,

More information

DECOMPOSING SL 2 (R)

DECOMPOSING SL 2 (R) DECOMPOSING SL 2 R KEITH CONRAD Introduction The group SL 2 R is not easy to visualize: it naturally lies in M 2 R, which is 4- dimensional the entries of a variable 2 2 real matrix are 4 free parameters

More information

it is easy to see that α = a

it is easy to see that α = a 21. Polynomial rings Let us now turn out attention to determining the prime elements of a polynomial ring, where the coefficient ring is a field. We already know that such a polynomial ring is a UF. Therefore

More information

4.1 Modules, Homomorphisms, and Exact Sequences

4.1 Modules, Homomorphisms, and Exact Sequences Chapter 4 Modules We always assume that R is a ring with unity 1 R. 4.1 Modules, Homomorphisms, and Exact Sequences A fundamental example of groups is the symmetric group S Ω on a set Ω. By Cayley s Theorem,

More information

SOLUTIONS TO PROBLEM SET 3

SOLUTIONS TO PROBLEM SET 3 SOLUTIONS TO PROBLEM SET 3 MATTI ÅSTRAND The General Cubic Extension Denote L = k(α 1, α 2, α 3 ), F = k(a 1, a 2, a 3 ) and K = F (α 1 ). The polynomial f(x) = x 3 a 1 x 2 + a 2 x a 3 = (x α 1 )(x α 2

More information

ON GENERALIZED RELATIVE COMMUTATIVITY DEGREE OF A FINITE GROUP. A. K. Das and R. K. Nath

ON GENERALIZED RELATIVE COMMUTATIVITY DEGREE OF A FINITE GROUP. A. K. Das and R. K. Nath International Electronic Journal of Algebra Volume 7 (2010) 140-151 ON GENERALIZED RELATIVE COMMUTATIVITY DEGREE OF A FINITE GROUP A. K. Das and R. K. Nath Received: 12 October 2009; Revised: 15 December

More information

AXIOMS FOR INVARIANT FACTORS*

AXIOMS FOR INVARIANT FACTORS* PORTUGALIAE MATHEMATICA Vol 54 Fasc 3 1997 AXIOMS FOR INVARIANT FACTORS* João Filipe Queiró Abstract: We show that the invariant factors of matrices over certain types of rings are characterized by a short

More information

Galois Theory III. 3.1. Splitting fields.

Galois Theory III. 3.1. Splitting fields. Galois Theory III. 3.1. Splitting fields. We know how to construct a field extension L of a given field K where a given irreducible polynomial P (X) K[X] has a root. We need a field extension of K where

More information

Università degli Studi di Roma La Sapienza. Dottorato di Ricerca in Matematica XII ciclo

Università degli Studi di Roma La Sapienza. Dottorato di Ricerca in Matematica XII ciclo Università degli Studi di Roma La Sapienza Dottorato di Ricerca in Matematica XII ciclo tesi Cellular Automata and Finitely Generated Groups di Francesca Fiorenzi Dipartimento di Matematica Università

More information

MATH 423 Linear Algebra II Lecture 38: Generalized eigenvectors. Jordan canonical form (continued).

MATH 423 Linear Algebra II Lecture 38: Generalized eigenvectors. Jordan canonical form (continued). MATH 423 Linear Algebra II Lecture 38: Generalized eigenvectors Jordan canonical form (continued) Jordan canonical form A Jordan block is a square matrix of the form λ 1 0 0 0 0 λ 1 0 0 0 0 λ 0 0 J = 0

More information

Examples of Functions

Examples of Functions Chapter 3 Examples of Functions Obvious is the most dangerous word in mathematics. E. T. Bell 3.1 Möbius Transformations The first class of functions that we will discuss in some detail are built from

More information

Chapter 13: Basic ring theory

Chapter 13: Basic ring theory Chapter 3: Basic ring theory Matthew Macauley Department of Mathematical Sciences Clemson University http://www.math.clemson.edu/~macaule/ Math 42, Spring 24 M. Macauley (Clemson) Chapter 3: Basic ring

More information

FIBER PRODUCTS AND ZARISKI SHEAVES

FIBER PRODUCTS AND ZARISKI SHEAVES FIBER PRODUCTS AND ZARISKI SHEAVES BRIAN OSSERMAN 1. Fiber products and Zariski sheaves We recall the definition of a fiber product: Definition 1.1. Let C be a category, and X, Y, Z objects of C. Fix also

More information

CS 688 Pattern Recognition Lecture 4. Linear Models for Classification

CS 688 Pattern Recognition Lecture 4. Linear Models for Classification CS 688 Pattern Recognition Lecture 4 Linear Models for Classification Probabilistic generative models Probabilistic discriminative models 1 Generative Approach ( x ) p C k p( C k ) Ck p ( ) ( x Ck ) p(

More information

Lecture 1: Schur s Unitary Triangularization Theorem

Lecture 1: Schur s Unitary Triangularization Theorem Lecture 1: Schur s Unitary Triangularization Theorem This lecture introduces the notion of unitary equivalence and presents Schur s theorem and some of its consequences It roughly corresponds to Sections

More information

MICROLOCAL ANALYSIS OF THE BOCHNER-MARTINELLI INTEGRAL

MICROLOCAL ANALYSIS OF THE BOCHNER-MARTINELLI INTEGRAL PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY Volume 00, Number 0, Pages 000 000 S 0002-9939(XX)0000-0 MICROLOCAL ANALYSIS OF THE BOCHNER-MARTINELLI INTEGRAL NIKOLAI TARKHANOV AND NIKOLAI VASILEVSKI

More information

Mathematics Course 111: Algebra I Part IV: Vector Spaces

Mathematics Course 111: Algebra I Part IV: Vector Spaces Mathematics Course 111: Algebra I Part IV: Vector Spaces D. R. Wilkins Academic Year 1996-7 9 Vector Spaces A vector space over some field K is an algebraic structure consisting of a set V on which are

More information

GROUPS ACTING ON A SET

GROUPS ACTING ON A SET GROUPS ACTING ON A SET MATH 435 SPRING 2012 NOTES FROM FEBRUARY 27TH, 2012 1. Left group actions Definition 1.1. Suppose that G is a group and S is a set. A left (group) action of G on S is a rule for

More information

EXERCISES FOR THE COURSE MATH 570, FALL 2010

EXERCISES FOR THE COURSE MATH 570, FALL 2010 EXERCISES FOR THE COURSE MATH 570, FALL 2010 EYAL Z. GOREN (1) Let G be a group and H Z(G) a subgroup such that G/H is cyclic. Prove that G is abelian. Conclude that every group of order p 2 (p a prime

More information

RAJALAKSHMI ENGINEERING COLLEGE MA 2161 UNIT I - ORDINARY DIFFERENTIAL EQUATIONS PART A

RAJALAKSHMI ENGINEERING COLLEGE MA 2161 UNIT I - ORDINARY DIFFERENTIAL EQUATIONS PART A RAJALAKSHMI ENGINEERING COLLEGE MA 26 UNIT I - ORDINARY DIFFERENTIAL EQUATIONS. Solve (D 2 + D 2)y = 0. 2. Solve (D 2 + 6D + 9)y = 0. PART A 3. Solve (D 4 + 4)x = 0 where D = d dt 4. Find Particular Integral:

More information

Introduction to Modern Algebra

Introduction to Modern Algebra Introduction to Modern Algebra David Joyce Clark University Version 0.0.6, 3 Oct 2008 1 1 Copyright (C) 2008. ii I dedicate this book to my friend and colleague Arthur Chou. Arthur encouraged me to write

More information

The cover SU(2) SO(3) and related topics

The cover SU(2) SO(3) and related topics The cover SU(2) SO(3) and related topics Iordan Ganev December 2011 Abstract The subgroup U of unit quaternions is isomorphic to SU(2) and is a double cover of SO(3). This allows a simple computation of

More information

8.1 Examples, definitions, and basic properties

8.1 Examples, definitions, and basic properties 8 De Rham cohomology Last updated: May 21, 211. 8.1 Examples, definitions, and basic properties A k-form ω Ω k (M) is closed if dω =. It is exact if there is a (k 1)-form σ Ω k 1 (M) such that dσ = ω.

More information

3. Prime and maximal ideals. 3.1. Definitions and Examples.

3. Prime and maximal ideals. 3.1. Definitions and Examples. COMMUTATIVE ALGEBRA 5 3.1. Definitions and Examples. 3. Prime and maximal ideals Definition. An ideal P in a ring A is called prime if P A and if for every pair x, y of elements in A\P we have xy P. Equivalently,

More information

Introduction to Finite Fields (cont.)

Introduction to Finite Fields (cont.) Chapter 6 Introduction to Finite Fields (cont.) 6.1 Recall Theorem. Z m is a field m is a prime number. Theorem (Subfield Isomorphic to Z p ). Every finite field has the order of a power of a prime number

More information

Lecture 18 - Clifford Algebras and Spin groups

Lecture 18 - Clifford Algebras and Spin groups Lecture 18 - Clifford Algebras and Spin groups April 5, 2013 Reference: Lawson and Michelsohn, Spin Geometry. 1 Universal Property If V is a vector space over R or C, let q be any quadratic form, meaning

More information

2x 2x 2 8x. Now, let s work backwards to FACTOR. We begin by placing the terms of the polynomial inside the cells of the box. 2x 2

2x 2x 2 8x. Now, let s work backwards to FACTOR. We begin by placing the terms of the polynomial inside the cells of the box. 2x 2 Activity 23 Math 40 Factoring using the BOX Team Name (optional): Your Name: Partner(s): 1. (2.) Task 1: Factoring out the greatest common factor Mini Lecture: Factoring polynomials is our focus now. Factoring

More information

Linear Algebra. A vector space (over R) is an ordered quadruple. such that V is a set; 0 V ; and the following eight axioms hold:

Linear Algebra. A vector space (over R) is an ordered quadruple. such that V is a set; 0 V ; and the following eight axioms hold: Linear Algebra A vector space (over R) is an ordered quadruple (V, 0, α, µ) such that V is a set; 0 V ; and the following eight axioms hold: α : V V V and µ : R V V ; (i) α(α(u, v), w) = α(u, α(v, w)),

More information

9 More on differentiation

9 More on differentiation Tel Aviv University, 2013 Measure and category 75 9 More on differentiation 9a Finite Taylor expansion............... 75 9b Continuous and nowhere differentiable..... 78 9c Differentiable and nowhere monotone......

More information

Lecture 13 Linear quadratic Lyapunov theory

Lecture 13 Linear quadratic Lyapunov theory EE363 Winter 28-9 Lecture 13 Linear quadratic Lyapunov theory the Lyapunov equation Lyapunov stability conditions the Lyapunov operator and integral evaluating quadratic integrals analysis of ARE discrete-time

More information

Modern Optimization Methods for Big Data Problems MATH11146 The University of Edinburgh

Modern Optimization Methods for Big Data Problems MATH11146 The University of Edinburgh Modern Optimization Methods for Big Data Problems MATH11146 The University of Edinburgh Peter Richtárik Week 3 Randomized Coordinate Descent With Arbitrary Sampling January 27, 2016 1 / 30 The Problem

More information

Naishul s Theorem for fibered holomorphic maps

Naishul s Theorem for fibered holomorphic maps Naishul s Theorem for fibered holomorphic maps Mario Ponce May 4, 2011 Abstract We show that the fibered rotation number associated to an indifferent invariant curve for a fibered holomorphic map is a

More information

FOUNDATIONS OF ALGEBRAIC GEOMETRY CLASS 22

FOUNDATIONS OF ALGEBRAIC GEOMETRY CLASS 22 FOUNDATIONS OF ALGEBRAIC GEOMETRY CLASS 22 RAVI VAKIL CONTENTS 1. Discrete valuation rings: Dimension 1 Noetherian regular local rings 1 Last day, we discussed the Zariski tangent space, and saw that it

More information

Linear Maps. Isaiah Lankham, Bruno Nachtergaele, Anne Schilling (February 5, 2007)

Linear Maps. Isaiah Lankham, Bruno Nachtergaele, Anne Schilling (February 5, 2007) MAT067 University of California, Davis Winter 2007 Linear Maps Isaiah Lankham, Bruno Nachtergaele, Anne Schilling (February 5, 2007) As we have discussed in the lecture on What is Linear Algebra? one of

More information

MATH 590: Meshfree Methods

MATH 590: Meshfree Methods MATH 590: Meshfree Methods Chapter 7: Conditionally Positive Definite Functions Greg Fasshauer Department of Applied Mathematics Illinois Institute of Technology Fall 2010 fasshauer@iit.edu MATH 590 Chapter

More information

BANACH AND HILBERT SPACE REVIEW

BANACH AND HILBERT SPACE REVIEW BANACH AND HILBET SPACE EVIEW CHISTOPHE HEIL These notes will briefly review some basic concepts related to the theory of Banach and Hilbert spaces. We are not trying to give a complete development, but

More information

PRE-CALCULUS GRADE 12

PRE-CALCULUS GRADE 12 PRE-CALCULUS GRADE 12 [C] Communication Trigonometry General Outcome: Develop trigonometric reasoning. A1. Demonstrate an understanding of angles in standard position, expressed in degrees and radians.

More information

Chapter 7. Permutation Groups

Chapter 7. Permutation Groups Chapter 7 Permutation Groups () We started the study of groups by considering planar isometries In the previous chapter, we learnt that finite groups of planar isometries can only be cyclic or dihedral

More information

Brownian motion on the space of univalent functions via Brownian motion on (S )

Brownian motion on the space of univalent functions via Brownian motion on (S ) Brownian motion on the space of univalent functions via Brownian motion on (S ) Jürgen Angst 1 d après Airault, Fang, Malliavin, Thalmaier etc. Winter Workshop Les Diablerets, February 2010 1 Some probabilistic

More information

How To Know The Limit Set Of A Fuchsian Group On A Boundary Of A Hyperbolic Plane

How To Know The Limit Set Of A Fuchsian Group On A Boundary Of A Hyperbolic Plane Reading material on the limit set of a Fuchsian group Recommended texts Many books on hyperbolic geometry and Kleinian and Fuchsian groups contain material about limit sets. The presentation given here

More information

Linear Algebra I. Ronald van Luijk, 2012

Linear Algebra I. Ronald van Luijk, 2012 Linear Algebra I Ronald van Luijk, 2012 With many parts from Linear Algebra I by Michael Stoll, 2007 Contents 1. Vector spaces 3 1.1. Examples 3 1.2. Fields 4 1.3. The field of complex numbers. 6 1.4.

More information

ALGEBRA HW 5 CLAY SHONKWILER

ALGEBRA HW 5 CLAY SHONKWILER ALGEBRA HW 5 CLAY SHONKWILER 510.5 Let F = Q(i). Prove that x 3 and x 3 3 are irreducible over F. Proof. If x 3 is reducible over F then, since it is a polynomial of degree 3, it must reduce into a product

More information

ON TORI TRIANGULATIONS ASSOCIATED WITH TWO-DIMENSIONAL CONTINUED FRACTIONS OF CUBIC IRRATIONALITIES.

ON TORI TRIANGULATIONS ASSOCIATED WITH TWO-DIMENSIONAL CONTINUED FRACTIONS OF CUBIC IRRATIONALITIES. ON TORI TRIANGULATIONS ASSOCIATED WITH TWO-DIMENSIONAL CONTINUED FRACTIONS OF CUBIC IRRATIONALITIES. O. N. KARPENKOV Introduction. A series of properties for ordinary continued fractions possesses multidimensional

More information

arxiv:math/0501161v1 [math.ds] 11 Jan 2005

arxiv:math/0501161v1 [math.ds] 11 Jan 2005 ANALYTICITY OF THE SUSCEPTIBILITY FUNCTION FOR UNIMODAL MARKOVIAN MAPS OF THE INTERVAL. by Yunping iang* and David Ruelle**. arxiv:math/0501161v1 [math.ds] 11 an 2005 Abstract. We study the expression

More information

16.3 Fredholm Operators

16.3 Fredholm Operators Lectures 16 and 17 16.3 Fredholm Operators A nice way to think about compact operators is to show that set of compact operators is the closure of the set of finite rank operator in operator norm. In this

More information

COMMUTATIVITY DEGREES OF WREATH PRODUCTS OF FINITE ABELIAN GROUPS

COMMUTATIVITY DEGREES OF WREATH PRODUCTS OF FINITE ABELIAN GROUPS Bull Austral Math Soc 77 (2008), 31 36 doi: 101017/S0004972708000038 COMMUTATIVITY DEGREES OF WREATH PRODUCTS OF FINITE ABELIAN GROUPS IGOR V EROVENKO and B SURY (Received 12 April 2007) Abstract We compute

More information

4.3 Lagrange Approximation

4.3 Lagrange Approximation 206 CHAP. 4 INTERPOLATION AND POLYNOMIAL APPROXIMATION Lagrange Polynomial Approximation 4.3 Lagrange Approximation Interpolation means to estimate a missing function value by taking a weighted average

More information

FINITE DIMENSIONAL ORDERED VECTOR SPACES WITH RIESZ INTERPOLATION AND EFFROS-SHEN S UNIMODULARITY CONJECTURE AARON TIKUISIS

FINITE DIMENSIONAL ORDERED VECTOR SPACES WITH RIESZ INTERPOLATION AND EFFROS-SHEN S UNIMODULARITY CONJECTURE AARON TIKUISIS FINITE DIMENSIONAL ORDERED VECTOR SPACES WITH RIESZ INTERPOLATION AND EFFROS-SHEN S UNIMODULARITY CONJECTURE AARON TIKUISIS Abstract. It is shown that, for any field F R, any ordered vector space structure

More information

Au = = = 3u. Aw = = = 2w. so the action of A on u and w is very easy to picture: it simply amounts to a stretching by 3 and 2, respectively.

Au = = = 3u. Aw = = = 2w. so the action of A on u and w is very easy to picture: it simply amounts to a stretching by 3 and 2, respectively. Chapter 7 Eigenvalues and Eigenvectors In this last chapter of our exploration of Linear Algebra we will revisit eigenvalues and eigenvectors of matrices, concepts that were already introduced in Geometry

More information

Notes 11: List Decoding Folded Reed-Solomon Codes

Notes 11: List Decoding Folded Reed-Solomon Codes Introduction to Coding Theory CMU: Spring 2010 Notes 11: List Decoding Folded Reed-Solomon Codes April 2010 Lecturer: Venkatesan Guruswami Scribe: Venkatesan Guruswami At the end of the previous notes,

More information

SOLVING POLYNOMIAL EQUATIONS

SOLVING POLYNOMIAL EQUATIONS C SOLVING POLYNOMIAL EQUATIONS We will assume in this appendix that you know how to divide polynomials using long division and synthetic division. If you need to review those techniques, refer to an algebra

More information

Classification of Bundles

Classification of Bundles CHAPTER 2 Classification of Bundles In this chapter we prove Steenrod s classification theorem of principal G - bundles, and the corresponding classification theorem of vector bundles. This theorem states

More information

F. ABTAHI and M. ZARRIN. (Communicated by J. Goldstein)

F. ABTAHI and M. ZARRIN. (Communicated by J. Goldstein) Journal of Algerian Mathematical Society Vol. 1, pp. 1 6 1 CONCERNING THE l p -CONJECTURE FOR DISCRETE SEMIGROUPS F. ABTAHI and M. ZARRIN (Communicated by J. Goldstein) Abstract. For 2 < p

More information

COMMUTATIVITY DEGREES OF WREATH PRODUCTS OF FINITE ABELIAN GROUPS

COMMUTATIVITY DEGREES OF WREATH PRODUCTS OF FINITE ABELIAN GROUPS COMMUTATIVITY DEGREES OF WREATH PRODUCTS OF FINITE ABELIAN GROUPS IGOR V. EROVENKO AND B. SURY ABSTRACT. We compute commutativity degrees of wreath products A B of finite abelian groups A and B. When B

More information

The Notebook Series. The solution of cubic and quartic equations. R.S. Johnson. Professor of Applied Mathematics

The Notebook Series. The solution of cubic and quartic equations. R.S. Johnson. Professor of Applied Mathematics The Notebook Series The solution of cubic and quartic equations by R.S. Johnson Professor of Applied Mathematics School of Mathematics & Statistics University of Newcastle upon Tyne R.S.Johnson 006 CONTENTS

More information

BERS EMBEDDING OF THE TEICHMÜLLER SPACE OF A ONCE-PUNCTURED TORUS

BERS EMBEDDING OF THE TEICHMÜLLER SPACE OF A ONCE-PUNCTURED TORUS CONFORMAL GEOMETRY AND DYNAMICS An Electronic Journal of the American Mathematical Society Volume 8, Pages 115 142 (June 8, 2004) S 1088-4173(04)00108-0 BERS EMBEDDING OF THE TEICHMÜLLER SPACE OF A ONCE-PUNCTURED

More information

Imprecise probabilities, bets and functional analytic methods in Łukasiewicz logic.

Imprecise probabilities, bets and functional analytic methods in Łukasiewicz logic. Imprecise probabilities, bets and functional analytic methods in Łukasiewicz logic. Martina Fedel joint work with K.Keimel,F.Montagna,W.Roth Martina Fedel (UNISI) 1 / 32 Goal The goal of this talk is to

More information

9 MATRICES AND TRANSFORMATIONS

9 MATRICES AND TRANSFORMATIONS 9 MATRICES AND TRANSFORMATIONS Chapter 9 Matrices and Transformations Objectives After studying this chapter you should be able to handle matrix (and vector) algebra with confidence, and understand the

More information

INTERACTION OF TWO CHARGES IN A UNIFORM MAGNETIC FIELD: II. SPATIAL PROBLEM

INTERACTION OF TWO CHARGES IN A UNIFORM MAGNETIC FIELD: II. SPATIAL PROBLEM INTERACTION OF TWO CHARGES IN A UNIFORM MAGNETIC FIELD: II. SPATIAL PROBLEM D. PINHEIRO AND R. S. MACKAY Dedicated to the memory of John Greene. Abstract. The interaction of two charges moving in R 3 in

More information

4.1. COMPLEX NUMBERS

4.1. COMPLEX NUMBERS 4.1. COMPLEX NUMBERS What You Should Learn Use the imaginary unit i to write complex numbers. Add, subtract, and multiply complex numbers. Use complex conjugates to write the quotient of two complex numbers

More information