# INTRODUCING THE NORMAL DISTRIBUTION IN A DATA ANALYSIS COURSE: SPECIFIC MEANING CONTRIBUTED BY THE USE OF COMPUTERS

Save this PDF as:

Size: px
Start display at page:

Download "INTRODUCING THE NORMAL DISTRIBUTION IN A DATA ANALYSIS COURSE: SPECIFIC MEANING CONTRIBUTED BY THE USE OF COMPUTERS"

## Transcription

1 INTRODUCING THE NORMAL DISTRIBUTION IN A DATA ANALYSIS COURSE: SPECIFIC MEANING CONTRIBUTED BY THE USE OF COMPUTERS Liliana Tauber Universidad Nacional del Litoral Argentina Victoria Sánchez Universidad de Sevilla España In this work, we describe the elements of meaning related to normal distribution, which appear in a data analysis course based on the use of computers. The course was directed to students in their first year of university studies. We study the elements implemented in a teaching unit for the normal distribution in which computers were introduced as a didactic tool. We pay special attention to the specific meaning conveyed by the use of computers as well as to the meaning attributed by the students throughout the teaching sequence. INTRODUCTION One main problem in an introductory statistics course at university level is making the transition from data analysis to inference (Moore, 1997). The scarce time available and the students poor previous knowledge make a complete study of probability difficult. It is necessary, however, to provide the students with an intuitive knowledge about probability distributions, since the difficulties in understanding these distributions might lead to errors in the application of inferential procedures, such as interval estimation or hypothesis testing. In this paper, we will focus on the normal distribution. The relevance of the normal distribution in statistics has been highlighted by different authors, who remark on its role as a link between descriptive and inferential statistics. Cohen and Chechile (1997) also suggested that the normal distribution is an important topic, even in an introductory course and that statistical software can be used as a tool to make data analysis more accessible and to facilitate the teaching of this distribution. THEORETICAL FRAMEWORK A basic epistemological assumption in our theoretical perspective (Godino, 1999) is that mathematical objects (for example, the normal distribution) emerge from problem solving activity mediated by the semiotic tools that are available in specific institutional contexts. The meaning of mathematical objects is then conceived as the system of practices related to specific problem fields and five different types of elements are distinguished: 1. Extensive elements: The situations and problems from which the object emerges. 2. Ostensive elements: The semiotic tools available to represent or to operate with the problems and objects involved. 3. Actuative elements: Procedures and strategies to solve the problems. 4. Intensive elements: Characteristic properties and relations to other object such as definitions and theorems. 5. Validative elements: Arguments that serve to justify or to validate the solutions. Based on this semiotic-cognitive perspective (Godino, 1999) and before implementing the teaching sequence, we analyzed some textbooks directed to Human and Social Sciences students, to identify the elements of meaning that commonly appear in the study of normal distributions (Batanero, Tauber, & Meyer, 1999; Tauber, Batanero, & Sánchez, 2000). This was considered the institutional meaning of reference. From the results of this analysis, we selected the elements of meaning that were better suited to our didactical approach. We also added those elements that were specific from introducing the computer in the teaching (more detail will be given later). Once these elements were determined, we designed activities to be solved with the computer and other traditional activities, and organized a teaching sequence with them. 1

3 elements. In the next section, we describe the different types of meaning considered in our research, which served to characterize the teaching experiment. PREDICTED INSTITUTIONAL MEANING Following the categorization of elements in our theoretical frame, we have considered the following elements of meaning in our didactical sequence: Extensive elements: Problem fields and contexts. We considered the following problem fields that lead to the normal distribution: P1. Fitting a curve to frequency histograms or polygons for an empirical data distribution, as an approximated theoretical model in fields such as Psychology, Biometry, or Theory of errors. P2. Approximation of discrete distributions in variables with many different values; for example in the binomial distribution for a high value of the n parameter. These problems were proposed in diverse contexts in agreement with the students interest. Working with data files served to create open-ended problems and to introduce a multivariate and exploratory philosophy in the analysis of data. In this way, we were able to work with rich tasks, where diverse elements of meaning were integrated, and to establish more complex relations among these elements. Ostensive elements: Representations. The following types of representations of the abstract objects were used, with a double symbolic and instrumental function: Graphical and numerical representations in traditional support. Frequency histograms, polygons, density trace, box-plot and stem and leaf display, representation of tail areas in the normal curve, representation of the central intervals in a normal curve, frequency tabulation and statistical summaries of central tendency, dispersion and shape. Verbal and symbolic representations of normal distributions in traditional support. Words such as normal, statistics, parameter, density function, symbolic representations, etc. Representations that are specific to the computer. The use of software offered a great variety of representations, both numerical and graphical, that can simultaneously appear on the computer screen. In addition to the usual representations previously described, it was possible to represent several density functions or the frequency histogram superimposed on the density trace in the same reference framework. Numerical analyses based on the study of the critical values and tails areas for any normal distribution were made, whereas in textbooks they are only offered for the standard normal distribution. This variety of representations facilitates the data analysis, although it involves a higher semiotic complexity. Actuative elements: Specific techniques to solve problems. The computer served to introduce the following types of strategies and procedures to solve the above problems: A1. Descriptive study. The computer was used to produce various numerical and graphical analyses with the purpose of determining the goodness of fit between the frequency histogram or polygon and the density curve, and to decide if the given variable could be well approximated by a normal distribution. A2. Standardizing. This was only used to compare distributions with different means and standard deviations. A3. Computing probabilities and critical values. The computer served to introduce two computation procedures: 1. Given one or two variable values, computing the probability that the variable falls in the interval determined by that or those points (tail areas). 2. Given a probability, finding the limits of the interval including this probability (critical values computation). A4. Visual comparison. This is an important element contributed by the computer. The frequency histogram or polygon shape can be visually compared to the density curve and, in this way the empirical distribution the goodness of fit to the normal one can be graphically assessed. 3

4 Other practices were: changing the numbers of intervals in the histogram, changing the parameters, and computing the limits of central intervals that include a given percentage of cases. Intensive elements: Definition, properties and relation to other concepts. The computer was used to introduce the normal distribution by means of simulation, using a data set referring to the intelligence coefficient for a group of students. The normal distribution was presented as a model that approaches the relative frequency polygon when the sample size is increased and the width of intervals is diminished. This served to study the following properties: Symmetry and kurtosis: relative position of mean, median and mode, interpretation of asymmetry and kurtosis coefficients, area below and on the mean, central intervals probability. Properties related to the normal distribution parameters: relation between the standard deviation and the curve inflexion points, geometric meaning of parameters, variation of the curve of density with variation of parameters. Statistical properties: total probability under the curve, property of central intervals. Relation with other concepts: statistical and random variable, empirical and theoretical distribution, measures of central position, dispersion, symmetry, etc. Validative elements: Types of proofs and arguments. In presenting the subject we avoided excessive formalization, using some types of validation that are not computer specific, such as: Verifying some cases. Particular cases were used to verify some properties. Generalization: With formal or informal arguments the students reached general conclusions that extended particular initial cases. Analysis: Discovering the peculiarity or initial features in a situation that can later lead to generalization or synthesis. Synthesis: When a conclusion is made from all the properties or conclusions drawn in the analysis phase or where several elements of meaning are included. Validation by use of graphical representation and simulation. The computer served to produce validations based on graphical representations of the empirical distributions and on simulations of fitting normal distributions. PERSONAL AND INSTITUTIONAL OBSERVED MEANING Focusing on the computer lab session, the analysis of observations showed some difficulties in the use of computers, such as errors in using the secondary menus, which lead to take the default options, which are not always appropriate to solve the task. In these sessions, the progression in learning and relating the diverse elements of meaning was not clear. This was possibly due to the fact that new elements of meaning were introduced in each session, and many students did not have the time necessary to achieve a meaningful understanding of these elements, and the relations among them. Different analysis situations and very different variables were considered in each computer lab session, which required the application of very different relations between the elements of meaning for each task. All this implies the integration of the elements, which entails a great semiotic complexity and this causes the tasks to be more significant but also more complex. These results were considered in the study of the students personal meaning that they constructed in the didactic sequence. Below we will first focus in the form in which the elements of meaning incorporated by the use of the computer appear in these personal meanings. On the other hand, we will describe the difficulties observed in relating these elements of meaning. We will use a qualitative approach, due to the exploratory character of this study. Extensive Elements Introducing the computer allowed us to use some data sets variables to study the fitting of empirical distributions to the model. We worked with a counterexample, taking a discreet distribution with few values that was not well approximated by a normal distribution. 4

6 software options (ostensive elements), secondly they need to make calculations with the computer and by hand (actuative elements). Once they obtain the results they need to interpret frequencies, intervals and percentages (intensive elements). Finally, they have to integrate all these elements making a synthesis (validative element) to justify the final conclusion. In general, the students failed when applying this property because they made mistakes in the application of some of these elements. For this reason and because this process was too complicated, they decided to analyze other properties or characteristics where using such a great diversity of elements is not needed. CONCLUSIONS The results obtained show the complexity of the concept "normal distribution", the understanding of which requires understanding of the different meaning elements and relating them to the problem fields where the normal distribution is applied. Our study has shown that the use of computers is not trivial. On the one hand, the computer presents specific difficulties that should initially be considered, since they can interfere in the introduction of the specific concepts. On the other hand, the use of the computer incorporates new meaning elements or new approaches of them that in general increases the semiotic complexity of each property or concept. Consequently, we should be conscious of this and consider these particularities when planning the teaching. In addition, the computer facilitates the simultaneous working with many elements. This fact is positive in the sense that time of representation is reduced, and can be spent in the interpretation of each element. However, we should realize that providing simultaneously a great amount of information could increase the difficulty to obtain a coherent integration of all the implicit meaning elements. All of this warns us to be cautious with the possibilities and problems that the use of the computer in teaching Statistics involves. We believe that the complexity of statistics education, increased by the introduction of computers should be studied in future Statistical Education research. REFERENCES Batanero, C., Tauber, L., & Meyer, R. (1999). From data analysis to inference: A research project on the teaching of normal distributions. Proceedings of the 52 nd Session of the ISI. Helsinki. Ben-Zvi, D., & Friedlander, A. (1997). Statistical thinking in a technological environment. In J.B. Garfield, and G. Burrill (Eds.). Proceedings of the IASE 1996 Round Table Conference (pp ). Voorburg: ISI and IASE Cohen, S., & Chechile, R. (1997). Overview of ConStats and the ConStats assessment. In J.B. Garfield and G. Burrill, (Eds.). Proceedings of the IASE 1996 Round Table Conference. (pp ). Voorburg: ISI and IASE. Godino, J.D. (1999). Implicaciones metodológicas de un enfoque semiótico-antropológico para la investigación en didáctica de la matemática. In T. Ortega (Ed.), Actas del III Simposio de la SEIEM (pp ). Valladolid. Moore, D.S. (1997). New pedagogy and new content: the case of statistics. International Statistical Review, 65(2), Tauber, L., Batanero, C., & Sánchez, V. (2000). Comprensión de la distribución normal en estudiantes universitarios. In C. Loureiro, F. Oliveira, and L. Brunheira (Eds.), Ensino e Aprendizagem da Estatística. (pp ). Lisboa: SPE, APM y Universidad de Lisboa. 6

### The Big 50 Revision Guidelines for S1

The Big 50 Revision Guidelines for S1 If you can understand all of these you ll do very well 1. Know what is meant by a statistical model and the Modelling cycle of continuous refinement 2. Understand

### Content DESCRIPTIVE STATISTICS. Data & Statistic. Statistics. Example: DATA VS. STATISTIC VS. STATISTICS

Content DESCRIPTIVE STATISTICS Dr Najib Majdi bin Yaacob MD, MPH, DrPH (Epidemiology) USM Unit of Biostatistics & Research Methodology School of Medical Sciences Universiti Sains Malaysia. Introduction

### Lecture 2: Descriptive Statistics and Exploratory Data Analysis

Lecture 2: Descriptive Statistics and Exploratory Data Analysis Further Thoughts on Experimental Design 16 Individuals (8 each from two populations) with replicates Pop 1 Pop 2 Randomly sample 4 individuals

### Statistics and Probability in High School

Statistics and Probability in High School Carmen Batanero Universidad de Granada, Spain and Manfred Borovcnik University of Klagenfurt, Austria Statistics and probability are fascinating fields, tightly

### MEANINGS CONSTRUCTION ABOUT SAMPLING DISTRIBUTIONS IN A DYNAMIC STATISTICS ENVIRONMENT

MEANINGS CONSTRUCTION ABOUT SAMPLING DISTRIBUTIONS IN A DYNAMIC STATISTICS ENVIRONMENT Ernesto Sánchez CINVESTAV-IPN, México Santiago Inzunza Autonomous University of Sinaloa, México esanchez@cinvestav.mx

### Fairfield Public Schools

Mathematics Fairfield Public Schools AP Statistics AP Statistics BOE Approved 04/08/2014 1 AP STATISTICS Critical Areas of Focus AP Statistics is a rigorous course that offers advanced students an opportunity

### Statistics I for QBIC. Contents and Objectives. Chapters 1 7. Revised: August 2013

Statistics I for QBIC Text Book: Biostatistics, 10 th edition, by Daniel & Cross Contents and Objectives Chapters 1 7 Revised: August 2013 Chapter 1: Nature of Statistics (sections 1.1-1.6) Objectives

### INTRODUCING DATA ANALYSIS IN A STATISTICS COURSE IN ENVIRONMENTAL SCIENCE STUDIES

INTRODUCING DATA ANALYSIS IN A STATISTICS COURSE IN ENVIRONMENTAL SCIENCE STUDIES C. Capilla Technical University of Valencia, Spain CCAPILLA@EIO.UPV.ES Education in methods of applied statistics is important

### Quantitative Methods for Finance

Quantitative Methods for Finance Module 1: The Time Value of Money 1 Learning how to interpret interest rates as required rates of return, discount rates, or opportunity costs. 2 Learning how to explain

### A Correlation of. to the. South Carolina Data Analysis and Probability Standards

A Correlation of to the South Carolina Data Analysis and Probability Standards INTRODUCTION This document demonstrates how Stats in Your World 2012 meets the indicators of the South Carolina Academic Standards

### HIGH SCHOOL TEACHERS REASONING ABOUT DATA ANALYSIS IN A DYNAMICS STATISTICAL ENVIRONMENT

HIGH SCHOOL TEACHERS REASONING ABOUT DATA ANALYSIS IN A DYNAMICS STATISTICAL ENVIRONMENT Santiago Inzunsa and José A. Juárez Universidad Autónoma de Sinaloa, México sinzunza@uas.uasnet.mx In this article

### Business Statistics. Successful completion of Introductory and/or Intermediate Algebra courses is recommended before taking Business Statistics.

Business Course Text Bowerman, Bruce L., Richard T. O'Connell, J. B. Orris, and Dawn C. Porter. Essentials of Business, 2nd edition, McGraw-Hill/Irwin, 2008, ISBN: 978-0-07-331988-9. Required Computing

### Lecture 1: Review and Exploratory Data Analysis (EDA)

Lecture 1: Review and Exploratory Data Analysis (EDA) Sandy Eckel seckel@jhsph.edu Department of Biostatistics, The Johns Hopkins University, Baltimore USA 21 April 2008 1 / 40 Course Information I Course

### DESCRIPTIVE STATISTICS AND EXPLORATORY DATA ANALYSIS

DESCRIPTIVE STATISTICS AND EXPLORATORY DATA ANALYSIS SEEMA JAGGI Indian Agricultural Statistics Research Institute Library Avenue, New Delhi - 110 012 seema@iasri.res.in 1. Descriptive Statistics Statistics

### STUDENTS PROBABILSTIC SIMULATION AND MODELING COMPETENCE AFTER A COMPUTER-INTENSIVE ELEMENTARY COURSE IN STATISTICS AND PROBABILITY

STUDENTS PROBABILSTIC SIMULATION AND MODELING COMPETENCE AFTER A COMPUTER-INTENSIVE ELEMENTARY COURSE IN STATISTICS AND PROBABILITY Carmen Maxara and Rolf Biehler University of Kassel, Germany carmen@mathematik.uni-kassel.de

### Describe what is meant by a placebo Contrast the double-blind procedure with the single-blind procedure Review the structure for organizing a memo

Readings: Ha and Ha Textbook - Chapters 1 8 Appendix D & E (online) Plous - Chapters 10, 11, 12 and 14 Chapter 10: The Representativeness Heuristic Chapter 11: The Availability Heuristic Chapter 12: Probability

### MAT 12O ELEMENTARY STATISTICS I

LAGUARDIA COMMUNITY COLLEGE CITY UNIVERSITY OF NEW YORK DEPARTMENT OF MATHEMATICS, ENGINEERING, AND COMPUTER SCIENCE MAT 12O ELEMENTARY STATISTICS I 3 Lecture Hours, 1 Lab Hour, 3 Credits Pre-Requisite:

### International College of Economics and Finance Syllabus Probability Theory and Introductory Statistics

International College of Economics and Finance Syllabus Probability Theory and Introductory Statistics Lecturer: Mikhail Zhitlukhin. 1. Course description Probability Theory and Introductory Statistics

### AN ELECTRONIC LEARNING ENVIRONMENT FOR APPLIED STATISTICS: QUALITY CARE AND STATISTICS EDUCATION IN HIGHER EDUCATION

AN ELECTRONIC LEARNING ENVIRONMENT FOR APPLIED STATISTICS: QUALITY CARE AND STATISTICS EDUCATION IN HIGHER EDUCATION Gilberte Schuyten and Hannelore Dekeyser, Department of Data-Analysis, University of

### Chapter 3: Data Description Numerical Methods

Chapter 3: Data Description Numerical Methods Learning Objectives Upon successful completion of Chapter 3, you will be able to: Summarize data using measures of central tendency, such as the mean, median,

### Descriptive Statistics and Exploratory Data Analysis

Descriptive Statistics and Exploratory Data Analysis Dean s s Faculty and Resident Development Series UT College of Medicine Chattanooga Probasco Auditorium at Erlanger January 14, 2008 Marc Loizeaux,

### Course Text. Required Computing Software. Course Description. Course Objectives. StraighterLine. Business Statistics

Course Text Business Statistics Lind, Douglas A., Marchal, William A. and Samuel A. Wathen. Basic Statistics for Business and Economics, 7th edition, McGraw-Hill/Irwin, 2010, ISBN: 9780077384470 [This

### Prentice Hall Algebra 2 2011 Correlated to: Colorado P-12 Academic Standards for High School Mathematics, Adopted 12/2009

Content Area: Mathematics Grade Level Expectations: High School Standard: Number Sense, Properties, and Operations Understand the structure and properties of our number system. At their most basic level

### III. GRAPHICAL METHODS

Pie Charts and Bar Charts: III. GRAPHICAL METHODS Pie charts and bar charts are used for depicting frequencies or relative frequencies. We compare examples of each using the same data. Sources: AT&T (1961)

### BNG 202 Biomechanics Lab. Descriptive statistics and probability distributions I

BNG 202 Biomechanics Lab Descriptive statistics and probability distributions I Overview The overall goal of this short course in statistics is to provide an introduction to descriptive and inferential

### Why Taking This Course? Course Introduction, Descriptive Statistics and Data Visualization. Learning Goals. GENOME 560, Spring 2012

Why Taking This Course? Course Introduction, Descriptive Statistics and Data Visualization GENOME 560, Spring 2012 Data are interesting because they help us understand the world Genomics: Massive Amounts

### Exploratory data analysis (Chapter 2) Fall 2011

Exploratory data analysis (Chapter 2) Fall 2011 Data Examples Example 1: Survey Data 1 Data collected from a Stat 371 class in Fall 2005 2 They answered questions about their: gender, major, year in school,

### Exploratory Data Analysis

Exploratory Data Analysis Johannes Schauer johannes.schauer@tugraz.at Institute of Statistics Graz University of Technology Steyrergasse 17/IV, 8010 Graz www.statistics.tugraz.at February 12, 2008 Introduction

Bachelor's Degree in Business Administration and Master's Degree course description Bachelor's Degree in Business Administration Department s Compulsory Requirements Course Description (402102) Principles

### MATH BOOK OF PROBLEMS SERIES. New from Pearson Custom Publishing!

MATH BOOK OF PROBLEMS SERIES New from Pearson Custom Publishing! The Math Book of Problems Series is a database of math problems for the following courses: Pre-algebra Algebra Pre-calculus Calculus Statistics

### Week 1. Exploratory Data Analysis

Week 1 Exploratory Data Analysis Practicalities This course ST903 has students from both the MSc in Financial Mathematics and the MSc in Statistics. Two lectures and one seminar/tutorial per week. Exam

### Descriptive Statistics

Y520 Robert S Michael Goal: Learn to calculate indicators and construct graphs that summarize and describe a large quantity of values. Using the textbook readings and other resources listed on the web

### Curriculum Map Statistics and Probability Honors (348) Saugus High School Saugus Public Schools 2009-2010

Curriculum Map Statistics and Probability Honors (348) Saugus High School Saugus Public Schools 2009-2010 Week 1 Week 2 14.0 Students organize and describe distributions of data by using a number of different

### Intro to Statistics 8 Curriculum

Intro to Statistics 8 Curriculum Unit 1 Bar, Line and Circle Graphs Estimated time frame for unit Big Ideas 8 Days... Essential Question Concepts Competencies Lesson Plans and Suggested Resources Bar graphs

### Mathematics Georgia Performance Standards

Mathematics Georgia Performance Standards K-12 Mathematics Introduction The Georgia Mathematics Curriculum focuses on actively engaging the students in the development of mathematical understanding by

### Tutor/(or Student) Guide to: Tutor-led Tutorials

Tutor/(or Student) Guide to: Tutor-led Tutorials (Module Code: Stat10050) Tutor Name: Module Co-ordinator: Dr. Patrick Murphy Description of Tutorials Introduction to Statistical Modelling Tutorials: Aim

### Simulation Exercises to Reinforce the Foundations of Statistical Thinking in Online Classes

Simulation Exercises to Reinforce the Foundations of Statistical Thinking in Online Classes Simcha Pollack, Ph.D. St. John s University Tobin College of Business Queens, NY, 11439 pollacks@stjohns.edu

### Descriptive Statistics. Understanding Data: Categorical Variables. Descriptive Statistics. Dataset: Shellfish Contamination

Descriptive Statistics Understanding Data: Dataset: Shellfish Contamination Location Year Species Species2 Method Metals Cadmium (mg kg - ) Chromium (mg kg - ) Copper (mg kg - ) Lead (mg kg - ) Mercury

### Mathematics. Probability and Statistics Curriculum Guide. Revised 2010

Mathematics Probability and Statistics Curriculum Guide Revised 2010 This page is intentionally left blank. Introduction The Mathematics Curriculum Guide serves as a guide for teachers when planning instruction

### ESTDESC - Descriptive Statistics

Coordinating unit: Teaching unit: Academic year: Degree: ECTS credits: 2015 250 - ETSECCPB - Barcelona School of Civil Engineering 751 - ECA - Department of Civil and Environmental Engineering BACHELOR'S

### Section Format Day Begin End Building Rm# Instructor. 001 Lecture Tue 6:45 PM 8:40 PM Silver 401 Ballerini

NEW YORK UNIVERSITY ROBERT F. WAGNER GRADUATE SCHOOL OF PUBLIC SERVICE Course Syllabus Spring 2016 Statistical Methods for Public, Nonprofit, and Health Management Section Format Day Begin End Building

### Institute of Actuaries of India Subject CT3 Probability and Mathematical Statistics

Institute of Actuaries of India Subject CT3 Probability and Mathematical Statistics For 2015 Examinations Aim The aim of the Probability and Mathematical Statistics subject is to provide a grounding in

### PCHS ALGEBRA PLACEMENT TEST

MATHEMATICS Students must pass all math courses with a C or better to advance to the next math level. Only classes passed with a C or better will count towards meeting college entrance requirements. If

### Research Variables. Measurement. Scales of Measurement. Chapter 4: Data & the Nature of Measurement

Chapter 4: Data & the Nature of Graziano, Raulin. Research Methods, a Process of Inquiry Presented by Dustin Adams Research Variables Variable Any characteristic that can take more than one form or value.

### Indiana Academic Standards Mathematics: Probability and Statistics

Indiana Academic Standards Mathematics: Probability and Statistics 1 I. Introduction The college and career ready Indiana Academic Standards for Mathematics: Probability and Statistics are the result of

### Five High Order Thinking Skills

Five High Order Introduction The high technology like computers and calculators has profoundly changed the world of mathematics education. It is not only what aspects of mathematics are essential for learning,

### Variables. Exploratory Data Analysis

Exploratory Data Analysis Exploratory Data Analysis involves both graphical displays of data and numerical summaries of data. A common situation is for a data set to be represented as a matrix. There is

### PA Common Core Standards Standards for Mathematical Practice Grade Level Emphasis*

Habits of Mind of a Productive Thinker Make sense of problems and persevere in solving them. Attend to precision. PA Common Core Standards The Pennsylvania Common Core Standards cannot be viewed and addressed

### STATISTICS FOR MIDDLE SCHOOL (pupils ages 10-14) TEACHERS. Mike Perry and Gary Kader

STATISTICS FOR MIDDLE SCHOOL (pupils ages 10-14) TEACHERS INTRODUCTION Mike Perry and Gary Kader The purpose of the paper is to propose fundamental principles for designing a course for middle school (pupils

### EXPLORING SPATIAL PATTERNS IN YOUR DATA

EXPLORING SPATIAL PATTERNS IN YOUR DATA OBJECTIVES Learn how to examine your data using the Geostatistical Analysis tools in ArcMap. Learn how to use descriptive statistics in ArcMap and Geoda to analyze

### Georgia Department of Education. Calculus

K-12 Mathematics Introduction Calculus The Georgia Mathematics Curriculum focuses on actively engaging the students in the development of mathematical understanding by using manipulatives and a variety

### COMMON CORE STATE STANDARDS FOR

COMMON CORE STATE STANDARDS FOR Mathematics (CCSSM) High School Statistics and Probability Mathematics High School Statistics and Probability Decisions or predictions are often based on data numbers in

### F. Farrokhyar, MPhil, PhD, PDoc

Learning objectives Descriptive Statistics F. Farrokhyar, MPhil, PhD, PDoc To recognize different types of variables To learn how to appropriately explore your data How to display data using graphs How

### INTERNATIONAL BACCALAUREATE (IB) MATH STANDARD LEVEL, YEARS 1 AND 2 Grades 11, 12

INTERNATIONAL BACCALAUREATE (IB) MATH STANDARD LEVEL, YEARS 1 AND 2 Grades 11, 12 Unit of Credit: 1 Year for Year 1 and 1 Year for Year 2 Pre-requisite: Algebra 2 for Year 1 IB Math Standard Level Year

### Objective of the course The main objective is to teach students how to conduct quantitative data analysis in SPSS for research purposes.

COURSE DESCRIPTION The course Data Analysis with SPSS was especially designed for students of Master s Programme System and Software Engineering. The content and teaching methods of the course correspond

### Problem of the Month Through the Grapevine

The Problems of the Month (POM) are used in a variety of ways to promote problem solving and to foster the first standard of mathematical practice from the Common Core State Standards: Make sense of problems

### Mathematics within the Psychology Curriculum

Mathematics within the Psychology Curriculum Statistical Theory and Data Handling Statistical theory and data handling as studied on the GCSE Mathematics syllabus You may have learnt about statistics and

### Common Core State Standards. Standards for Mathematical Practices Progression through Grade Levels

Standard for Mathematical Practice 1: Make sense of problems and persevere in solving them. Mathematically proficient students start by explaining to themselves the meaning of a problem and looking for

### MIDTERM EXAMINATION Spring 2009 STA301- Statistics and Probability (Session - 2)

MIDTERM EXAMINATION Spring 2009 STA301- Statistics and Probability (Session - 2) Question No: 1 Median can be found only when: Data is Discrete Data is Attributed Data is continuous Data is continuous

### We will use the following data sets to illustrate measures of center. DATA SET 1 The following are test scores from a class of 20 students:

MODE The mode of the sample is the value of the variable having the greatest frequency. Example: Obtain the mode for Data Set 1 77 For a grouped frequency distribution, the modal class is the class having

### business statistics using Excel OXFORD UNIVERSITY PRESS Glyn Davis & Branko Pecar

business statistics using Excel Glyn Davis & Branko Pecar OXFORD UNIVERSITY PRESS Detailed contents Introduction to Microsoft Excel 2003 Overview Learning Objectives 1.1 Introduction to Microsoft Excel

### 4. Introduction to Statistics

Statistics for Engineers 4-1 4. Introduction to Statistics Descriptive Statistics Types of data A variate or random variable is a quantity or attribute whose value may vary from one unit of investigation

### Luis R. Pino-Fan 1, Ismenia Guzmán 1, Raymond Duval 2, Vicenç Font 3

THE THEORY OF REGISTERS OF SEMIOTIC REPRESENTATION AND THE ONTO-SEMIOTIC APPROACH TO MATHEMATICAL COGNITION AND INSTRUCTION: LINKING LOOKS FOR THE STUDY OF MATHEMATICAL UNDERSTANDING Luis R. Pino-Fan 1,

### Street Address: 1111 Franklin Street Oakland, CA 94607. Mailing Address: 1111 Franklin Street Oakland, CA 94607

Contacts University of California Curriculum Integration (UCCI) Institute Sarah Fidelibus, UCCI Program Manager Street Address: 1111 Franklin Street Oakland, CA 94607 1. Program Information Mailing Address:

### Manhattan Center for Science and Math High School Mathematics Department Curriculum

Content/Discipline Algebra 1 Semester 2: Marking Period 1 - Unit 8 Polynomials and Factoring Topic and Essential Question How do perform operations on polynomial functions How to factor different types

### Foundation of Quantitative Data Analysis

Foundation of Quantitative Data Analysis Part 1: Data manipulation and descriptive statistics with SPSS/Excel HSRS #10 - October 17, 2013 Reference : A. Aczel, Complete Business Statistics. Chapters 1

### Mathematics. GSE Algebra II/ Advanced Algebra Unit 7: Inferences & Conclusions from Data

Georgia Standards of Excellence Curriculum Frameworks Mathematics GSE Algebra II/ Advanced Algebra Unit 7: Inferences & Conclusions from Data These materials are for nonprofit educational purposes only.

### PELLISSIPPI STATE COMMUNITY COLLEGE MASTER SYLLABUS INTRODUCTION TO STATISTICS MATH 2050

PELLISSIPPI STATE COMMUNITY COLLEGE MASTER SYLLABUS INTRODUCTION TO STATISTICS MATH 2050 Class Hours: 2.0 Credit Hours: 3.0 Laboratory Hours: 2.0 Date Revised: Fall 2013 Catalog Course Description: Descriptive

EC151.02 Statistics for Business and Economics (MWF 8:00-8:50) Instructor: Chiu Yu Ko Office: 462D, 21 Campenalla Way Phone: 2-6093 Email: kocb@bc.edu Office Hours: by appointment Description This course

### Course Syllabus MATH 110 Introduction to Statistics 3 credits

Course Syllabus MATH 110 Introduction to Statistics 3 credits Prerequisites: Algebra proficiency is required, as demonstrated by successful completion of high school algebra, by completion of a college

### Interactive Math Glossary Terms and Definitions

Terms and Definitions Absolute Value the magnitude of a number, or the distance from 0 on a real number line Additive Property of Area the process of finding an the area of a shape by totaling the areas

### Organizing Your Approach to a Data Analysis

Biost/Stat 578 B: Data Analysis Emerson, September 29, 2003 Handout #1 Organizing Your Approach to a Data Analysis The general theme should be to maximize thinking about the data analysis and to minimize

### South Carolina College- and Career-Ready (SCCCR) Probability and Statistics

South Carolina College- and Career-Ready (SCCCR) Probability and Statistics South Carolina College- and Career-Ready Mathematical Process Standards The South Carolina College- and Career-Ready (SCCCR)

### Elementary Statistics

Elementary Statistics MATH 1342-42073 Syllabus Instructor: Scott Tyson E-mail: styson@austincc.edu Office: TBA Office Hours: TBA Meeting time: TTH 2:50pm-4:05pm Room: SAC 1301 1 The Course 1.1 Course Description

### Chapter 2. Objectives. Tabulate Qualitative Data. Frequency Table. Descriptive Statistics: Organizing, Displaying and Summarizing Data.

Objectives Chapter Descriptive Statistics: Organizing, Displaying and Summarizing Data Student should be able to Organize data Tabulate data into frequency/relative frequency tables Display data graphically

### MATHEMATICS KNOWLEDGE FOR TEACHING WITHIN A FUNCTIONAL PERSPECTIVE OF PRESERVICE TEACHER TRAINING

MATHEMATICS KNOWLEDGE FOR TEACHING WITHIN A FUNCTIONAL PERSPECTIVE OF PRESERVICE TEACHER TRAINING Pedro Gómez Universidad de Granada C/. Alisios 17, Albolote 18820, Spain Phone/Fax: (34)958537304 pgomez@valnet.es

### Lecture I. Definition 1. Statistics is the science of collecting, organizing, summarizing and analyzing the information in order to draw conclusions.

Lecture 1 1 Lecture I Definition 1. Statistics is the science of collecting, organizing, summarizing and analyzing the information in order to draw conclusions. It is a process consisting of 3 parts. Lecture

### A frequency distribution is a table used to describe a data set. A frequency table lists intervals or ranges of data values called data classes

A frequency distribution is a table used to describe a data set. A frequency table lists intervals or ranges of data values called data classes together with the number of data values from the set that

### Descriptive statistics Statistical inference statistical inference, statistical induction and inferential statistics

Descriptive statistics is the discipline of quantitatively describing the main features of a collection of data. Descriptive statistics are distinguished from inferential statistics (or inductive statistics),

### Tutorial 3: Graphics and Exploratory Data Analysis in R Jason Pienaar and Tom Miller

Tutorial 3: Graphics and Exploratory Data Analysis in R Jason Pienaar and Tom Miller Getting to know the data An important first step before performing any kind of statistical analysis is to familiarize

### Dr. Peter Tröger Hasso Plattner Institute, University of Potsdam. Software Profiling Seminar, Statistics 101

Dr. Peter Tröger Hasso Plattner Institute, University of Potsdam Software Profiling Seminar, 2013 Statistics 101 Descriptive Statistics Population Object Object Object Sample numerical description Object

### Prentice Hall MyMathLab Algebra 1, 2011

Prentice Hall MyMathLab Algebra 1, 2011 C O R R E L A T E D T O Tennessee Mathematics Standards, 2009-2010 Implementation, Algebra I Tennessee Mathematics Standards 2009-2010 Implementation Algebra I 3102

### LAGUARDIA COMMUNITY COLLEGE CITY UNIVERSITY OF NEW YORK DEPARTMENT OF MATHEMATICS, ENGINEERING, AND COMPUTER SCIENCE

LAGUARDIA COMMUNITY COLLEGE CITY UNIVERSITY OF NEW YORK DEPARTMENT OF MATHEMATICS, ENGINEERING, AND COMPUTER SCIENCE MAT 119 STATISTICS AND ELEMENTARY ALGEBRA 5 Lecture Hours, 2 Lab Hours, 3 Credits Pre-

### Lean Six Sigma Training/Certification Book: Volume 1

Lean Six Sigma Training/Certification Book: Volume 1 Six Sigma Quality: Concepts & Cases Volume I (Statistical Tools in Six Sigma DMAIC process with MINITAB Applications Chapter 1 Introduction to Six Sigma,

### Seminar paper Statistics

Seminar paper Statistics The seminar paper must contain: - the title page - the characterization of the data (origin, reason why you have chosen this analysis,...) - the list of the data (in the table)

### Probability Calculus and Connections between Empirical and Theoretical Distributions through Computer Simulation

Probability Calculus and Connections between Empirical and Theoretical Distributions through Computer Simulation Santiago Inzunsa Facultad de Informática, Universidad Autónoma de Sinaloa Culiacán Sinaloa

### DELAWARE MATHEMATICS CONTENT STANDARDS GRADES 9-10. PAGE(S) WHERE TAUGHT (If submission is not a book, cite appropriate location(s))

Prentice Hall University of Chicago School Mathematics Project: Advanced Algebra 2002 Delaware Mathematics Content Standards (Grades 9-10) STANDARD #1 Students will develop their ability to SOLVE PROBLEMS

### IB Mathematics SL :: Checklist. Topic 1 Algebra The aim of this topic is to introduce students to some basic algebraic concepts and applications.

Topic 1 Algebra The aim of this topic is to introduce students to some basic algebraic concepts and applications. Check Topic 1 Book Arithmetic sequences and series; Sum of finite arithmetic series; Geometric

### Implications of Big Data for Statistics Instruction 17 Nov 2013

Implications of Big Data for Statistics Instruction 17 Nov 2013 Implications of Big Data for Statistics Instruction Mark L. Berenson Montclair State University MSMESB Mini Conference DSI Baltimore November

### Data Analysis: Describing Data - Descriptive Statistics

WHAT IT IS Return to Table of ontents Descriptive statistics include the numbers, tables, charts, and graphs used to describe, organize, summarize, and present raw data. Descriptive statistics are most

### NEW YORK STATE TEACHER CERTIFICATION EXAMINATIONS

NEW YORK STATE TEACHER CERTIFICATION EXAMINATIONS TEST DESIGN AND FRAMEWORK September 2014 Authorized for Distribution by the New York State Education Department This test design and framework document

### Session 1.6 Measures of Central Tendency

Session 1.6 Measures of Central Tendency Measures of location (Indices of central tendency) These indices locate the center of the frequency distribution curve. The mode, median, and mean are three indices

### Math Department Student Learning Objectives Updated April, 2014

Math Department Student Learning Objectives Updated April, 2014 Institutional Level Outcomes: Victor Valley College has adopted the following institutional outcomes to define the learning that all students

### A teaching experience through the development of hypertexts and object oriented software.

A teaching experience through the development of hypertexts and object oriented software. Marcello Chiodi Istituto di Statistica. Facoltà di Economia-Palermo-Italy 1. Introduction (1) This paper is concerned

### Central Tendency. n Measures of Central Tendency: n Mean. n Median. n Mode

Central Tendency Central Tendency n A single summary score that best describes the central location of an entire distribution of scores. n Measures of Central Tendency: n Mean n The sum of all scores divided

### Measurement with Ratios

Grade 6 Mathematics, Quarter 2, Unit 2.1 Measurement with Ratios Overview Number of instructional days: 15 (1 day = 45 minutes) Content to be learned Use ratio reasoning to solve real-world and mathematical

### ARE WE PREPARING TEACHERS AND PUPILS IN STATISTICS FOR THE NEXT CENTURY?

ARE WE PREPARING TEACHERS AND PUPILS IN STATISTICS FOR THE NEXT CENTURY? Teresita E. Terán, Universidad Nacional de Rosario, Facultad de Cs. Económicas y Estadística, Argentina In this period of changes,

### Data Exploration Data Visualization

Data Exploration Data Visualization What is data exploration? A preliminary exploration of the data to better understand its characteristics. Key motivations of data exploration include Helping to select