TexPoint fonts used in EMF. Read the TexPoint manual before you delete this box.: AAAAA


 Teresa McKinney
 2 years ago
 Views:
Transcription
1 2015 School of Information Technology and Electrical Engineering at the University of Queensland TexPoint fonts used in EMF. Read the TexPoint manual before you delete this box.: AAAAA Schedule Week Date Lecture (W: 12:051:50, 50N201) 1 29Jul Introduction 2 Representing Position & Orientation & State 5Aug (Frames, Transformation Matrices & Affine Transformations) 3 12Aug Robot Kinematics Review (& Ekka Day) 4 19Aug Robot Dynamics 5 26Aug Robot Sensing: Perception 6 2Sep Robot Sensing: Multiple View Geometry 7 9Sep Robot Sensing: Feature Detection (as Linear Observers) 8 16Sep Probabilistic Robotics: Localization 9 23Sep Quiz 30Sep Study break 10 7Oct Motion Planning Oct StateSpace Modelling Oct Shaping the Dynamic Response Oct LQR + Course Review 1
2 Encore! Guest Lecture from MIT SLAM & Autopilot: The robotics of navigation and selfdriving robots MIT Prof. John Leonard coinventor of SLAM Leading expert on all things autonomous! Friday's Tutorial Axon 104 at 10am LQR 2
3 Control Theory The use of feedback to regulate a signal Desired signal x d Controller Signal x Control input u Plant Error e = xx d (By convention, x d = 0) x = f(x,u) Modelfree vs modelbased Two general philosophies: Modelfree: do not require a dynamics model to be provided Modelbased: do use a dynamics model during computation Modelfree methods: Simpler (eg. PID) Tend to require much more manual tuning to perform well Modelbased methods: Can achieve good performance (optimal w.r.t. some cost function) Are more complicated to implement Require reasonably good models (systemspecific knowledge) Calibration: build a model using measurements before behaving Adaptive control: learn parameters of the model online from sensors 3
4 PID control ProportionalIntegralDerivative controller A workhorse of 1D control systems Modelfree Proportional Case: Gain u(t) = K p x(t) Negative sign assumes control acts in the same direction as x x t PID control: Integral term Integral gain u t = K p x t K i I t t I(t) = x t dt 0 (accumulation of errors) x t Residual steadystate errors driven asymptotically to 0 4
5 PID control: Integral term: Instability I adds a pole If not tuned correctly this adds instability Ex: For a 2 nd order system (momentum), P control Divergence x t PID control: Derivative term Derivative gain u(t) = K p x(t) K d x (t) x 5
6 PID control: Together P+I+D: u(t) = K p x(t) K i I(t) K d x (t) t I(t) = x t dt 0 Stability and Convergence System is stable if errors stay bounded System is convergent if errors > 0 6
7 Example: Trajectory following Say a trajectory x des (t) has been designed E.g., a rocket s ascent, a steering path for a car, a plane s landing Apply PID control u(t) = K p (x des (t) x(t))  K i I(t) + K d (x des (t)x (t)) t I(t) = x des t x t dt 0 The designer of x des needs to be knowledgeable about the controller s behavior! x des (t) x(t) x(t) Controller Tuning Workflow Hypothesize a control policy Analysis: Assume a model Assume disturbances to be handled Test performance either through mathematical analysis, or through simulation Go back and redesign control policy Mathematical techniques give you more insight to improve redesign, but require more work 7
8 Multivariate Systems x = f(x, u) x X Rn u U Rm Because m n, and variables are coupled, This is not as easy as setting n PID controllers Linear Quadratic Regulator x = Ax + Bu Objective: minimize quadratic cost x T Q x + u T R u dt Error term Effort penalization Over an infinite horizon 8
9 Closed form LQR solution Closed form solution u = K x, with K = R 1 BP Where P is a symmetric matrix that solves the Riccati equation A T P + PA PBR 1 B T P + Q = 0 Derivation: calculus of variations Packages available for finding solution Toy Nonlinear Systems Cartpole Acrobot Mountain car 9
10 Deterministic Linear Quadratic Regulation Deterministic Linear Quadratic Regulation 10
11 Optimal Regulation Optimal Regulation 11
12 Optimal Regulation Optimal State Feedback 12
13 Optimal State Feedback Optimal State Feedback 13
14 LQR In MATLAB From Linear to Nonlinear We know how to solve (assuming g t, U t, X t convex): How about nonlinear dynamics: (1) Shooting Methods (feasible) Iterate for i=1, 2, 3, Execute (from solving (1)) Linearize around resulting trajectory Solve (1) for current linearization Collocation Methods (infeasible) Iterate for i=1, 2, 3,  (no execution) Linearize around current solution of (1) Solve (1) for current linearization Sequential Quadratic Programming (SQP) = either of the above methods, but instead of using linearization, linearize equality constraints, convexquadratic approximate objective function 14
15 Model Predictive Control Given: For k=0, 1, 2,, T Solve Execute u k Observe resulting state, Iterative LQR versus Sequential Convex Programming Both can solve Can run iterative LQR both as a shooting method or as a collocation method, it s just a different way of executing Solve (1) for current linearization. In case of shooting, the sequence of linear feedback controllers found can be used for (closedloop) execution. Iterative LQR might need some outer iterations, adjusting t of the log barrier Shooting Methods Iterate for i=1, 2, 3, Execute feedback controller (from solving (1)) Linearize around resulting trajectory Solve (1) for current linearization Collocation Methods Iterate for i=1, 2, 3,  (no execution) Linearize around current solution of (1) Solve (1) for current linearization Sequential Quadratic Programming (SQP) = either of the above methods, but instead of using linearization, linearize equality constraints, convexquadratic approximate objective function 15
16 Example Shooting Example Collocation 16
17 Practical Benefits and Issues with Shooting + : At all times the sequence of controls is meaningful, and the objective function optimized directly corresponds to the current control sequence  : For unstable systems, need to run feedback controller during forward simulation Why? Open loop sequence of control inputs computed for the linearized system will not be perfect for the nonlinear system. If the nonlinear system is unstable, open loop execution would give poor performance. Fixes: Run Model Predictive Control for forward simulation Compute a linear feedback controller from the 2 nd order Taylor expansion at the optimum Practical Benefits and Issues with Collocation + : Can initialize with infeasible trajectory. Hence if you have a rough idea of a sequence of states that would form a reasonable solution, you can initialize with this sequence of states without needing to know a control sequence that would lead through them, and without needing to make them consistent with the dynamics  : Sequence of control inputs and states might never converge onto a feasible sequence 17
18 Direct policy synthesis: Optimal control Input: cost function J(x), estimated dynamics f(x,u), finite state/control spaces X, U Two basic classes: Trajectory optimization: Hypothesize control sequence u(t), simulate to get x(t), perform optimization to improve u(t), repeat. Output: optimal trajectory u(t) (in practice, only a locally optimal solution is found) Dynamic programming: Discretize state and control spaces, form a discrete search problem, and solve it. Output: Optimal policy u(x) across all of X Discrete Search example Split X, U into cells x 1,,x n, u 1,,u m Build transition function x j = f(x i,u k )dt for all i,k State machine with costs dt J(x i ) for staying in state I Find u(x i ) that minimizes sum of total costs. Value iteration: repeated dynamic programming over V(x i ) = sum of total future costs Value function for 1joint acrobot 18
19 Receding Horizon Control (aka model predictive control)... horizon 1 horizon h Estimation 19
20 Along multiple dimensions State Space We collect our set of uncertain variables into a vector x = [x 1, x 2,, x N ] T The set of values that x might take on is termed the state space There is a single true value for x, but it is unknown 20
21 State Space Dynamics Measured versus True Measurement errors are inevitable So, add Noise to State... State Dynamics becomes: Can represent this as a Normal Distribution 21
22 Recovering The Truth Numerous methods Termed Estimation because we are trying to estimate the truth from the signal A strategy discovered by Gauss Least Squares in Matrix Representation Recovering the Truth: Terminology 22
23 General Problem Duals and Dual Terminology 23
24 Estimation Process in Pictures Kalman Filter Process 24
25 KF Process in Equations KF Considerations 25
26 Ex: Kinematic KF: Tracking Consider a System with Constant Acceleration In Summary KF: The true state (x) is separate from the measured (z) Lets you combine prior controls knowledge with measurements to filter signals and find the truth It regulates the covariance (P) As P is the scatter between z and x So, if P 0, then z x (measurements truth) EKF: Takes a Taylor series approximation to get a local F (and G and H ) 26
27 Case Study I: Gryphon Demining Robot BangBang Control! 27
28 Gryphon: Mine Scanning Robot Landmines: Smart for one, dumb for all 28
29 Sensor Mobility Is Critical Back to Gyrphon 29
30 Part of a Robotic Solution Stereo vision camera Optional groundpenetrating radar Network camera Counterweight All terrain vehicle Cleared area Metal detector Minefield Gryphon Schematic Joint3 Ground frame F G Manipulator Camera z Joint 2 Wrist joints Sensor Manipulator frame F M Terrain x Compliant base Counterweight Joint 1 (yaw) 30
31 Velocity Velocity Robust Control: Command Shaping for Vibration Reduction Integrated Planner Controller Command Shapping + Σ Error Regulator Plant Tunning Sensor Command Shaping Original velocity profile * Time Commandshaped velocity profile Input shaper Time Time 31
32 Command Shaping in Position Space Command Shaping: Zero Vibration and Derivative i 1,2 For Gryphon: Axis 1 Axis 2 & 3 At ρ 0 =1.5 [m] At ρ 1 =3.0 [m] ω ζ 0 0 ω ζ
33 Control Robustness ( Autonomy ) Gryphon: Comparison to other tracked robots Mechanical Robustness Terrain Map Model: Conditional Planar Filter Map: Terrain Mesh Model Compute Normals Apply filter(s) 33
34 Deviation from ideal path [mm] Effect of Overall Calibration Matrix With Overall Calibration Matrix correction Without Overall Calibration Matrix correction Circular distance [m] Scanning speed: 100 mm/s Scanning gap: 100 mm Path Generation (II) Orientation: Advanced Terrain Following Control points (a) (b) (c) (d) (e) 34
35 Contour Following Detector Envelope Potential collisions Terrain Terrain Modeling: Find a good model to characterize 35
36 Deviation from ideal path [mm] Experiments: Scanning Over Obstacle Scanning on ~ Level Terrain  Measurements Unfiltered Gaussian filtered 10 Conditional Planar filtered Laser range finder Circular distance [m] Scan pass Manipulator Scanning speed: 100 mm/s Scanning gap: 100 mm 36
37 Deviation from ideal path [mm] Scanning on Rough Terrain  Measurements Unfiltered Gaussian filtered Conditional Planar filtered Scanning speed: 100 mm/s Scanning gap: 100 mm 20 cm Laser range finder ~70º slope Obstacle location 40 Scan pass Circular distance [m] Rough terrain obstacle Manipulator 50 cm Command Shaping Tests: StepResponse Reduced Joint Encoder Vibration Joint 1 (ATV Yaw) Encoder: Reduced Tip Acceleration Joint 3 (Arm Extend) Encoder: 37
38 HighLevel Control Software Extensive Field Tests 38
39 Gryphon: Field Tests in Croatia & Cambodia Terrain & Estimation Detector t 0 t i Terrain Target IF we know terrain Triangulation IF we know depth SNR gives terrain characteristic Estimate both simultaneously ( solution up to scale) 39
40 SECaT Time! Brought To You By the Number 5 40
Robotics. Lecture 3: Sensors. See course website http://www.doc.ic.ac.uk/~ajd/robotics/ for up to date information.
Robotics Lecture 3: Sensors See course website http://www.doc.ic.ac.uk/~ajd/robotics/ for up to date information. Andrew Davison Department of Computing Imperial College London Review: Locomotion Practical
More information19 LINEAR QUADRATIC REGULATOR
19 LINEAR QUADRATIC REGULATOR 19.1 Introduction The simple form of loopshaping in scalar systems does not extend directly to multivariable (MIMO) plants, which are characterized by transfer matrices instead
More informationC21 Model Predictive Control
C21 Model Predictive Control Mark Cannon 4 lectures Hilary Term 2161 Lecture 1 Introduction 12 Organisation 4 lectures: week 3 week 4 { Monday 111 am LR5 Thursday 111 am LR5 { Monday 111 am LR5 Thursday
More informationModel Predictive Control Lecture 5
Model Predictive Control Lecture 5 Klaus Trangbæk ktr@es.aau.dk Automation & Control Aalborg University Denmark. http://www.es.aau.dk/staff/ktr/mpckursus/mpckursus.html mpc5 p. 1 Exercise from last time
More informationUnderstanding and Applying Kalman Filtering
Understanding and Applying Kalman Filtering Lindsay Kleeman Department of Electrical and Computer Systems Engineering Monash University, Clayton 1 Introduction Objectives: 1. Provide a basic understanding
More informationRobotics. Chapter 25. Chapter 25 1
Robotics Chapter 25 Chapter 25 1 Outline Robots, Effectors, and Sensors Localization and Mapping Motion Planning Motor Control Chapter 25 2 Mobile Robots Chapter 25 3 Manipulators P R R R R R Configuration
More informationPOTENTIAL OF STATEFEEDBACK CONTROL FOR MACHINE TOOLS DRIVES
POTENTIAL OF STATEFEEDBACK CONTROL FOR MACHINE TOOLS DRIVES L. Novotny 1, P. Strakos 1, J. Vesely 1, A. Dietmair 2 1 Research Center of Manufacturing Technology, CTU in Prague, Czech Republic 2 SW, Universität
More informationCE801: Intelligent Systems and Robotics Lecture 3: Actuators and Localisation. Prof. Dr. Hani Hagras
1 CE801: Intelligent Systems and Robotics Lecture 3: Actuators and Localisation Prof. Dr. Hani Hagras Robot Locomotion Robots might want to move in water, in the air, on land, in space.. 2 Most of the
More informationSystem Identification and State Feedback Controller Design of Magnetic Levitation System
International Journal of Engineering and Technical Research (IJETR) ISSN: 23210869, Volume2, Issue6, June 2014 System Identification and State Feedback Controller Design of Magnetic Levitation System
More informationDIEF, Department of Engineering Enzo Ferrari University of Modena e Reggio Emilia Italy Online Trajectory Planning for robotic systems
DIEF, Department of Engineering Enzo Ferrari University of Modena e Reggio Emilia Italy Online Trajectory Planning for robotic systems Luigi Biagiotti Luigi Biagiotti luigi.biagiotti@unimore.it Introduction
More informationE190Q Lecture 5 Autonomous Robot Navigation
E190Q Lecture 5 Autonomous Robot Navigation Instructor: Chris Clark Semester: Spring 2014 1 Figures courtesy of Siegwart & Nourbakhsh Control Structures Planning Based Control Prior Knowledge Operator
More informationLecture 19 Camera Matrices and Calibration
Lecture 19 Camera Matrices and Calibration Project Suggestions Texture Synthesis for InPainting Section 10.5.1 in Szeliski Text Project Suggestions Image Stitching (Chapter 9) Face Recognition Chapter
More informationCONTROL SYSTEMS, ROBOTICS AND AUTOMATION Vol. XVI  Fault Accomodation Using Model Predictive Methods  Jovan D. Bošković and Raman K.
FAULT ACCOMMODATION USING MODEL PREDICTIVE METHODS Scientific Systems Company, Inc., Woburn, Massachusetts, USA. Keywords: Fault accommodation, Model Predictive Control (MPC), Failure Detection, Identification
More informationOptimal Control. Palle Andersen. Aalborg University. Opt lecture 1 p. 1/2
Opt lecture 1 p. 1/2 Optimal Control Palle Andersen pa@control.aau.dk Aalborg University Opt lecture 1 p. 2/2 Optimal Control, course outline 1st lecture: Introduction to optimal control and quadratic
More informationKalman Filter Applications
Kalman Filter Applications The Kalman filter (see Subject MI37) is a very powerful tool when it comes to controlling noisy systems. The basic idea of a Kalman filter is: Noisy data in hopefully less noisy
More informationLinearQuadratic Optimal Controller 10.3 Optimal Linear Control Systems
LinearQuadratic Optimal Controller 10.3 Optimal Linear Control Systems In Chapters 8 and 9 of this book we have designed dynamic controllers such that the closedloop systems display the desired transient
More informationForce/position control of a robotic system for transcranial magnetic stimulation
Force/position control of a robotic system for transcranial magnetic stimulation W.N. Wan Zakaria School of Mechanical and System Engineering Newcastle University Abstract To develop a force control scheme
More informationINSTRUCTOR WORKBOOK Quanser Robotics Package for Education for MATLAB /Simulink Users
INSTRUCTOR WORKBOOK for MATLAB /Simulink Users Developed by: Amir Haddadi, Ph.D., Quanser Peter Martin, M.A.SC., Quanser Quanser educational solutions are powered by: CAPTIVATE. MOTIVATE. GRADUATE. PREFACE
More informationRobot Sensors. Outline. The Robot Structure. Robots and Sensors. Henrik I Christensen
Robot Sensors Henrik I Christensen Robotics & Intelligent Machines @ GT Georgia Institute of Technology, Atlanta, GA 303320760 hic@cc.gatech.edu Henrik I Christensen (RIM@GT) Sensors 1 / 38 Outline 1
More informationMobile Robot FastSLAM with Xbox Kinect
Mobile Robot FastSLAM with Xbox Kinect Design Team Taylor Apgar, Sean Suri, Xiangdong Xi Design Advisor Prof. Greg Kowalski Abstract Mapping is an interesting and difficult problem in robotics. In order
More informationParameter identification of a linear single track vehicle model
Parameter identification of a linear single track vehicle model Edouard Davin D&C 2011.004 Traineeship report Coach: dr. Ir. I.J.M. Besselink Supervisors: prof. dr. H. Nijmeijer Eindhoven University of
More informationKalman Filter Applied to a Active Queue Management Problem
IOSR Journal of Electrical and Electronics Engineering (IOSRJEEE) eissn: 22781676,pISSN: 23203331, Volume 9, Issue 4 Ver. III (Jul Aug. 2014), PP 2327 Jyoti Pandey 1 and Prof. Aashih Hiradhar 2 Department
More informationROBOTICS 01PEEQW. Basilio Bona DAUIN Politecnico di Torino
ROBOTICS 01PEEQW Basilio Bona DAUIN Politecnico di Torino Probabilistic Fundamentals in Robotics Robot Motion Probabilistic models of mobile robots Robot motion Kinematics Velocity motion model Odometry
More informationLecture 13 Linear quadratic Lyapunov theory
EE363 Winter 289 Lecture 13 Linear quadratic Lyapunov theory the Lyapunov equation Lyapunov stability conditions the Lyapunov operator and integral evaluating quadratic integrals analysis of ARE discretetime
More informationMachine Learning and Data Mining. Regression Problem. (adapted from) Prof. Alexander Ihler
Machine Learning and Data Mining Regression Problem (adapted from) Prof. Alexander Ihler Overview Regression Problem Definition and define parameters ϴ. Prediction using ϴ as parameters Measure the error
More informationLinear Threshold Units
Linear Threshold Units w x hx (... w n x n w We assume that each feature x j and each weight w j is a real number (we will relax this later) We will study three different algorithms for learning linear
More informationArtificial Intelligence
Artificial Intelligence Robotics RWTH Aachen 1 Term and History Term comes from Karel Capek s play R.U.R. Rossum s universal robots Robots comes from the Czech word for corvee Manipulators first start
More informationRobot Perception Continued
Robot Perception Continued 1 Visual Perception Visual Odometry Reconstruction Recognition CS 685 11 Range Sensing strategies Active range sensors Ultrasound Laser range sensor Slides adopted from Siegwart
More informationLecture Notes to Accompany. Scientific Computing An Introductory Survey. by Michael T. Heath. Chapter 10
Lecture Notes to Accompany Scientific Computing An Introductory Survey Second Edition by Michael T. Heath Chapter 10 Boundary Value Problems for Ordinary Differential Equations Copyright c 2001. Reproduction
More informationMapping an Application to a Control Architecture: Specification of the Problem
Mapping an Application to a Control Architecture: Specification of the Problem Mieczyslaw M. Kokar 1, Kevin M. Passino 2, Kenneth Baclawski 1, and Jeffrey E. Smith 3 1 Northeastern University, Boston,
More informationCourse 8. An Introduction to the Kalman Filter
Course 8 An Introduction to the Kalman Filter Speakers Greg Welch Gary Bishop Kalman Filters in 2 hours? Hah! No magic. Pretty simple to apply. Tolerant of abuse. Notes are a standalone reference. These
More information3D Vision An enabling Technology for Advanced Driver Assistance and Autonomous Offroad Driving
3D Vision An enabling Technology for Advanced Driver Assistance and Autonomous Offroad Driving AIT Austrian Institute of Technology Safety & Security Department Christian Zinner Safe and Autonomous Systems
More informationThe dynamic equation for the angular motion of the wheel is R w F t R w F w ]/ J w
Chapter 4 Vehicle Dynamics 4.. Introduction In order to design a controller, a good representative model of the system is needed. A vehicle mathematical model, which is appropriate for both acceleration
More informationSystem Identification for Acoustic Comms.:
System Identification for Acoustic Comms.: New Insights and Approaches for Tracking Sparse and Rapidly Fluctuating Channels Weichang Li and James Preisig Woods Hole Oceanographic Institution The demodulation
More informationMOBILE ROBOT TRACKING OF PREPLANNED PATHS. Department of Computer Science, York University, Heslington, York, Y010 5DD, UK (email:nep@cs.york.ac.
MOBILE ROBOT TRACKING OF PREPLANNED PATHS N. E. Pears Department of Computer Science, York University, Heslington, York, Y010 5DD, UK (email:nep@cs.york.ac.uk) 1 Abstract A method of mobile robot steering
More informationDesignSimulationOptimization Package for a Generic 6DOF Manipulator with a Spherical Wrist
DesignSimulationOptimization Package for a Generic 6DOF Manipulator with a Spherical Wrist MHER GRIGORIAN, TAREK SOBH Department of Computer Science and Engineering, U. of Bridgeport, USA ABSTRACT Robot
More informationScientific Computing: An Introductory Survey
Scientific Computing: An Introductory Survey Chapter 10 Boundary Value Problems for Ordinary Differential Equations Prof. Michael T. Heath Department of Computer Science University of Illinois at UrbanaChampaign
More information3D Vision An enabling Technology for Advanced Driver Assistance and Autonomous Offroad Driving
3D Vision An enabling Technology for Advanced Driver Assistance and Autonomous Offroad Driving AIT Austrian Institute of Technology Safety & Security Department Manfred Gruber Safe and Autonomous Systems
More informationCALIBRATION OF A ROBUST 2 DOF PATH MONITORING TOOL FOR INDUSTRIAL ROBOTS AND MACHINE TOOLS BASED ON PARALLEL KINEMATICS
CALIBRATION OF A ROBUST 2 DOF PATH MONITORING TOOL FOR INDUSTRIAL ROBOTS AND MACHINE TOOLS BASED ON PARALLEL KINEMATICS E. Batzies 1, M. Kreutzer 1, D. Leucht 2, V. Welker 2, O. Zirn 1 1 Mechatronics Research
More informationIntroduction to Machine Learning
Introduction to Machine Learning Prof. Alexander Ihler Prof. Max Welling icamp Tutorial July 22 What is machine learning? The ability of a machine to improve its performance based on previous results:
More informationStateSpace Feedback Control for Elastic Distributed Storage in a Cloud Environment
StateSpace Feedback Control for Elastic Distributed Storage in a Cloud Environment M. Amir Moulavi Ahmad AlShishtawy Vladimir Vlassov KTH Royal Institute of Technology, Stockholm, Sweden ICAS 2012, March
More informationlaboratory guide 2 DOF Inverted Pendulum Experiment for MATLAB /Simulink Users
laboratory guide 2 DOF Inverted Pendulum Experiment for MATLAB /Simulink Users Developed by: Jacob Apkarian, Ph.D., Quanser Hervé Lacheray, M.A.SC., Quanser Michel Lévis, M.A.SC., Quanser Quanser educational
More informationInteractive applications to explore the parametric space of multivariable controllers
Milano (Italy) August 28  September 2, 211 Interactive applications to explore the parametric space of multivariable controllers Yves Piguet Roland Longchamp Calerga Sàrl, Av. de la Chablière 35, 14 Lausanne,
More informationIntelligent Submersible ManipulatorRobot, Design, Modeling, Simulation and Motion Optimization for Maritime Robotic Research
20th International Congress on Modelling and Simulation, Adelaide, Australia, 1 6 December 2013 www.mssanz.org.au/modsim2013 Intelligent Submersible ManipulatorRobot, Design, Modeling, Simulation and
More informationStatic Environment Recognition Using Omnicamera from a Moving Vehicle
Static Environment Recognition Using Omnicamera from a Moving Vehicle Teruko Yata, Chuck Thorpe Frank Dellaert The Robotics Institute Carnegie Mellon University Pittsburgh, PA 15213 USA College of Computing
More informationRobotic motion planning for 8 DOF motion stage
Robotic motion planning for 8 DOF motion stage 12 November Mark Geelen Simon Jansen Alten Mechatronics www.alten.nl rosindustrial@alten.nl Introduction Introduction Alten FEI Motion planning MoveIt! Proof
More informationRobot coined by Karel Capek in a 1921 sciencefiction Czech play
Robotics Robot coined by Karel Capek in a 1921 sciencefiction Czech play Definition: A robot is a reprogrammable, multifunctional manipulator designed to move material, parts, tools, or specialized devices
More informationSafe robot motion planning in dynamic, uncertain environments
Safe robot motion planning in dynamic, uncertain environments RSS 2011 Workshop: Guaranteeing Motion Safety for Robots June 27, 2011 Noel du Toit and Joel Burdick California Institute of Technology Dynamic,
More informationA Reliability Point and Kalman Filterbased Vehicle Tracking Technique
A Reliability Point and Kalman Filterbased Vehicle Tracing Technique Soo Siang Teoh and Thomas Bräunl Abstract This paper introduces a technique for tracing the movement of vehicles in consecutive video
More informationDiscrete mechanics, optimal control and formation flying spacecraft
Discrete mechanics, optimal control and formation flying spacecraft Oliver Junge Center for Mathematics Munich University of Technology joint work with Jerrold E. Marsden and Sina OberBlöbaum partially
More informationMetrics on SO(3) and Inverse Kinematics
Mathematical Foundations of Computer Graphics and Vision Metrics on SO(3) and Inverse Kinematics Luca Ballan Institute of Visual Computing Optimization on Manifolds Descent approach d is a ascent direction
More informationContent. Professur für Steuerung, Regelung und Systemdynamik. Lecture: Vehicle Dynamics Tutor: T. Wey Date: 01.01.08, 20:11:52
1 Content Overview 1. Basics on Signal Analysis 2. System Theory 3. Vehicle Dynamics Modeling 4. Active Chassis Control Systems 5. Signals & Systems 6. Statistical System Analysis 7. Filtering 8. Modeling,
More informationSpacecraft Dynamics and Control. An Introduction
Brochure More information from http://www.researchandmarkets.com/reports/2328050/ Spacecraft Dynamics and Control. An Introduction Description: Provides the basics of spacecraft orbital dynamics plus attitude
More informationTracking Algorithms. Lecture17: Stochastic Tracking. Joint Probability and Graphical Model. Probabilistic Tracking
Tracking Algorithms (2015S) Lecture17: Stochastic Tracking Bohyung Han CSE, POSTECH bhhan@postech.ac.kr Deterministic methods Given input video and current state, tracking result is always same. Local
More information1 Determinants and the Solvability of Linear Systems
1 Determinants and the Solvability of Linear Systems In the last section we learned how to use Gaussian elimination to solve linear systems of n equations in n unknowns The section completely sidestepped
More informationTwoFrame Motion Estimation Based on Polynomial Expansion
TwoFrame Motion Estimation Based on Polynomial Expansion Gunnar Farnebäck Computer Vision Laboratory, Linköping University, SE581 83 Linköping, Sweden gf@isy.liu.se http://www.isy.liu.se/cvl/ Abstract.
More informationDynamic Modeling, Predictive Control and Performance Monitoring
Biao Huang, Ramesh Kadali Dynamic Modeling, Predictive Control and Performance Monitoring A Datadriven Subspace Approach 4y Spri nnger g< Contents Notation XIX 1 Introduction 1 1.1 An Overview of This
More informationCSE 252B: Computer Vision II
CSE 252B: Computer Vision II Lecturer: Serge Belongie Scribes: Jia Mao, Andrew Rabinovich LECTURE 9 Affine and Euclidean Reconstruction 9.1. Stratified reconstruction Recall that in 3D reconstruction from
More informationOnboard electronics of UAVs
AARMS Vol. 5, No. 2 (2006) 237 243 TECHNOLOGY Onboard electronics of UAVs ANTAL TURÓCZI, IMRE MAKKAY Department of Electronic Warfare, Miklós Zrínyi National Defence University, Budapest, Hungary Recent
More informationNonlinear Optimization: Algorithms 3: Interiorpoint methods
Nonlinear Optimization: Algorithms 3: Interiorpoint methods INSEAD, Spring 2006 JeanPhilippe Vert Ecole des Mines de Paris JeanPhilippe.Vert@mines.org Nonlinear optimization c 2006 JeanPhilippe Vert,
More informationLogistic Regression. Vibhav Gogate The University of Texas at Dallas. Some Slides from Carlos Guestrin, Luke Zettlemoyer and Dan Weld.
Logistic Regression Vibhav Gogate The University of Texas at Dallas Some Slides from Carlos Guestrin, Luke Zettlemoyer and Dan Weld. Generative vs. Discriminative Classifiers Want to Learn: h:x Y X features
More informationVisionbased ACC with a Single Camera: Bounds on Range and Range Rate Accuracy
Visionbased ACC with a Single Camera: Bounds on Range and Range Rate Accuracy Gideon P. Stein Ofer Mano Amnon Shashua MobileEye Vision Technologies Ltd. MobileEye Vision Technologies Ltd. Hebrew University
More informationAn Introduction to Applied Mathematics: An Iterative Process
An Introduction to Applied Mathematics: An Iterative Process Applied mathematics seeks to make predictions about some topic such as weather prediction, future value of an investment, the speed of a falling
More informationPower Electronics. Prof. K. Gopakumar. Centre for Electronics Design and Technology. Indian Institute of Science, Bangalore.
Power Electronics Prof. K. Gopakumar Centre for Electronics Design and Technology Indian Institute of Science, Bangalore Lecture  1 Electric Drive Today, we will start with the topic on industrial drive
More informationOnline Model Predictive Control of a Robotic System by Combining Simulation and Optimization
Mohammad Rokonuzzaman Pappu Online Model Predictive Control of a Robotic System by Combining Simulation and Optimization School of Electrical Engineering Department of Electrical Engineering and Automation
More informationPHOTOGRAMMETRIC TECHNIQUES FOR MEASUREMENTS IN WOODWORKING INDUSTRY
PHOTOGRAMMETRIC TECHNIQUES FOR MEASUREMENTS IN WOODWORKING INDUSTRY V. Knyaz a, *, Yu. Visilter, S. Zheltov a State Research Institute for Aviation System (GosNIIAS), 7, Victorenko str., Moscow, Russia
More informationMultivariate Normal Distribution
Multivariate Normal Distribution Lecture 4 July 21, 2011 Advanced Multivariate Statistical Methods ICPSR Summer Session #2 Lecture #47/21/2011 Slide 1 of 41 Last Time Matrices and vectors Eigenvalues
More informationNetwork Traffic Modelling
University of York Dissertation submitted for the MSc in Mathematics with Modern Applications, Department of Mathematics, University of York, UK. August 009 Network Traffic Modelling Author: David Slade
More informationAn Introduction to the Kalman Filter
An Introduction to the Kalman Filter Greg Welch 1 and Gary Bishop 2 TR 95041 Department of Computer Science University of North Carolina at Chapel Hill Chapel Hill, NC 275993175 Updated: Monday, July 24,
More informationOverview of Violations of the Basic Assumptions in the Classical Normal Linear Regression Model
Overview of Violations of the Basic Assumptions in the Classical Normal Linear Regression Model 1 September 004 A. Introduction and assumptions The classical normal linear regression model can be written
More informationComputational Optical Imaging  Optique Numerique.  Deconvolution 
Computational Optical Imaging  Optique Numerique  Deconvolution  Winter 2014 Ivo Ihrke Deconvolution Ivo Ihrke Outline Deconvolution Theory example 1D deconvolution Fourier method Algebraic method
More informationIntroduction to Engineering System Dynamics
CHAPTER 0 Introduction to Engineering System Dynamics 0.1 INTRODUCTION The objective of an engineering analysis of a dynamic system is prediction of its behaviour or performance. Real dynamic systems are
More informationEECS 556 Image Processing W 09. Interpolation. Interpolation techniques B splines
EECS 556 Image Processing W 09 Interpolation Interpolation techniques B splines What is image processing? Image processing is the application of 2D signal processing methods to images Image representation
More informationReinforcement Learning and Motion Planning
Reinforcement Learning and Motion Planning University of Southern California August 25, 2010 Reinforcement Learning Holy grail of learning for robotics Curse of dimensionality... Trajectorybased RL High
More informationPATTERN RECOGNITION AND MACHINE LEARNING CHAPTER 4: LINEAR MODELS FOR CLASSIFICATION
PATTERN RECOGNITION AND MACHINE LEARNING CHAPTER 4: LINEAR MODELS FOR CLASSIFICATION Introduction In the previous chapter, we explored a class of regression models having particularly simple analytical
More informationPID, LQR and LQRPID on a Quadcopter Platform
PID, LQR and LQRPID on a Quadcopter Platform Lucas M. Argentim unielargentim@fei.edu.br Willian C. Rezende uniewrezende@fei.edu.br Paulo E. Santos psantos@fei.edu.br Renato A. Aguiar preaguiar@fei.edu.br
More informationPart 4 fitting with energy loss and multiple scattering non gaussian uncertainties outliers
Part 4 fitting with energy loss and multiple scattering non gaussian uncertainties outliers material intersections to treat material effects in track fit, locate material 'intersections' along particle
More informationRealTime Systems Versus CyberPhysical Systems: Where is the Difference?
RealTime Systems Versus CyberPhysical Systems: Where is the Difference? Samarjit Chakraborty www.rcs.ei.tum.de TU Munich, Germany Joint work with Dip Goswami*, Reinhard Schneider #, Alejandro Masrur
More informationPath Tracking for a Miniature Robot
Path Tracking for a Miniature Robot By Martin Lundgren Excerpt from Master s thesis 003 Supervisor: Thomas Hellström Department of Computing Science Umeå University Sweden 1 Path Tracking Path tracking
More informationThe QOOL Algorithm for fast Online Optimization of Multiple Degree of Freedom Robot Locomotion
The QOOL Algorithm for fast Online Optimization of Multiple Degree of Freedom Robot Locomotion Daniel Marbach January 31th, 2005 Swiss Federal Institute of Technology at Lausanne Daniel.Marbach@epfl.ch
More informationPID Controller Design for Nonlinear Systems Using DiscreteTime Local Model Networks
PID Controller Design for Nonlinear Systems Using DiscreteTime Local Model Networks 4. Workshop für Modellbasierte Kalibriermethoden Nikolaus EulerRolle, Christoph Hametner, Stefan Jakubek Christian
More informationLearning a wall following behaviour in mobile robotics using stereo and mono vision
Learning a wall following behaviour in mobile robotics using stereo and mono vision P. Quintía J.E. Domenech C.V. Regueiro C. Gamallo R. Iglesias Dpt. Electronics and Systems. Univ. A Coruña pquintia@udc.es,
More informationAdvantages of Autotuning for Servomotors
Advantages of for Servomotors Executive summary The same way that 2 years ago computer science introduced plug and play, where devices would selfadjust to existing system hardware, industrial motion control
More informationNotes from Week 1: Algorithms for sequential prediction
CS 683 Learning, Games, and Electronic Markets Spring 2007 Notes from Week 1: Algorithms for sequential prediction Instructor: Robert Kleinberg 2226 Jan 2007 1 Introduction In this course we will be looking
More informationIndustrial Robotics. Training Objective
Training Objective After watching the program and reviewing this printed material, the viewer will learn the basics of industrial robot technology and how robots are used in a variety of manufacturing
More informationLecture 2 Linear functions and examples
EE263 Autumn 200708 Stephen Boyd Lecture 2 Linear functions and examples linear equations and functions engineering examples interpretations 2 1 Linear equations consider system of linear equations y
More informationNonlinear Systems and Control Lecture # 15 Positive Real Transfer Functions & Connection with Lyapunov Stability. p. 1/?
Nonlinear Systems and Control Lecture # 15 Positive Real Transfer Functions & Connection with Lyapunov Stability p. 1/? p. 2/? Definition: A p p proper rational transfer function matrix G(s) is positive
More information8. Linear leastsquares
8. Linear leastsquares EE13 (Fall 21112) definition examples and applications solution of a leastsquares problem, normal equations 81 Definition overdetermined linear equations if b range(a), cannot
More informationNeural Networks. CAP5610 Machine Learning Instructor: GuoJun Qi
Neural Networks CAP5610 Machine Learning Instructor: GuoJun Qi Recap: linear classifier Logistic regression Maximizing the posterior distribution of class Y conditional on the input vector X Support vector
More informationInput Shaping for Sway Control in Gantry Cranes
IOSR Journal of Mechanical and Civil Engineering (IOSRJMCE) ISSN : 22781684 Volume 1, Issue 2 (MayJune 2012), PP 3646 Input Shaping for Sway Control in Gantry Cranes Jeslin Thalapil 1 1 Department of
More informationOptimal Control. Lecture 2. Palle Andersen, Aalborg University. Opt lecture 2 p. 1/44
Optimal Control Lecture 2 pa@control.aau.dk Palle Andersen, Aalborg University Opt lecture 2 p. 1/44 Summary of LQ for DT systems Linear discrete time, dynamical system x(k +1) = Φx(k)+Γu(k) y(k) = Hx(k)
More informationVéronique PERDEREAU ISIR UPMC 6 mars 2013
Véronique PERDEREAU ISIR UPMC mars 2013 Conventional methods applied to rehabilitation robotics Véronique Perdereau 2 Reference Robot force control by Bruno Siciliano & Luigi Villani Kluwer Academic Publishers
More informationIMU Components An IMU is typically composed of the following components:
APN064 IMU Errors and Their Effects Rev A Introduction An Inertial Navigation System (INS) uses the output from an Inertial Measurement Unit (IMU), and combines the information on acceleration and rotation
More informationDynamic Process Modeling. Process Dynamics and Control
Dynamic Process Modeling Process Dynamics and Control 1 Description of process dynamics Classes of models What do we need for control? Modeling for control Mechanical Systems Modeling Electrical circuits
More informationLecture 3: Linear methods for classification
Lecture 3: Linear methods for classification Rafael A. Irizarry and Hector Corrada Bravo February, 2010 Today we describe four specific algorithms useful for classification problems: linear regression,
More informationLecture 3. Linear Programming. 3B1B Optimization Michaelmas 2015 A. Zisserman. Extreme solutions. Simplex method. Interior point method
Lecture 3 3B1B Optimization Michaelmas 2015 A. Zisserman Linear Programming Extreme solutions Simplex method Interior point method Integer programming and relaxation The Optimization Tree Linear Programming
More informationVisualbased ID Verification by Signature Tracking
Visualbased ID Verification by Signature Tracking Mario E. Munich and Pietro Perona California Institute of Technology www.vision.caltech.edu/mariomu Outline Biometric ID Visual Signature Acquisition
More informationA PHOTOGRAMMETRIC APPRAOCH FOR AUTOMATIC TRAFFIC ASSESSMENT USING CONVENTIONAL CCTV CAMERA
A PHOTOGRAMMETRIC APPRAOCH FOR AUTOMATIC TRAFFIC ASSESSMENT USING CONVENTIONAL CCTV CAMERA N. Zarrinpanjeh a, F. Dadrassjavan b, H. Fattahi c * a Islamic Azad University of Qazvin  nzarrin@qiau.ac.ir
More informationDefinitions. A [nonliving] physical agent that performs tasks by manipulating the physical world. Categories of robots
Definitions A robot is A programmable, multifunction manipulator designed to move material, parts, tools, or specific devices through variable programmed motions for the performance of a variety of tasks.
More informationModeling and Simulation of a Three Degree of Freedom Longitudinal Aero plane System. Figure 1: Boeing 777 and example of a two engine business jet
Modeling and Simulation of a Three Degree of Freedom Longitudinal Aero plane System Figure 1: Boeing 777 and example of a two engine business jet Nonlinear dynamic equations of motion for the longitudinal
More information