INSTRUCTOR WORKBOOK Quanser Robotics Package for Education for MATLAB /Simulink Users

Size: px
Start display at page:

Download "INSTRUCTOR WORKBOOK Quanser Robotics Package for Education for MATLAB /Simulink Users"

Transcription

1 INSTRUCTOR WORKBOOK for MATLAB /Simulink Users Developed by: Amir Haddadi, Ph.D., Quanser Peter Martin, M.A.SC., Quanser Quanser educational solutions are powered by: CAPTIVATE. MOTIVATE. GRADUATE.

2 PREFACE Preparing laboratory experiments can be time-consuming. Quanser understands time constraints of teaching and research professors. That s why Quanser s control laboratory solutions come with proven practical exercises. The courseware is designed to save you time, give students a solid understanding of various control concepts and provide maximum value for your investment. courseware materials are supplied in a format of the Instructor and Student Manuals. This courseware sample is prepared for users of The MathWorks s MATLAB /Simulink software in conjunction with Quanser s QUARC real-time control software. The following material provides an abbreviated example of lab experiments for the. Please note that the examples are not complete as they are intended to give you a brief overview of the structure and content of the course materials you will receive with the plant. QUANSER.COM Page 1 of 8

3 TABLE OF CONTENTS PREFACE... PAGE 1 INTRODUCTION TO QUANSER ROBOTICS PACKAGE FOR EDUCATION COURSEWARE... PAGE 3 INSTRUCTOR WORKBOOK TABLE OF CONTENTS... PAGE 3 PRE-LAB PREPARATIONS: BACKGROUND... PAGE 5 PRE-LAB PREPARATIONS: PRE-LAB EXERCISE... PAGE 6 IN-LAB EXERCISE... PAGE 7 QUANSER.COM Page 2 of 8

4 1. INTRODUCTION TO QUANSER ROBOTICS PACKAGE FOR EDUCATION COURSEWARE Quanser courseware provides step-by-step pedagogy for a wide range of control challenges. Starting with the basic principles, students can progress to more advanced applications and cultivate a deep understanding of studied theory. courseware covers topics, such as: manipulator kinematics manipulator inverse kinematics manipulator Jacobian trajectory planning 2. INSTRUCTOR WORKBOOK TABLE OF CONTENTS The full Table of Contents of the Quanser QBot 2 for QUARC courseware is shown here: Experiment 1 Manipulator Kinematics 1. PRE-LAB PREPARATIONS 1.1. BACKGROUND COORDINATE FRAME ASSIGNMENT AND DH PARAMETERS FORWARD KINEMATICS USING DH PARAMETERS 1.2. PRE-LAB EXERCISE 2. IN-LAB EXERCISE 2.1. SIMULATION 2.2. EXPERIMENT Experiment 2 Manipulator Inverse Kinematics 1. PRE-LAB PREPARATIONS 1.1. BACKGROUND SOLVABILITY EXISTENCE OF SOLUTIONS GEOMETRIC SOLUTION 1.2. PRE-LAB EXERCISE 2. IN-LAB EXERCISE 2.1. SIMULATION 2.2. EXPERIMENT QUANSER.COM Page 3 of 8

5 Experiment 3 Manipulator Jacobian 1. PRE-LAB PREPARATIONS 1.1. BACKGROUND LINEAR AND ANGULAR VELOCITY VELOCITY PROPAGATION FOR SERIAL LINK MANIPULATORS AND MANIPULATOR JACOBIAN STATIC FORCES MANIPULATOR SINGULARITIES 1.2. PRE-LAB EXERCISE 2. IN-LAB EXERCISE 2.1. SIMULATION 2.2. EXPERIMENT Experiment 4 Trajectory Planning 1. PRE-LAB PREPARATIONS 1.1. BACKGROUND PATH DESCRIPTION AND GENERATION CUBIC VS. QUINTIC POLYNOMIAL TRAJECTORY PLANNING PRE-LAB EXERCISE 2. IN-LAB EXERCISE 2.1. SIMULATION 2.2. EXPERIMENT QUANSER.COM Page 4 of 8

6 3. PRE-LAB PREPARATIONS: BACKGROUND - Experiment 4 -Trajectory Planning In the context of robotics, Trajectory refers to a time history of position, velocity and acceleration for each degree of freedom, whether in the joint space or Cartesian space. In various robotics application, the end-user cannot be involved in determining complicated functions for the robot motion. Therefore, the robot program should be able to provide the motion of the robot with some limited information such as the desired goal pose (position and orientation) of the robot end-effector or the attached tool or multiple way points (or via points) along the desired path. In this laboratory you will learn how robot trajectories can be computed, represented, generated and applied to the robots. Path Description and Generation As mentioned earlier, the end users of robot manipulators mostly concern about the motion of the tool frame of the robot, attached to the end-effector, relative to the base or station frame. Therefore, in this lab we focus on the Cartesian-space trajectory planning although the methods can be directly applied to jointspace schemes. The motion of the robot includes both position and orientation. Since we are dealing with a 4 DOF robotic manipulator, if we want to control the position of the robot end-effector in space, we require three degrees of freedom. We use the rotation of the last joint (wrist) of the robot as the remaining degree of freedom of the robot. In most cases, it is necessary to specify the movements of the robot in more details. Consider a factory in which a robotic arm has to reach a part without touching other objects around it. Therefore, the user wishes to provide a sequence of way points (or via points), i.e., intermediate points between the initial and final points. Depending on the design scheme, each way point includes different information. In Cartesian scheme, each way points describes the position and orientation of the robot. In joint-space scheme, each way point represents all joint angles. Along these spatial constraints each way point usually contains some temporal attributes, i.e., the time elapsed between the way points. Also, having a smooth motion is usually another constraint. Usually, a trajectory function that is continuous and has continuous first derivative is a smooth trajectory. For a minimum jerk trajectory, a continuous second order derivative is desirable. Minimum jerk motions minimize wear on the robot mechanisms and is desirable for many applications such as accurate image analysis for robotic vision inspections. QUANSER.COM Page 5 of 8

7 4. PRE-LAB PREPARATIONS: PRE-LAB EXERCISE - Experiment 1 -Manipulator Kinematics Using the procedure outlined in the background section for attaching coordinate frames to robotic manipulators, assign appropriate coordinate frames to the schematic of the MICO robotic manipulator in Figure 1.2 (some axes are shown for simplicity). The base and end-effector of the arm are shown with red dots and all other joints are shown with green dots. Figure 1.2: Schematic of the 4 DOF MICO robotic manipulator Answer The coordinate frames should be assigned according to Figure Ans.1.1. Figure Ans.1.1: Schematic of the 4 DOF MICO robotic manipulator with coordinate frames assigned to all links QUANSER.COM Page 6 of 8

8 5. IN-LAB EXERCISE - Experiment 2 - Manipulator Inverse Kinematics Simulation The QUARC model for this exercise is "MICO_Inverse_Kinematics_Simulation.mdl", a snapshot of which is shown in Figure 2.1 Figure 2.1: Snapshot of the controller model "MICO_Inverse_Kinematics_Simulation.mdl" Compile and run the model. The Quanser 3D Viewer window should open, showing a visualization of the robot. Go through the following steps and answer the corresponding questions. 1. Set the x,y and z values of the P0 input command to 0,0 and 0.7 m respectively (use the slider gains highlighted in yellow). Observe the outputs "Solution 1" and "Solution 2" and verify your pre-lab calculations. Compare the pose of the robot with the schematic from Question 3 in the Pre-Lab Exercise. Answer 2.1 (a) Solution 1: θ 1 = 0, θ 2 = 131.6, and θ 3 = 5.53 (b) Solution 2: θ 1 = 0, θ 2 = 48.37, and θ 3 = These values are consistent with pre-lab calculations. The 3D Viewer shows the robot in a configuration similar to Figure Ans How is the y axis of the end-effector frame oriented with respect to the global (or base) frame? Hold down the middle mouse button, and move the mouse to rotate the camera view of the 3D Viewer. Describe the orientation of the robot in relation to the rotation matrix. Answer 2.2 y axis is along -y of the global frame. This is obvious from the second column of the rotation matrix (R). QUANSER.COM Page 7 of 8

9 Experiment The QUARC model for this exercise is "MICO_Inverse_Kinematics_Experiment.mdl'' the snapshot of which shown in Figure 2.2. Make sure that the manual switch is set to zero (MICO is disabled). Turn on the robot and manually move it to a desired pose (arbitrary). Make sure that the robot is not too close to the ground. Figure 2.2: Snapshot of the controller model "MICO_ Inverse_Kinematics_Experiment.mdl'' 1. Set x, y, and z values of the P0 input command to 0, 0, and 0.7 m respectively (use the slider gains highlighted in yellow). Observe the outputs "Solution 1'' and "Solution 2'' and verify the values by comparing them to the ones you observed from the previous section. Compare the pose of the robot with the pose of the virtual robot you observed in the previous section. Enable the robot motion and observe the robot moving to P0. Answer 2.6 (a) Solution 1: θ 1 = 0, θ 2 = 131.6, and θ 3 = 5.53 (b) Solution 2: θ 1 = 0, θ 2 = 48.37, and θ 3 = These values are consistent with virtual robot observations. 2. What is the actual position of the robot end-effector (the output P from the forward kinematics block highlighted in blue). What is the error between the commanded position and the output position? What do you think is the source of error? Answer 2.7 P = [ ], e = P P 0 = [ ] (Ans.2.1) Note: These values could be different depending on the initial pose of the robot. The source of error is related to control error, as well as measurement error. Other sources of error, such as model error, do not affect the measured P. If we used other tools to measure the end-effector position, then the model error (e.g. error in the length os the links) would have an effect. QUANSER.COM Page 8 of 8

10 Solutions for teaching and research in robotics and autonomous systems 2 DOF Robot 2 DOF Gantry 2 DOF Inverted Pendulum 2 DOF Planar Robot 2 DOF Serial Flexible Joint 2 DOF Serial Flexible Link 6 DOF Denso Open Architecture Robot QBot 2 QBall 2 Unmanned Vehicle Systems Lab With Quanser robotic systems, you can introduce control concepts related to stationary and mobile robotics, from vibration analysis, resonance and planar position control to sensors, computer, visionguided control to unmanned systems control. All of the experiments/platforms are compatible with MATLAB /Simulink Quanser Inc. All rights reserved QUANSER.COM Solutions for teaching and research. Made in Canada.

laboratory guide 2 DOF Inverted Pendulum Experiment for MATLAB /Simulink Users

laboratory guide 2 DOF Inverted Pendulum Experiment for MATLAB /Simulink Users laboratory guide 2 DOF Inverted Pendulum Experiment for MATLAB /Simulink Users Developed by: Jacob Apkarian, Ph.D., Quanser Hervé Lacheray, M.A.SC., Quanser Michel Lévis, M.A.SC., Quanser Quanser educational

More information

Design-Simulation-Optimization Package for a Generic 6-DOF Manipulator with a Spherical Wrist

Design-Simulation-Optimization Package for a Generic 6-DOF Manipulator with a Spherical Wrist Design-Simulation-Optimization Package for a Generic 6-DOF Manipulator with a Spherical Wrist MHER GRIGORIAN, TAREK SOBH Department of Computer Science and Engineering, U. of Bridgeport, USA ABSTRACT Robot

More information

Practical Work DELMIA V5 R20 Lecture 1. D. Chablat / S. Caro Damien.Chablat@irccyn.ec-nantes.fr Stephane.Caro@irccyn.ec-nantes.fr

Practical Work DELMIA V5 R20 Lecture 1. D. Chablat / S. Caro Damien.Chablat@irccyn.ec-nantes.fr Stephane.Caro@irccyn.ec-nantes.fr Practical Work DELMIA V5 R20 Lecture 1 D. Chablat / S. Caro Damien.Chablat@irccyn.ec-nantes.fr Stephane.Caro@irccyn.ec-nantes.fr Native languages Definition of the language for the user interface English,

More information

Intelligent Submersible Manipulator-Robot, Design, Modeling, Simulation and Motion Optimization for Maritime Robotic Research

Intelligent Submersible Manipulator-Robot, Design, Modeling, Simulation and Motion Optimization for Maritime Robotic Research 20th International Congress on Modelling and Simulation, Adelaide, Australia, 1 6 December 2013 www.mssanz.org.au/modsim2013 Intelligent Submersible Manipulator-Robot, Design, Modeling, Simulation and

More information

Simulation of Trajectories and Comparison of Joint Variables for Robotic Manipulator Using Multibody Dynamics (MBD)

Simulation of Trajectories and Comparison of Joint Variables for Robotic Manipulator Using Multibody Dynamics (MBD) Simulation of Trajectories and Comparison of Joint Variables for Robotic Manipulator Using Multibody Dynamics (MBD) Jatin Dave Assistant Professor Nirma University Mechanical Engineering Department, Institute

More information

ME 115(b): Solution to Homework #1

ME 115(b): Solution to Homework #1 ME 115(b): Solution to Homework #1 Solution to Problem #1: To construct the hybrid Jacobian for a manipulator, you could either construct the body Jacobian, JST b, and then use the body-to-hybrid velocity

More information

FUNDAMENTALS OF ROBOTICS

FUNDAMENTALS OF ROBOTICS FUNDAMENTALS OF ROBOTICS Lab exercise Stäubli AULINAS Josep (u1043469) GARCIA Frederic (u1038431) Introduction The aim of this tutorial is to give a brief overview on the Stäubli Robot System describing

More information

ACTUATOR DESIGN FOR ARC WELDING ROBOT

ACTUATOR DESIGN FOR ARC WELDING ROBOT ACTUATOR DESIGN FOR ARC WELDING ROBOT 1 Anurag Verma, 2 M. M. Gor* 1 G.H Patel College of Engineering & Technology, V.V.Nagar-388120, Gujarat, India 2 Parul Institute of Engineering & Technology, Limda-391760,

More information

ECE 495 Project 3: Shocker Actuator Subsystem and Website Design. Group 1: One Awesome Engineering

ECE 495 Project 3: Shocker Actuator Subsystem and Website Design. Group 1: One Awesome Engineering ECE 495 Project 3: Shocker Actuator Subsystem and Website Design Group 1: One Awesome Engineering Luquita Edwards Evan Whetsell Sunny Verma Thomas Ryan Willis Long I. Executive Summary The main goal behind

More information

Manipulator Kinematics. Prof. Matthew Spenko MMAE 540: Introduction to Robotics Illinois Institute of Technology

Manipulator Kinematics. Prof. Matthew Spenko MMAE 540: Introduction to Robotics Illinois Institute of Technology Manipulator Kinematics Prof. Matthew Spenko MMAE 540: Introduction to Robotics Illinois Institute of Technology Manipulator Kinematics Forward and Inverse Kinematics 2D Manipulator Forward Kinematics Forward

More information

A PAIR OF MEASURES OF ROTATIONAL ERROR FOR AXISYMMETRIC ROBOT END-EFFECTORS

A PAIR OF MEASURES OF ROTATIONAL ERROR FOR AXISYMMETRIC ROBOT END-EFFECTORS A PAIR OF MEASURES OF ROTATIONAL ERROR FOR AXISYMMETRIC ROBOT END-EFFECTORS Sébastien Briot, Ilian A. Bonev Department of Automated Manufacturing Engineering École de technologie supérieure (ÉTS), Montreal,

More information

Industrial Robotics. Training Objective

Industrial Robotics. Training Objective Training Objective After watching the program and reviewing this printed material, the viewer will learn the basics of industrial robot technology and how robots are used in a variety of manufacturing

More information

Constraint satisfaction and global optimization in robotics

Constraint satisfaction and global optimization in robotics Constraint satisfaction and global optimization in robotics Arnold Neumaier Universität Wien and Jean-Pierre Merlet INRIA Sophia Antipolis 1 The design, validation, and use of robots poses a number of

More information

Introduction to Robotics Analysis, Systems, Applications

Introduction to Robotics Analysis, Systems, Applications Introduction to Robotics Analysis, Systems, Applications Saeed B. Niku Mechanical Engineering Department California Polytechnic State University San Luis Obispo Technische Urw/carsMt Darmstadt FACHBEREfCH

More information

CALIBRATION OF A ROBUST 2 DOF PATH MONITORING TOOL FOR INDUSTRIAL ROBOTS AND MACHINE TOOLS BASED ON PARALLEL KINEMATICS

CALIBRATION OF A ROBUST 2 DOF PATH MONITORING TOOL FOR INDUSTRIAL ROBOTS AND MACHINE TOOLS BASED ON PARALLEL KINEMATICS CALIBRATION OF A ROBUST 2 DOF PATH MONITORING TOOL FOR INDUSTRIAL ROBOTS AND MACHINE TOOLS BASED ON PARALLEL KINEMATICS E. Batzies 1, M. Kreutzer 1, D. Leucht 2, V. Welker 2, O. Zirn 1 1 Mechatronics Research

More information

Robotics and Automation Blueprint

Robotics and Automation Blueprint Robotics and Automation Blueprint This Blueprint contains the subject matter content of this Skill Connect Assessment. This Blueprint does NOT contain the information one would need to fully prepare for

More information

Development of Easy Teaching Interface for a Dual Arm Robot Manipulator

Development of Easy Teaching Interface for a Dual Arm Robot Manipulator Development of Easy Teaching Interface for a Dual Arm Robot Manipulator Chanhun Park and Doohyeong Kim Department of Robotics and Mechatronics, Korea Institute of Machinery & Materials, 156, Gajeongbuk-Ro,

More information

Introduction to Computer Graphics Marie-Paule Cani & Estelle Duveau

Introduction to Computer Graphics Marie-Paule Cani & Estelle Duveau Introduction to Computer Graphics Marie-Paule Cani & Estelle Duveau 04/02 Introduction & projective rendering 11/02 Prodedural modeling, Interactive modeling with parametric surfaces 25/02 Introduction

More information

CATIA V5 Tutorials. Mechanism Design & Animation. Release 18. Nader G. Zamani. University of Windsor. Jonathan M. Weaver. University of Detroit Mercy

CATIA V5 Tutorials. Mechanism Design & Animation. Release 18. Nader G. Zamani. University of Windsor. Jonathan M. Weaver. University of Detroit Mercy CATIA V5 Tutorials Mechanism Design & Animation Release 18 Nader G. Zamani University of Windsor Jonathan M. Weaver University of Detroit Mercy SDC PUBLICATIONS Schroff Development Corporation www.schroff.com

More information

An inertial haptic interface for robotic applications

An inertial haptic interface for robotic applications An inertial haptic interface for robotic applications Students: Andrea Cirillo Pasquale Cirillo Advisor: Ing. Salvatore Pirozzi Altera Innovate Italy Design Contest 2012 Objective Build a Low Cost Interface

More information

Force/position control of a robotic system for transcranial magnetic stimulation

Force/position control of a robotic system for transcranial magnetic stimulation Force/position control of a robotic system for transcranial magnetic stimulation W.N. Wan Zakaria School of Mechanical and System Engineering Newcastle University Abstract To develop a force control scheme

More information

1 Differential Drive Kinematics

1 Differential Drive Kinematics CS W4733 NOTES - Differential Drive Robots Note: these notes were compiled from Dudek and Jenkin, Computational Principles of Mobile Robotics. 1 Differential Drive Kinematics Many mobile robots use a drive

More information

Inverse Kinematic Problem Solving: A Symbolic Approach Using MapleSim and Maple

Inverse Kinematic Problem Solving: A Symbolic Approach Using MapleSim and Maple Inverse Kinematic Problem Solving: A Symbolic Approach Using MapleSim and Maple 4 High-Performance Physical Modeling and Simulation Inverse Kinematic Problem Solving: A Symbolic Approach Using MapleSim

More information

Animations in Creo 3.0

Animations in Creo 3.0 Animations in Creo 3.0 ME170 Part I. Introduction & Outline Animations provide useful demonstrations and analyses of a mechanism's motion. This document will present two ways to create a motion animation

More information

Inverse Kinematics. Ming Yao

Inverse Kinematics. Ming Yao Mathematics for Inverse Kinematics 15 464: Technical Animation Ming Yao Overview Kinematics Forward Kinematics and Inverse Kinematics Jabobian Pseudoinverse of the Jacobian Assignment 2 Vocabulary of Kinematics

More information

Operational Space Control for A Scara Robot

Operational Space Control for A Scara Robot Operational Space Control for A Scara Robot Francisco Franco Obando D., Pablo Eduardo Caicedo R., Oscar Andrés Vivas A. Universidad del Cauca, {fobando, pacaicedo, avivas }@unicauca.edu.co Abstract This

More information

INTRODUCTION. Robotics is a relatively young field of modern technology that crosses traditional

INTRODUCTION. Robotics is a relatively young field of modern technology that crosses traditional 1 INTRODUCTION Robotics is a relatively young field of modern technology that crosses traditional engineering boundaries. Understanding the complexity of robots and their applications requires knowledge

More information

CIS 536/636 Introduction to Computer Graphics. Kansas State University. CIS 536/636 Introduction to Computer Graphics

CIS 536/636 Introduction to Computer Graphics. Kansas State University. CIS 536/636 Introduction to Computer Graphics 2 Lecture Outline Animation 2 of 3: Rotations, Quaternions Dynamics & Kinematics William H. Hsu Department of Computing and Information Sciences, KSU KSOL course pages: http://bit.ly/hgvxlh / http://bit.ly/evizre

More information

Integration of a Robotic Arm with the Surgical Assistant Workstation Software Framework

Integration of a Robotic Arm with the Surgical Assistant Workstation Software Framework Integration of a Robotic Arm with the Surgical Assistant Workstation Software Framework Release 1.7 Jessie Young 1, Haytham Elhawary 2 and Aleksandra Popovic 2 July 21, 2011 1 Center for Computer-Integrated

More information

Robotic motion planning for 8- DOF motion stage

Robotic motion planning for 8- DOF motion stage Robotic motion planning for 8- DOF motion stage 12 November Mark Geelen Simon Jansen Alten Mechatronics www.alten.nl rosindustrial@alten.nl Introduction Introduction Alten FEI Motion planning MoveIt! Proof

More information

Introduction to the inverse kinematics of serial manipulators

Introduction to the inverse kinematics of serial manipulators Introduction to the inverse kinematics of serial manipulators Sandipan Bandyopadhyay Department of Engineering Design Indian Institute of Technology Madras, Chennai 600 036 Email: sandipan@iitm.ac.in Web:

More information

Figure 1 - Delta Theta Input Selection

Figure 1 - Delta Theta Input Selection Creating Cams in Pro/Engineer Wildfire Using DYNACAM Mechanical Engineering Mechanical Design Created by: David E. Yamartino M.S. Mechanical Engineering May 2004 April 12, 2004 Objective: The objective

More information

Whole-body dynamic motion planning with centroidal dynamics and full kinematics

Whole-body dynamic motion planning with centroidal dynamics and full kinematics Sep. 18. 2014 Introduction Linear Inverted Pendulum compute ZMP with point-mass model linear system, analytical solution co-planar contact solve kinematics separately Our approach dynamic constraint for

More information

Computer Animation. Lecture 2. Basics of Character Animation

Computer Animation. Lecture 2. Basics of Character Animation Computer Animation Lecture 2. Basics of Character Animation Taku Komura Overview Character Animation Posture representation Hierarchical structure of the body Joint types Translational, hinge, universal,

More information

Modeling and Simulation of SCORA-ER14 Robot in ADAMS Platform

Modeling and Simulation of SCORA-ER14 Robot in ADAMS Platform Modeling and Simulation of SCORA-ER14 Robot in ADAMS Platform Ashok Kumar Jha, Partha Pratim Roy, Ajoy Kumar Dutta, Jyotirmoy Saha Abstract SCORA-ER14 robot is a four degree of freedom robot which is basically

More information

On-line trajectory planning of robot manipulator s end effector in Cartesian Space using quaternions

On-line trajectory planning of robot manipulator s end effector in Cartesian Space using quaternions On-line trajectory planning of robot manipulator s end effector in Cartesian Space using quaternions Ignacio Herrera Aguilar and Daniel Sidobre (iherrera, daniel)@laas.fr LAAS-CNRS Université Paul Sabatier

More information

INTRODUCTION TO SERIAL ARM

INTRODUCTION TO SERIAL ARM INTRODUCTION TO SERIAL ARM A robot manipulator consists of links connected by joints. The links of the manipulator can be considered to form a kinematic chain. The business end of the kinematic chain of

More information

LEGO NXT-based Robotic Arm

LEGO NXT-based Robotic Arm Óbuda University e Bulletin Vol. 2, No. 1, 2011 LEGO NXT-based Robotic Arm Ákos Hámori, János Lengyel, Barna Reskó Óbuda University barna.resko@arek.uni-obuda.hu, hamoriakos@gmail.com, polish1987@gmail.com

More information

CIM Computer Integrated Manufacturing

CIM Computer Integrated Manufacturing INDEX CIM IN BASIC CONFIGURATION CIM IN ADVANCED CONFIGURATION CIM IN COMPLETE CONFIGURATION DL CIM A DL CIM B DL CIM C DL CIM C DL CIM B DL CIM A Computer Integrated Manufacturing (CIM) is a method of

More information

Robot Modeling and Control

Robot Modeling and Control Robot Modeling and Control First Edition Mark W. Spong, Seth Hutchinson, and M. Vidyasagar JOHN WILEY & SONS, INC. New York / Chichester / Weinheim / Brisbane / Singapore / Toronto Preface TO APPEAR i

More information

CATIA Kinematics TABLE OF CONTENTS

CATIA Kinematics TABLE OF CONTENTS TABLE OF CONTENTS Introduction...1 Fitting Simulation...2 Pull Down Menus...3 Insert...3 Tools...4 Analyze...5 Window...5 Fitting Simulation Workbench...6 Manipulation...7 Recorder...8 Player...8 Bottom

More information

Time Domain and Frequency Domain Techniques For Multi Shaker Time Waveform Replication

Time Domain and Frequency Domain Techniques For Multi Shaker Time Waveform Replication Time Domain and Frequency Domain Techniques For Multi Shaker Time Waveform Replication Thomas Reilly Data Physics Corporation 1741 Technology Drive, Suite 260 San Jose, CA 95110 (408) 216-8440 This paper

More information

Design Aspects of Robot Manipulators

Design Aspects of Robot Manipulators Design Aspects of Robot Manipulators Dr. Rohan Munasinghe Dept of Electronic and Telecommunication Engineering University of Moratuwa System elements Manipulator (+ proprioceptive sensors) End-effector

More information

DIEF, Department of Engineering Enzo Ferrari University of Modena e Reggio Emilia Italy Online Trajectory Planning for robotic systems

DIEF, Department of Engineering Enzo Ferrari University of Modena e Reggio Emilia Italy Online Trajectory Planning for robotic systems DIEF, Department of Engineering Enzo Ferrari University of Modena e Reggio Emilia Italy Online Trajectory Planning for robotic systems Luigi Biagiotti Luigi Biagiotti luigi.biagiotti@unimore.it Introduction

More information

Scooter, 3 wheeled cobot North Western University. PERCRO Exoskeleton

Scooter, 3 wheeled cobot North Western University. PERCRO Exoskeleton Scooter, 3 wheeled cobot North Western University A cobot is a robot for direct physical interaction with a human operator, within a shared workspace PERCRO Exoskeleton Unicycle cobot the simplest possible

More information

Kinematics and Dynamics of Mechatronic Systems. Wojciech Lisowski. 1 An Introduction

Kinematics and Dynamics of Mechatronic Systems. Wojciech Lisowski. 1 An Introduction Katedra Robotyki i Mechatroniki Akademia Górniczo-Hutnicza w Krakowie Kinematics and Dynamics of Mechatronic Systems Wojciech Lisowski 1 An Introduction KADOMS KRIM, WIMIR, AGH Kraków 1 The course contents:

More information

Interactive Computer Graphics

Interactive Computer Graphics Interactive Computer Graphics Lecture 18 Kinematics and Animation Interactive Graphics Lecture 18: Slide 1 Animation of 3D models In the early days physical models were altered frame by frame to create

More information

Robot Task-Level Programming Language and Simulation

Robot Task-Level Programming Language and Simulation Robot Task-Level Programming Language and Simulation M. Samaka Abstract This paper presents the development of a software application for Off-line robot task programming and simulation. Such application

More information

A Robotic arm for optical and gamma radwaste inspection

A Robotic arm for optical and gamma radwaste inspection EPJ Web of Conferences 79, 02007 (2014) DOI: 10.1051/epjconf/20147902007 C Owned by the authors, published by EDP Sciences, 2014 A Robotic arm for optical and gamma radwaste inspection L. Russo 1,L.Cosentino

More information

Robot coined by Karel Capek in a 1921 science-fiction Czech play

Robot coined by Karel Capek in a 1921 science-fiction Czech play Robotics Robot coined by Karel Capek in a 1921 science-fiction Czech play Definition: A robot is a reprogrammable, multifunctional manipulator designed to move material, parts, tools, or specialized devices

More information

CMA ROBOTICS ROBOT PROGRAMMING SYSTEMS COMPARISON

CMA ROBOTICS ROBOT PROGRAMMING SYSTEMS COMPARISON CMA ROBOTICS ROBOT PROGRAMMING SYSTEMS COMPARISON CMA Robotics use different methods to program his robot depending model and process, this document will explain all this system advantage connected with

More information

Robotics. Chapter 25. Chapter 25 1

Robotics. Chapter 25. Chapter 25 1 Robotics Chapter 25 Chapter 25 1 Outline Robots, Effectors, and Sensors Localization and Mapping Motion Planning Motor Control Chapter 25 2 Mobile Robots Chapter 25 3 Manipulators P R R R R R Configuration

More information

Kinematical Animation. lionel.reveret@inria.fr 2013-14

Kinematical Animation. lionel.reveret@inria.fr 2013-14 Kinematical Animation 2013-14 3D animation in CG Goal : capture visual attention Motion of characters Believable Expressive Realism? Controllability Limits of purely physical simulation : - little interactivity

More information

High Accuracy Articulated Robots with CNC Control Systems

High Accuracy Articulated Robots with CNC Control Systems Copyright 2012 SAE International 2013-01-2292 High Accuracy Articulated Robots with CNC Control Systems Bradley Saund, Russell DeVlieg Electroimpact Inc. ABSTRACT A robotic arm manipulator is often an

More information

An Innovative Driving Simulator: Robocoaster

An Innovative Driving Simulator: Robocoaster F28-12-219 An Innovative Driving Simulator: Robocoaster 1 Bellmann, Tobias * 1 German Aerospace Center (DLR), Germany KEYWORDS Motion Simulation, Robotics, Path-Planning, Singularities, Washout Filter

More information

Metrics on SO(3) and Inverse Kinematics

Metrics on SO(3) and Inverse Kinematics Mathematical Foundations of Computer Graphics and Vision Metrics on SO(3) and Inverse Kinematics Luca Ballan Institute of Visual Computing Optimization on Manifolds Descent approach d is a ascent direction

More information

THE problem of visual servoing guiding a robot using

THE problem of visual servoing guiding a robot using 582 IEEE TRANSACTIONS ON ROBOTICS AND AUTOMATION, VOL. 13, NO. 4, AUGUST 1997 A Modular System for Robust Positioning Using Feedback from Stereo Vision Gregory D. Hager, Member, IEEE Abstract This paper

More information

Motion Control of 3 Degree-of-Freedom Direct-Drive Robot. Rutchanee Gullayanon

Motion Control of 3 Degree-of-Freedom Direct-Drive Robot. Rutchanee Gullayanon Motion Control of 3 Degree-of-Freedom Direct-Drive Robot A Thesis Presented to The Academic Faculty by Rutchanee Gullayanon In Partial Fulfillment of the Requirements for the Degree Master of Engineering

More information

WEB ENABLED ROBOT DESIGN AND DYNAMIC CONTROL SIMULATION SOFTWARE SOLUTIONS FROM TASK POINTS DESCRIPTION

WEB ENABLED ROBOT DESIGN AND DYNAMIC CONTROL SIMULATION SOFTWARE SOLUTIONS FROM TASK POINTS DESCRIPTION WEB ENABLED ROBOT DESIGN AND DYNAMIC CONTROL SIMULATION SOFTWARE SOLUTIONS FROM TASK POINTS DESCRIPTION Tarek M. Sobh, Bei Wang* and Sarosh H. Patel University of Bridgeport Bridgeport, CT 06601 U.S.A.

More information

Chapter. 4 Mechanism Design and Analysis

Chapter. 4 Mechanism Design and Analysis Chapter. 4 Mechanism Design and Analysis 1 All mechanical devices containing moving parts are composed of some type of mechanism. A mechanism is a group of links interacting with each other through joints

More information

Sensory-motor control scheme based on Kohonen Maps and AVITE model

Sensory-motor control scheme based on Kohonen Maps and AVITE model Sensory-motor control scheme based on Kohonen Maps and AVITE model Juan L. Pedreño-Molina, Antonio Guerrero-González, Oscar A. Florez-Giraldo, J. Molina-Vilaplana Technical University of Cartagena Department

More information

An Application of Robotic Optimization: Design for a Tire Changing Robot

An Application of Robotic Optimization: Design for a Tire Changing Robot An Application of Robotic Optimization: Design for a Tire Changing Robot RAUL MIHALI, MHER GRIGORIAN and TAREK SOBH Department of Computer Science and Engineering, University of Bridgeport, Bridgeport,

More information

DESIGN, IMPLEMENTATION, AND COOPERATIVE COEVOLUTION OF AN AUTONOMOUS/TELEOPERATED CONTROL SYSTEM FOR A SERPENTINE ROBOTIC MANIPULATOR

DESIGN, IMPLEMENTATION, AND COOPERATIVE COEVOLUTION OF AN AUTONOMOUS/TELEOPERATED CONTROL SYSTEM FOR A SERPENTINE ROBOTIC MANIPULATOR Proceedings of the American Nuclear Society Ninth Topical Meeting on Robotics and Remote Systems, Seattle Washington, March 2001. DESIGN, IMPLEMENTATION, AND COOPERATIVE COEVOLUTION OF AN AUTONOMOUS/TELEOPERATED

More information

Virtual CRASH 3.0 Staging a Car Crash

Virtual CRASH 3.0 Staging a Car Crash Virtual CRASH 3.0 Staging a Car Crash Virtual CRASH Virtual CRASH 3.0 Staging a Car Crash Changes are periodically made to the information herein; these changes will be incorporated in new editions of

More information

Intelligent Robotics Lab.

Intelligent Robotics Lab. 1 Variable Stiffness Actuation based on Dual Actuators Connected in Series and Parallel Prof. Jae-Bok Song (jbsong@korea.ac.kr ). (http://robotics.korea.ac.kr) ti k Depart. of Mechanical Engineering, Korea

More information

RIA : 2013 Market Trends Webinar Series

RIA : 2013 Market Trends Webinar Series RIA : 2013 Market Trends Webinar Series Robotic Industries Association A market trends education Available at no cost to audience Watch live or archived webinars anytime Learn about the latest innovations

More information

Lewis, F.L.; et. al. Robotics Mechanical Engineering Handbook Ed. Frank Kreith Boca Raton: CRC Press LLC, 1999

Lewis, F.L.; et. al. Robotics Mechanical Engineering Handbook Ed. Frank Kreith Boca Raton: CRC Press LLC, 1999 Lewis, F.L.; et. al. Robotics Mechanical Engineering Handbook Ed. Frank Kreith Boca Raton: CRC Press LLC, 1999 c 1999byCRCPressLLC Robotics Frank L. Lewis University of Texas at Arlington John M. Fitzgerald

More information

Two hours UNIVERSITY OF MANCHESTER SCHOOL OF COMPUTER SCIENCE. M.Sc. in Advanced Computer Science. Friday 18 th January 2008.

Two hours UNIVERSITY OF MANCHESTER SCHOOL OF COMPUTER SCIENCE. M.Sc. in Advanced Computer Science. Friday 18 th January 2008. COMP60321 Two hours UNIVERSITY OF MANCHESTER SCHOOL OF COMPUTER SCIENCE M.Sc. in Advanced Computer Science Computer Animation Friday 18 th January 2008 Time: 09:45 11:45 Please answer any THREE Questions

More information

The Department of Engineering, has two Scorbot-ER VII robotic manipulators and one Controller- A. There are 4 components in the system:

The Department of Engineering, has two Scorbot-ER VII robotic manipulators and one Controller- A. There are 4 components in the system: Introduction to the Scorbot ER VII and the Eshed Robotec Pty. Ltd. Advanced Control Language (ACL) Robert MAHONY, Dep. Engineering, ANU, ACT, 0200, Australia. The Department of Engineering, has two Scorbot-ER

More information

3D Tranformations. CS 4620 Lecture 6. Cornell CS4620 Fall 2013 Lecture 6. 2013 Steve Marschner (with previous instructors James/Bala)

3D Tranformations. CS 4620 Lecture 6. Cornell CS4620 Fall 2013 Lecture 6. 2013 Steve Marschner (with previous instructors James/Bala) 3D Tranformations CS 4620 Lecture 6 1 Translation 2 Translation 2 Translation 2 Translation 2 Scaling 3 Scaling 3 Scaling 3 Scaling 3 Rotation about z axis 4 Rotation about z axis 4 Rotation about x axis

More information

Building Interactive Animations using VRML and Java

Building Interactive Animations using VRML and Java Building Interactive Animations using VRML and Java FABIANA SALDANHA TAMIOSSO 1,ALBERTO BARBOSA RAPOSO 1, LÉO PINI MAGALHÃES 1 2,IVAN LUIZ MARQUES RICARTE 1 1 State University of Campinas (UNICAMP) School

More information

Automotive Applications of 3D Laser Scanning Introduction

Automotive Applications of 3D Laser Scanning Introduction Automotive Applications of 3D Laser Scanning Kyle Johnston, Ph.D., Metron Systems, Inc. 34935 SE Douglas Street, Suite 110, Snoqualmie, WA 98065 425-396-5577, www.metronsys.com 2002 Metron Systems, Inc

More information

Mobile Diagnostic Robot: a new frontier for a flexible test platform. Dr. Cristina Cristalli Research for Innovation Loccioni Group

Mobile Diagnostic Robot: a new frontier for a flexible test platform. Dr. Cristina Cristalli Research for Innovation Loccioni Group Mobile Diagnostic Robot: a new frontier for a flexible test platform Dr. Cristina Cristalli Research for Innovation Loccioni Group Outline Robot Classification Manufacturing Environment: Production Line

More information

Essential Mathematics for Computer Graphics fast

Essential Mathematics for Computer Graphics fast John Vince Essential Mathematics for Computer Graphics fast Springer Contents 1. MATHEMATICS 1 Is mathematics difficult? 3 Who should read this book? 4 Aims and objectives of this book 4 Assumptions made

More information

Drives OFF. Drives ON. Mode selector switch. Menu keys. Status keys. Softkeys. Numeric keypad Arrow keys. Symbol key

Drives OFF. Drives ON. Mode selector switch. Menu keys. Status keys. Softkeys. Numeric keypad Arrow keys. Symbol key KUKA Control Panel (KCP) The KUKA control panel is the interface to the robot controller and to the robot. This document gives an schematic overview of the buttons and symbols. Do note however that this

More information

Interactive Animation: A new approach to simulate parametric studies

Interactive Animation: A new approach to simulate parametric studies Interactive Animation: A new approach to simulate parametric studies Darwin Sebayang and Ignatius Agung Wibowo Kolej Universiti Teknologi Tun Hussein Onn (KUiTTHO) Abstract Animation is the one of novel

More information

An Application of Robotic Optimization: Design for a Tire Changing Robot

An Application of Robotic Optimization: Design for a Tire Changing Robot An Application of Robotic Optimization: Design for a Tire Changing Robot RAUL MIHALI, MHER GRIGORIAN and TAREK SOBH Department of Computer Science and Engineering, University of Bridgeport, Bridgeport,

More information

RoboAnalyzer: 3D Model Based Robotic Learning Software

RoboAnalyzer: 3D Model Based Robotic Learning Software International Conference on Multi Body Dynamics 2011 Vijayawada, India. pp. 3 13 RoboAnalyzer: 3D Model Based Robotic Learning Software C. G. Rajeevlochana 1 and S. K. Saha 2 1 Research Scholar, Dept.

More information

Visual Servoing Methodology for Selective Tree Pruning by Human-Robot Collaborative System

Visual Servoing Methodology for Selective Tree Pruning by Human-Robot Collaborative System Ref: C0287 Visual Servoing Methodology for Selective Tree Pruning by Human-Robot Collaborative System Avital Bechar, Victor Bloch, Roee Finkelshtain, Sivan Levi, Aharon Hoffman, Haim Egozi and Ze ev Schmilovitch,

More information

Twelve. Figure 12.1: 3D Curved MPR Viewer Window

Twelve. Figure 12.1: 3D Curved MPR Viewer Window Twelve The 3D Curved MPR Viewer This Chapter describes how to visualize and reformat a 3D dataset in a Curved MPR plane: Curved Planar Reformation (CPR). The 3D Curved MPR Viewer is a window opened from

More information

HYDRAULIC ARM MODELING VIA MATLAB SIMHYDRAULICS

HYDRAULIC ARM MODELING VIA MATLAB SIMHYDRAULICS Engineering MECHANICS, Vol. 16, 2009, No. 4, p. 287 296 287 HYDRAULIC ARM MODELING VIA MATLAB SIMHYDRAULICS Stanislav Věchet, Jiří Krejsa* System modeling is a vital tool for cost reduction and design

More information

Véronique PERDEREAU ISIR UPMC 6 mars 2013

Véronique PERDEREAU ISIR UPMC 6 mars 2013 Véronique PERDEREAU ISIR UPMC mars 2013 Conventional methods applied to rehabilitation robotics Véronique Perdereau 2 Reference Robot force control by Bruno Siciliano & Luigi Villani Kluwer Academic Publishers

More information

220135 - Fundamentals of Robotics

220135 - Fundamentals of Robotics Coordinating unit: Teaching unit: Academic year: Degree: ECTS credits: 2016 205 - ESEIAAT - Terrassa School of Industrial, Aerospace and Audiovisual Engineering 707 - ESAII - Department of Automatic Control

More information

Robot Dynamics and Control

Robot Dynamics and Control Robot Dynamics and Control Second Edition Mark W. Spong, Seth Hutchinson, and M. Vidyasagar January 28, 2004 2 Contents 1 INTRODUCTION 5 1.1 Robotics..................................... 5 1.2 History

More information

Path Tracking for a Miniature Robot

Path Tracking for a Miniature Robot Path Tracking for a Miniature Robot By Martin Lundgren Excerpt from Master s thesis 003 Supervisor: Thomas Hellström Department of Computing Science Umeå University Sweden 1 Path Tracking Path tracking

More information

Parametric Technology Corporation. Pro/ENGINEER Wildfire 4.0 Design Animation Concepts Guide

Parametric Technology Corporation. Pro/ENGINEER Wildfire 4.0 Design Animation Concepts Guide Parametric Technology Corporation Pro/ENGINEER Wildfire 4.0 Design Animation Concepts Guide Copyright 2007 Parametric Technology Corporation. All Rights Reserved. User and training guides and related documentation

More information

Autonomous Mobile Robot-I

Autonomous Mobile Robot-I Autonomous Mobile Robot-I Sabastian, S.E and Ang, M. H. Jr. Department of Mechanical Engineering National University of Singapore 21 Lower Kent Ridge Road, Singapore 119077 ABSTRACT This report illustrates

More information

Vibrations can have an adverse effect on the accuracy of the end effector of a

Vibrations can have an adverse effect on the accuracy of the end effector of a EGR 315 Design Project - 1 - Executive Summary Vibrations can have an adverse effect on the accuracy of the end effector of a multiple-link robot. The ability of the machine to move to precise points scattered

More information

Introduction to Engineering System Dynamics

Introduction to Engineering System Dynamics CHAPTER 0 Introduction to Engineering System Dynamics 0.1 INTRODUCTION The objective of an engineering analysis of a dynamic system is prediction of its behaviour or performance. Real dynamic systems are

More information

C is a point of concurrency is at distance from End Effector frame & at distance from ref frame.

C is a point of concurrency is at distance from End Effector frame & at distance from ref frame. Module 6 : Robot manipulators kinematics Lecture 21 : Forward & inverse kinematics examples of 2R, 3R & 3P manipulators Objectives In this course you will learn the following Inverse position and orientation

More information

Human-like Arm Motion Generation for Humanoid Robots Using Motion Capture Database

Human-like Arm Motion Generation for Humanoid Robots Using Motion Capture Database Human-like Arm Motion Generation for Humanoid Robots Using Motion Capture Database Seungsu Kim, ChangHwan Kim and Jong Hyeon Park School of Mechanical Engineering Hanyang University, Seoul, 133-791, Korea.

More information

Matrix Normalization for Optimal Robot Design

Matrix Normalization for Optimal Robot Design IEEE International Conference on Robotics and Automation Leuven, Belgium, May 16-21, 1998. Matrix Normalization for Optimal Robot Design L. Stocco, S. E. Salcudean and F. Sassani * Department of Electrical

More information

5-Axis Test-Piece Influence of Machining Position

5-Axis Test-Piece Influence of Machining Position 5-Axis Test-Piece Influence of Machining Position Michael Gebhardt, Wolfgang Knapp, Konrad Wegener Institute of Machine Tools and Manufacturing (IWF), Swiss Federal Institute of Technology (ETH), Zurich,

More information

ROBOTICS 01PEEQW. Basilio Bona DAUIN Politecnico di Torino

ROBOTICS 01PEEQW. Basilio Bona DAUIN Politecnico di Torino ROBOTICS 01PEEQW Basilio Bona DAUIN Politecnico di Torino Probabilistic Fundamentals in Robotics Robot Motion Probabilistic models of mobile robots Robot motion Kinematics Velocity motion model Odometry

More information

Lecture 7. Matthew T. Mason. Mechanics of Manipulation. Lecture 7. Representing Rotation. Kinematic representation: goals, overview

Lecture 7. Matthew T. Mason. Mechanics of Manipulation. Lecture 7. Representing Rotation. Kinematic representation: goals, overview Matthew T. Mason Mechanics of Manipulation Today s outline Readings, etc. We are starting chapter 3 of the text Lots of stuff online on representing rotations Murray, Li, and Sastry for matrix exponential

More information

Maya 2014 Basic Animation & The Graph Editor

Maya 2014 Basic Animation & The Graph Editor Maya 2014 Basic Animation & The Graph Editor When you set a Keyframe (or Key), you assign a value to an object s attribute (for example, translate, rotate, scale, color) at a specific time. Most animation

More information

Visualizing molecular simulations

Visualizing molecular simulations Visualizing molecular simulations ChE210D Overview Visualization plays a very important role in molecular simulations: it enables us to develop physical intuition about the behavior of a system that is

More information

Rotation: Moment of Inertia and Torque

Rotation: Moment of Inertia and Torque Rotation: Moment of Inertia and Torque Every time we push a door open or tighten a bolt using a wrench, we apply a force that results in a rotational motion about a fixed axis. Through experience we learn

More information

Introduction. www.imagesystems.se

Introduction. www.imagesystems.se Product information Image Systems AB Main office: Ågatan 40, SE-582 22 Linköping Phone +46 13 200 100, fax +46 13 200 150 info@imagesystems.se, Introduction Motion is the world leading software for advanced

More information