Save this PDF as:

Size: px
Start display at page:

Transcription

1 19 LINEAR QUADRATIC REGULATOR 19.1 Introduction The simple form of loopshaping in scalar systems does not extend directly to multivariable (MIMO) plants, which are characterized by transfer matrices instead of transfer functions. The notion of optimality is closely tied to MIMO control system design. Optimal controllers, i.e., controllers that are the best possible, according to some figure of merit, turn out to generate only stabilizing controllers for MIMO plants. In this sense, optimal control solutions provide an automated design procedure we have only to decide what figure of merit to use. The linear quadratic regulator (LQR) is a well-known design technique that provides practical feedback gains. (Continued on next page)

2 19.2 Full-State Feedback Full-State Feedback For the derivation of the linear quadratic regulator, we assume the plant to be written in state-space form ẋ = Ax + Bu, and that all of the n states x are available for the controller. The feedback gain is a matrix K, implemented as u = K(x x desired ). The system dynamics are then written as: ẋ = (A BK)x + BKx desired. (210) x desired represents the vector of desired states, and serves as the external input to the closedloop system. The A-matrix of the closed loop system is (A BK), and the B-matrix of the closed-loop system is BK. The closed-loop system has exactly as many outputs as inputs: n. The column dimension of B equals the number of channels available in u, and must match the row dimension of K. Pole-placement is the process of placing the poles of (A BK) in stable, suitably-damped locations in the complex plane The Maximum Principle First we develop a general procedure for solving optimal control problems, using the calculus of variations. We begin with the statemenf the problem for a fixed end time t f : choose u(t) to minimize J = ω(x(t f )) + L(x(t), u(t), t)dt (211) subject to ẋ = f(x(t), u(t), t) (212) x( ) = x o (213) where ω(x(t f ), t f ) is the terminal cost; the total cost J is a sum of the terminal cost and an integral along the way. We assume that L(x(t), u(t), t) is nonnegative. The first step is to augment the cost using the costate vector η(t). J = ω(x(t f )) + (L + η T (f ẋ))dt (214) Clearly, η(t) can be anything we choose, since it multiplies f ẋ = 0. Along the optimum trajectory, variations in J and hence J should vanish. This follows from the fact that J is chosen to be continuous in x, u, and t. We write the variation as ζj = ω x ζx(t f ) + Lx ζx + L u ζu + η T f x ζx + η T f u ζu η T ζẋ dt, (215) where subscripts denote partial derivatives. The last term above can be evaluated using integration by parts as and thus xdt = η T (t f )ζx(t f ) + η T T η T ζ ( )ζx( ) + η ζxdt, (216)

3 94 19 LINEAR QUADRATIC REGULATOR ζj = ω x (x(t f ))ζx(t f ) + (L u + η T f u )ζudt + (217) (Lx + η T f x + η T )ζxdt η T (t f )ζx(t f ) + η T ( )ζx( ). Now the last term is zero, since we cannot vary the initial condition of the state by changing something later in time - it is a fixed value. This way of writing J makes it clear that there are three components of the variation that must independently be zero (since we can vary any of x, u, or x(t f )): L u + η T f u = 0 (218) L x + η T T f x + η = 0 (219) ω x (x(t f )) η T (t f ) = 0. (220) The second and third requirements are met by explicitly setting T η = L x η T f x (221) η T (t f ) = ω x (x(t f )). (222) The evolution of η is given in reverse time, from a final state to the initial. Hence we see the primary difficulty of solving optimal control problems: the state propogates forward in time, while the costate propogates backward. The state and costate are coordinated through the above equations Gradient Method Solution for the General Case Numerical solutions to the general problem are iterative, and the simplest approach is the gradient method. It is outlined as follows: 1. For a given x o, pick a control history u(t). 2. Propogate ẋ = f(x, u, t) forward in time to create a state trajectory. 3. Evaluate ω x (x(t f )), and the propogate the costate backward in time from t f to, using Equation At each time step, choose ζu = K(L u + η T f u ), where K is a positive scalar or a positive definite matrix in the case of multiple input channels. 5. Let u = u + ζu. 6. Go back to step 2 and repeat loop until solution has converged.

4 19.5 LQR Solution 95 The first three steps are consistent in the sense that x is computed directly from x( and u, and η is computed directly from x and x(t f ). All of ζj in Equation 217 except the integral with ζu is therefore eliminated explicitly. The choice of ζu in step 4 then achieves ζj < 0, unless ζu = 0, in which case the problem is solved. The gradient method is quite popular in applications and for complex problems may be the only way to effectively develop a solution. The major difficulties are computational expense, and the requiremenf having a reasonable control trajectory to begin LQR Solution In the case of the Linear Quadratic Regulator (with zero terminal cost), we set ω = 0, and 1 L = 1 x T Qx + u T Ru, (223) 2 2 where the requirement that L 0 implies that both Q and R are positive definite. In the case of linear plant dynamics also, we have so that L x = x T Q (224) L u = u T R (225) f x = A (226) f u = B, (227) ẋ = Ax + Bu (228) x( ) = x o (229) η = Qx A T η (230) η(t f ) = 0 (231) Ru + B T η = 0. (232) Since the systems are clearly linear, we try a connection η = P x. Inserting this into the η equation, and then using the ẋ equation, and a substitution for u, we obtain P Ax + A T P x + Qx P BR 1 B T P x + P = 0. (233) This has to hold for all x, so in fact it is a matrix equation, the matrix Riccati equation. The steady-state solution is given satisfies P A + A T P + Q P BR 1 B T P = 0. (234)

5 96 19 LINEAR QUADRATIC REGULATOR 19.6 Optimal Full-State Feedback This equation is the matrix algebraic Riccati equation (MARE), whose solution P is needed to compute the optimal feedback gain K. The MARE is easily solved by standard numerical tools in linear algebra. The equation Ru + B T η = 0 gives the feedback law: u = R 1 B T P x. (235) 19.7 Properties and Use of the LQR Static Gain. The LQR generates a static gain matrix K, which is not a dynamical system. Hence, the order of the closed-loop system is the same as thaf the plant. Robustness. The LQR achieves infinite gain margin: k g =, implying that the loci of (P C) (scalar case) or (det(i +P C) 1) (MIMO case) approach the origin along the imaginary axis. The LQR also guarantees phase margin ρ 60 degrees. This is in good agreement with the practical guidelines for control system design. Output Variables. In many cases, it is not the states x which are to be minimized, but the output variables y. In this case, we set the weighting matrix Q = C T Q C, since y = Cx, and the auxiliary matrix Q weights the planutput. Behavior of Closed-Loop Poles: Expensive Control. When R >> C T Q C, the cost function is dominated by the control effort u, and so the controller minimizes the control action itself. In the case of a completely stable plant, the gain will indeed go to zero, so that the closed-loop poles approach the open-loop plant poles in a manner consistent with the scalar root locus. The optimal control must always stabilize the closed-loop system, however, so there should be some account made for unstable plant poles. The expensive control solution puts stable closed-loop poles at the mirror images of the unstable plant poles. Behavior of Closed-Loop Poles: Cheap Control. When R << C T Q C, the cost function is dominated by the output errors y, and there is no penalty for using large u. There are two groups of closed-loop poles. First, poles are placed at stable plant zeros, and at the mirror images of the unstable plant zeros. This part is akin to the high-gain limiting case of the root locus. The remaining poles assume a Butterworth pattern, whose radius increases to infinity as R becomes smaller and smaller. The Butterworth pattern refers to an arc in the stable left-half plane, as shown in the figure. The angular separation of n closed-loop poles on the arc is constant, and equal to 180 /n. An angle 90 /n separates the most lightly-damped poles from the imaginary axis.

6 19.8 Proof of the Gain and Phase Margins 97 φ /2 φ n = 4 φ = 45 degrees φ φ φ / Proof of the Gain and Phase Margins The above stated properties of the LQR control are not difficult to prove. We need an intermediate tool (which is very useful in its own right) to prove it: the Liapunov function. Consider a scalar, continuous, positive definite function of the state V (x). If this function is always decreasing, except at the origin, then the origin is asymptotically stable. There is an intuitive feel to the Liapunov function; it is like the energy of a physical system. If it can be shown that energy is leaving such a system, then it will settle. It suffices to find one Liapunov function to show that a system is stable. Now, in the case of the LQR control, pick 1 V (x) = x T P x. 2 It can be shown that P is positive definite; suppose that instead of the design gain B, we have actual gain B, giving (with constant P based on the design system) V = 2x T P ẋ (236) = 2x T P (Ax B R 1 B T Kx) (237) T = x ( Q + P BR 1 B T P )x 2x T KB R 1 B T P x. (238) where we used the Riccati equation in a substitution. Since we require V < 0 for x = 0, we must have Q + P BG 2P (B B )G > 0, (239) where G = R 1 B T P. Let B = BN, where N is a diagonal matrix of random, unknown gains on the control channels. The above equation becomes Q P B(I 2N)R 1 B T P > 0. (240) This is satisfied if, for all channels, N i,i > 1/2. Thus, we see that the LQR provides for one-half gain reduction, and infinite gain amplification, in all channels.

7 98 20 KALMAN FILTER The phase margin is seen (roughly) by allowing N to be a diagonal matrix of transfer functions N i,i = e jδ i. In this case, we require that the real parf N i,i is greater than onehalf. This is true for all δ i < 60, and hence sixty degrees of phase margin is provided in all channels.

Control Systems Design

ELEC4410 Control Systems Design Lecture 20: Scaling and MIMO State Feedback Design Julio H. Braslavsky julio@ee.newcastle.edu.au School of Electrical Engineering and Computer Science Lecture 20: MIMO State

Control Systems Design

ELEC4410 Control Systems Design Lecture 17: State Feedback Julio H Braslavsky julio@eenewcastleeduau School of Electrical Engineering and Computer Science Lecture 17: State Feedback p1/23 Outline Overview

Nonlinear Systems and Control Lecture # 15 Positive Real Transfer Functions & Connection with Lyapunov Stability. p. 1/?

Nonlinear Systems and Control Lecture # 15 Positive Real Transfer Functions & Connection with Lyapunov Stability p. 1/? p. 2/? Definition: A p p proper rational transfer function matrix G(s) is positive

Lecture 13 Linear quadratic Lyapunov theory

EE363 Winter 28-9 Lecture 13 Linear quadratic Lyapunov theory the Lyapunov equation Lyapunov stability conditions the Lyapunov operator and integral evaluating quadratic integrals analysis of ARE discrete-time

3.8 Finding Antiderivatives; Divergence and Curl of a Vector Field

3.8 Finding Antiderivatives; Divergence and Curl of a Vector Field 77 3.8 Finding Antiderivatives; Divergence and Curl of a Vector Field Overview: The antiderivative in one variable calculus is an important

MATH10212 Linear Algebra. Systems of Linear Equations. Definition. An n-dimensional vector is a row or a column of n numbers (or letters): a 1.

MATH10212 Linear Algebra Textbook: D. Poole, Linear Algebra: A Modern Introduction. Thompson, 2006. ISBN 0-534-40596-7. Systems of Linear Equations Definition. An n-dimensional vector is a row or a column

Linear-Quadratic Optimal Controller 10.3 Optimal Linear Control Systems

Linear-Quadratic Optimal Controller 10.3 Optimal Linear Control Systems In Chapters 8 and 9 of this book we have designed dynamic controllers such that the closed-loop systems display the desired transient

Algebra 2 Chapter 1 Vocabulary. identity - A statement that equates two equivalent expressions.

Chapter 1 Vocabulary identity - A statement that equates two equivalent expressions. verbal model- A word equation that represents a real-life problem. algebraic expression - An expression with variables.

Methods for Finding Bases

Methods for Finding Bases Bases for the subspaces of a matrix Row-reduction methods can be used to find bases. Let us now look at an example illustrating how to obtain bases for the row space, null space,

Solving Systems of Linear Equations

LECTURE 5 Solving Systems of Linear Equations Recall that we introduced the notion of matrices as a way of standardizing the expression of systems of linear equations In today s lecture I shall show how

1 2 3 1 1 2 x = + x 2 + x 4 1 0 1

(d) If the vector b is the sum of the four columns of A, write down the complete solution to Ax = b. 1 2 3 1 1 2 x = + x 2 + x 4 1 0 0 1 0 1 2. (11 points) This problem finds the curve y = C + D 2 t which

4.6 Null Space, Column Space, Row Space

NULL SPACE, COLUMN SPACE, ROW SPACE Null Space, Column Space, Row Space In applications of linear algebra, subspaces of R n typically arise in one of two situations: ) as the set of solutions of a linear

Lecture 7: Finding Lyapunov Functions 1

Massachusetts Institute of Technology Department of Electrical Engineering and Computer Science 6.243j (Fall 2003): DYNAMICS OF NONLINEAR SYSTEMS by A. Megretski Lecture 7: Finding Lyapunov Functions 1

UNIT 2 MATRICES - I 2.0 INTRODUCTION. Structure

UNIT 2 MATRICES - I Matrices - I Structure 2.0 Introduction 2.1 Objectives 2.2 Matrices 2.3 Operation on Matrices 2.4 Invertible Matrices 2.5 Systems of Linear Equations 2.6 Answers to Check Your Progress

Nonlinear Programming Methods.S2 Quadratic Programming Operations Research Models and Methods Paul A. Jensen and Jonathan F. Bard A linearly constrained optimization problem with a quadratic objective

by the matrix A results in a vector which is a reflection of the given

Eigenvalues & Eigenvectors Example Suppose Then So, geometrically, multiplying a vector in by the matrix A results in a vector which is a reflection of the given vector about the y-axis We observe that

Understanding Poles and Zeros

MASSACHUSETTS INSTITUTE OF TECHNOLOGY DEPARTMENT OF MECHANICAL ENGINEERING 2.14 Analysis and Design of Feedback Control Systems Understanding Poles and Zeros 1 System Poles and Zeros The transfer function

2x + y = 3. Since the second equation is precisely the same as the first equation, it is enough to find x and y satisfying the system

1. Systems of linear equations We are interested in the solutions to systems of linear equations. A linear equation is of the form 3x 5y + 2z + w = 3. The key thing is that we don t multiply the variables

Dynamics. Figure 1: Dynamics used to generate an exemplar of the letter A. To generate

Dynamics Any physical system, such as neurons or muscles, will not respond instantaneously in time but will have a time-varying response termed the dynamics. The dynamics of neurons are an inevitable constraint

4 Lyapunov Stability Theory

4 Lyapunov Stability Theory In this section we review the tools of Lyapunov stability theory. These tools will be used in the next section to analyze the stability properties of a robot controller. We

1 VECTOR SPACES AND SUBSPACES

1 VECTOR SPACES AND SUBSPACES What is a vector? Many are familiar with the concept of a vector as: Something which has magnitude and direction. an ordered pair or triple. a description for quantities such

Linear Systems. Singular and Nonsingular Matrices. Find x 1, x 2, x 3 such that the following three equations hold:

Linear Systems Example: Find x, x, x such that the following three equations hold: x + x + x = 4x + x + x = x + x + x = 6 We can write this using matrix-vector notation as 4 {{ A x x x {{ x = 6 {{ b General

Chapter 12 Modal Decomposition of State-Space Models 12.1 Introduction The solutions obtained in previous chapters, whether in time domain or transfor

Lectures on Dynamic Systems and Control Mohammed Dahleh Munther A. Dahleh George Verghese Department of Electrical Engineering and Computer Science Massachuasetts Institute of Technology 1 1 c Chapter

Summary of week 8 (Lectures 22, 23 and 24)

WEEK 8 Summary of week 8 (Lectures 22, 23 and 24) This week we completed our discussion of Chapter 5 of [VST] Recall that if V and W are inner product spaces then a linear map T : V W is called an isometry

Polynomials can be added or subtracted simply by adding or subtracting the corresponding terms, e.g., if

1. Polynomials 1.1. Definitions A polynomial in x is an expression obtained by taking powers of x, multiplying them by constants, and adding them. It can be written in the form c 0 x n + c 1 x n 1 + c

CONTROLLABILITY. Chapter 2. 2.1 Reachable Set and Controllability. Suppose we have a linear system described by the state equation

Chapter 2 CONTROLLABILITY 2 Reachable Set and Controllability Suppose we have a linear system described by the state equation ẋ Ax + Bu (2) x() x Consider the following problem For a given vector x in

1 Fixed Point Iteration and Contraction Mapping Theorem

1 Fixed Point Iteration and Contraction Mapping Theorem Notation: For two sets A,B we write A B iff x A = x B. So A A is true. Some people use the notation instead. 1.1 Introduction Consider a function

Matrices in Statics and Mechanics

Matrices in Statics and Mechanics Casey Pearson 3/19/2012 Abstract The goal of this project is to show how linear algebra can be used to solve complex, multi-variable statics problems as well as illustrate

First Order System. Transfer function: Response to a unit step input is: Partial Fraction Expansion leads to: Inverse Laplace transform leads to:

First Order System Transfer function: Response to a unit step input is: Partial Fraction Expansion leads to: Inverse Laplace transform leads to: First Order System At t = T, the output is: T represents

Module 3F2: Systems and Control EXAMPLES PAPER 1 - STATE-SPACE MODELS

Cambridge University Engineering Dept. Third year Module 3F2: Systems and Control EXAMPLES PAPER - STATE-SPACE MODELS. A feedback arrangement for control of the angular position of an inertial load is

ECE 3510 Final given: Spring 11

ECE 50 Final given: Spring This part of the exam is Closed book, Closed notes, No Calculator.. ( pts) For each of the time-domain signals shown, draw the poles of the signal's Laplace transform on the

Optimal Control. Palle Andersen. Aalborg University. Opt lecture 1 p. 1/2

Opt lecture 1 p. 1/2 Optimal Control Palle Andersen pa@control.aau.dk Aalborg University Opt lecture 1 p. 2/2 Optimal Control, course outline 1st lecture: Introduction to optimal control and quadratic

Eigenvalues, Eigenvectors, Matrix Factoring, and Principal Components

Eigenvalues, Eigenvectors, Matrix Factoring, and Principal Components The eigenvalues and eigenvectors of a square matrix play a key role in some important operations in statistics. In particular, they

1 Gaussian Elimination

Contents 1 Gaussian Elimination 1.1 Elementary Row Operations 1.2 Some matrices whose associated system of equations are easy to solve 1.3 Gaussian Elimination 1.4 Gauss-Jordan reduction and the Reduced

MATRIX ALGEBRA AND SYSTEMS OF EQUATIONS

MATRIX ALGEBRA AND SYSTEMS OF EQUATIONS Systems of Equations and Matrices Representation of a linear system The general system of m equations in n unknowns can be written a x + a 2 x 2 + + a n x n b a

3. Reaction Diffusion Equations Consider the following ODE model for population growth

3. Reaction Diffusion Equations Consider the following ODE model for population growth u t a u t u t, u 0 u 0 where u t denotes the population size at time t, and a u plays the role of the population dependent

DETERMINANTS. b 2. x 2

DETERMINANTS 1 Systems of two equations in two unknowns A system of two equations in two unknowns has the form a 11 x 1 + a 12 x 2 = b 1 a 21 x 1 + a 22 x 2 = b 2 This can be written more concisely in

1 Sets and Set Notation.

LINEAR ALGEBRA MATH 27.6 SPRING 23 (COHEN) LECTURE NOTES Sets and Set Notation. Definition (Naive Definition of a Set). A set is any collection of objects, called the elements of that set. We will most

Stability. Chapter 4. Topics : 1. Basic Concepts. 2. Algebraic Criteria for Linear Systems. 3. Lyapunov Theory with Applications to Linear Systems

Chapter 4 Stability Topics : 1. Basic Concepts 2. Algebraic Criteria for Linear Systems 3. Lyapunov Theory with Applications to Linear Systems 4. Stability and Control Copyright c Claudiu C. Remsing, 2006.

Introduction to Matrix Algebra

Psychology 7291: Multivariate Statistics (Carey) 8/27/98 Matrix Algebra - 1 Introduction to Matrix Algebra Definitions: A matrix is a collection of numbers ordered by rows and columns. It is customary

ROOT LOCUS TECHNIQUES

ROOT LOCUS TECHNIQUES In this lecture you will learn the following : The definition of a root locus How to sketch root locus How to use the root locus to find the poles of a closed loop system How to use

Optimal Control. Lecture Notes. February 13, 2009. Preliminary Edition

Lecture Notes February 13, 29 Preliminary Edition Department of Control Engineering, Institute of Electronic Systems Aalborg University, Fredrik Bajers Vej 7, DK-922 Aalborg Ø, Denmark Page II of IV Preamble

Linear Control Systems Lecture # 16 Observers and Output Feedback Control

Linear Control Systems Lecture # 16 Observers and Output Feedback Control p. 1/2 p. 2/2 Observers: Consider the system ẋ = Ax + Bu y = Cx + Du where the initial state x(0) is unknown, but we can measure

Pole-Placement Design A State-Space Approach

TU Berlin Discrete-Time Control Systems 1 Pole-Placement Design A State-Space Approach Overview Control-System Design Regulation by State Feedback Observers Output Feedback The Servo Problem TU Berlin

MATH 551 - APPLIED MATRIX THEORY

MATH 55 - APPLIED MATRIX THEORY FINAL TEST: SAMPLE with SOLUTIONS (25 points NAME: PROBLEM (3 points A web of 5 pages is described by a directed graph whose matrix is given by A Do the following ( points

Practical Guide to the Simplex Method of Linear Programming

Practical Guide to the Simplex Method of Linear Programming Marcel Oliver Revised: April, 0 The basic steps of the simplex algorithm Step : Write the linear programming problem in standard form Linear

System Identification and State Feedback Controller Design of Magnetic Levitation System

International Journal of Engineering and Technical Research (IJETR) ISSN: 2321-0869, Volume-2, Issue-6, June 2014 System Identification and State Feedback Controller Design of Magnetic Levitation System

Numerical Analysis Lecture Notes

Numerical Analysis Lecture Notes Peter J. Olver 5. Inner Products and Norms The norm of a vector is a measure of its size. Besides the familiar Euclidean norm based on the dot product, there are a number

Basics Inversion and related concepts Random vectors Matrix calculus. Matrix algebra. Patrick Breheny. January 20

Matrix algebra January 20 Introduction Basics The mathematics of multiple regression revolves around ordering and keeping track of large arrays of numbers and solving systems of equations The mathematical

Bindel, Spring 2012 Intro to Scientific Computing (CS 3220) Week 3: Wednesday, Feb 8

Spaces and bases Week 3: Wednesday, Feb 8 I have two favorite vector spaces 1 : R n and the space P d of polynomials of degree at most d. For R n, we have a canonical basis: R n = span{e 1, e 2,..., e

Lecture 2. Marginal Functions, Average Functions, Elasticity, the Marginal Principle, and Constrained Optimization

Lecture 2. Marginal Functions, Average Functions, Elasticity, the Marginal Principle, and Constrained Optimization 2.1. Introduction Suppose that an economic relationship can be described by a real-valued

( % . This matrix consists of \$ 4 5 " 5' the coefficients of the variables as they appear in the original system. The augmented 3 " 2 2 # 2 " 3 4&

Matrices define matrix We will use matrices to help us solve systems of equations. A matrix is a rectangular array of numbers enclosed in parentheses or brackets. In linear algebra, matrices are important

Zeros of a Polynomial Function

Zeros of a Polynomial Function An important consequence of the Factor Theorem is that finding the zeros of a polynomial is really the same thing as factoring it into linear factors. In this section we

Modeling and Simulation of a Three Degree of Freedom Longitudinal Aero plane System. Figure 1: Boeing 777 and example of a two engine business jet

Modeling and Simulation of a Three Degree of Freedom Longitudinal Aero plane System Figure 1: Boeing 777 and example of a two engine business jet Nonlinear dynamic equations of motion for the longitudinal

Solutions to Linear Algebra Practice Problems 1. form (because the leading 1 in the third row is not to the right of the

Solutions to Linear Algebra Practice Problems. Determine which of the following augmented matrices are in row echelon from, row reduced echelon form or neither. Also determine which variables are free

Chapter 19. General Matrices. An n m matrix is an array. a 11 a 12 a 1m a 21 a 22 a 2m A = a n1 a n2 a nm. The matrix A has n row vectors

Chapter 9. General Matrices An n m matrix is an array a a a m a a a m... = [a ij]. a n a n a nm The matrix A has n row vectors and m column vectors row i (A) = [a i, a i,..., a im ] R m a j a j a nj col

3.2 Sources, Sinks, Saddles, and Spirals

3.2. Sources, Sinks, Saddles, and Spirals 6 3.2 Sources, Sinks, Saddles, and Spirals The pictures in this section show solutions to Ay 00 C By 0 C Cy D 0. These are linear equations with constant coefficients

PYTHAGOREAN TRIPLES KEITH CONRAD 1. Introduction A Pythagorean triple is a triple of positive integers (a, b, c) where a + b = c. Examples include (3, 4, 5), (5, 1, 13), and (8, 15, 17). Below is an ancient

Images and Kernels in Linear Algebra By Kristi Hoshibata Mathematics 232

Images and Kernels in Linear Algebra By Kristi Hoshibata Mathematics 232 In mathematics, there are many different fields of study, including calculus, geometry, algebra and others. Mathematics has been

Math 54. Selected Solutions for Week Is u in the plane in R 3 spanned by the columns

Math 5. Selected Solutions for Week 2 Section. (Page 2). Let u = and A = 5 2 6. Is u in the plane in R spanned by the columns of A? (See the figure omitted].) Why or why not? First of all, the plane in

2.1: MATRIX OPERATIONS

.: MATRIX OPERATIONS What are diagonal entries and the main diagonal of a matrix? What is a diagonal matrix? When are matrices equal? Scalar Multiplication 45 Matrix Addition Theorem (pg 0) Let A, B, and

3. INNER PRODUCT SPACES

. INNER PRODUCT SPACES.. Definition So far we have studied abstract vector spaces. These are a generalisation of the geometric spaces R and R. But these have more structure than just that of a vector space.

1.5 Elementary Matrices and a Method for Finding the Inverse

.5 Elementary Matrices and a Method for Finding the Inverse Definition A n n matrix is called an elementary matrix if it can be obtained from I n by performing a single elementary row operation Reminder:

PURE MATHEMATICS AM 27

AM SYLLABUS (013) PURE MATHEMATICS AM 7 SYLLABUS 1 Pure Mathematics AM 7 Syllabus (Available in September) Paper I(3hrs)+Paper II(3hrs) 1. AIMS To prepare students for further studies in Mathematics and

MA107 Precalculus Algebra Exam 2 Review Solutions

MA107 Precalculus Algebra Exam 2 Review Solutions February 24, 2008 1. The following demand equation models the number of units sold, x, of a product as a function of price, p. x = 4p + 200 a. Please write

PURE MATHEMATICS AM 27

AM Syllabus (015): Pure Mathematics AM SYLLABUS (015) PURE MATHEMATICS AM 7 SYLLABUS 1 AM Syllabus (015): Pure Mathematics Pure Mathematics AM 7 Syllabus (Available in September) Paper I(3hrs)+Paper II(3hrs)

3.4. Solving Simultaneous Linear Equations. Introduction. Prerequisites. Learning Outcomes

Solving Simultaneous Linear Equations 3.4 Introduction Equations often arise in which there is more than one unknown quantity. When this is the case there will usually be more than one equation involved.

Recall that two vectors in are perpendicular or orthogonal provided that their dot

Orthogonal Complements and Projections Recall that two vectors in are perpendicular or orthogonal provided that their dot product vanishes That is, if and only if Example 1 The vectors in are orthogonal

T ( a i x i ) = a i T (x i ).

Chapter 2 Defn 1. (p. 65) Let V and W be vector spaces (over F ). We call a function T : V W a linear transformation form V to W if, for all x, y V and c F, we have (a) T (x + y) = T (x) + T (y) and (b)

Multi-variable Calculus and Optimization

Multi-variable Calculus and Optimization Dudley Cooke Trinity College Dublin Dudley Cooke (Trinity College Dublin) Multi-variable Calculus and Optimization 1 / 51 EC2040 Topic 3 - Multi-variable Calculus

Linear Algebra Notes

Linear Algebra Notes Chapter 19 KERNEL AND IMAGE OF A MATRIX Take an n m matrix a 11 a 12 a 1m a 21 a 22 a 2m a n1 a n2 a nm and think of it as a function A : R m R n The kernel of A is defined as Note

2.5 Gaussian Elimination

page 150 150 CHAPTER 2 Matrices and Systems of Linear Equations 37 10 the linear algebra package of Maple, the three elementary 20 23 1 row operations are 12 1 swaprow(a,i,j): permute rows i and j 3 3

Linear Optimal Control. How does this guy remain upright?

Linear Optimal Control How does this guy remain upright? Overview 1. expressing a linear system in state space form 2. discrete time linear optimal control (LQR) 3. linearizing around an operating point

Orthogonal Projections

Orthogonal Projections and Reflections (with exercises) by D. Klain Version.. Corrections and comments are welcome! Orthogonal Projections Let X,..., X k be a family of linearly independent (column) vectors

Lecture L3 - Vectors, Matrices and Coordinate Transformations

S. Widnall 16.07 Dynamics Fall 2009 Lecture notes based on J. Peraire Version 2.0 Lecture L3 - Vectors, Matrices and Coordinate Transformations By using vectors and defining appropriate operations between

Portable Assisted Study Sequence ALGEBRA IIA

SCOPE This course is divided into two semesters of study (A & B) comprised of five units each. Each unit teaches concepts and strategies recommended for intermediate algebra students. The first half of

State-Space Representation of LTI Systems

214 Analysis and Design of Feedback Control Systems State-Space Representation of LTI Systems 1 Introduction Derek Rowell October 2002 The classical control theory and methods (such as root locus) that

Advanced Higher Mathematics Course Assessment Specification (C747 77)

Advanced Higher Mathematics Course Assessment Specification (C747 77) Valid from August 2015 This edition: April 2016, version 2.4 This specification may be reproduced in whole or in part for educational

TexPoint fonts used in EMF. Read the TexPoint manual before you delete this box.: AAAAA

2015 School of Information Technology and Electrical Engineering at the University of Queensland TexPoint fonts used in EMF. Read the TexPoint manual before you delete this box.: AAAAA Schedule Week Date

Lecture 5 Principal Minors and the Hessian

Lecture 5 Principal Minors and the Hessian Eivind Eriksen BI Norwegian School of Management Department of Economics October 01, 2010 Eivind Eriksen (BI Dept of Economics) Lecture 5 Principal Minors and

Homogeneous systems of algebraic equations. A homogeneous (ho-mo-geen -ius) system of linear algebraic equations is one in which

Homogeneous systems of algebraic equations A homogeneous (ho-mo-geen -ius) system of linear algebraic equations is one in which all the numbers on the right hand side are equal to : a x + + a n x n = a

Partial Fractions. (x 1)(x 2 + 1)

Partial Fractions Adding rational functions involves finding a common denominator, rewriting each fraction so that it has that denominator, then adding. For example, 3x x 1 3x(x 1) (x + 1)(x 1) + 1(x +

Vectors, Gradient, Divergence and Curl. 1 Introduction A vector is determined by its length and direction. They are usually denoted with letters with arrows on the top a or in bold letter a. We will use

1 Determinants. Definition 1

Determinants The determinant of a square matrix is a value in R assigned to the matrix, it characterizes matrices which are invertible (det 0) and is related to the volume of a parallelpiped described

Systems of Linear Equations

Systems of Linear Equations Beifang Chen Systems of linear equations Linear systems A linear equation in variables x, x,, x n is an equation of the form a x + a x + + a n x n = b, where a, a,, a n and

Notes on Determinant

ENGG2012B Advanced Engineering Mathematics Notes on Determinant Lecturer: Kenneth Shum Lecture 9-18/02/2013 The determinant of a system of linear equations determines whether the solution is unique, without

Partial Fractions. p(x) q(x)

Partial Fractions Introduction to Partial Fractions Given a rational function of the form p(x) q(x) where the degree of p(x) is less than the degree of q(x), the method of partial fractions seeks to break

Linear Equations and Inverse Matrices

Chapter 4 Linear Equations and Inverse Matrices 4. Two Pictures of Linear Equations The central problem of linear algebra is to solve a system of equations. Those equations are linear, which means that

Lecture 12 Basic Lyapunov theory

EE363 Winter 2008-09 Lecture 12 Basic Lyapunov theory stability positive definite functions global Lyapunov stability theorems Lasalle s theorem converse Lyapunov theorems finding Lyapunov functions 12

Math 315: Linear Algebra Solutions to Midterm Exam I

Math 35: Linear Algebra s to Midterm Exam I # Consider the following two systems of linear equations (I) ax + by = k cx + dy = l (II) ax + by = 0 cx + dy = 0 (a) Prove: If x = x, y = y and x = x 2, y =

Inner Product Spaces

Math 571 Inner Product Spaces 1. Preliminaries An inner product space is a vector space V along with a function, called an inner product which associates each pair of vectors u, v with a scalar u, v, and

Chapter 4 - Systems of Equations and Inequalities

Math 233 - Spring 2009 Chapter 4 - Systems of Equations and Inequalities 4.1 Solving Systems of equations in Two Variables Definition 1. A system of linear equations is two or more linear equations to

3.7 Non-autonomous linear systems of ODE. General theory

3.7 Non-autonomous linear systems of ODE. General theory Now I will study the ODE in the form ẋ = A(t)x + g(t), x(t) R k, A, g C(I), (3.1) where now the matrix A is time dependent and continuous on some

CHAPTER 8 FACTOR EXTRACTION BY MATRIX FACTORING TECHNIQUES. From Exploratory Factor Analysis Ledyard R Tucker and Robert C.

CHAPTER 8 FACTOR EXTRACTION BY MATRIX FACTORING TECHNIQUES From Exploratory Factor Analysis Ledyard R Tucker and Robert C MacCallum 1997 180 CHAPTER 8 FACTOR EXTRACTION BY MATRIX FACTORING TECHNIQUES In

Scalar Valued Functions of Several Variables; the Gradient Vector

Scalar Valued Functions of Several Variables; the Gradient Vector Scalar Valued Functions vector valued function of n variables: Let us consider a scalar (i.e., numerical, rather than y = φ(x = φ(x 1,

Diagonal, Symmetric and Triangular Matrices

Contents 1 Diagonal, Symmetric Triangular Matrices 2 Diagonal Matrices 2.1 Products, Powers Inverses of Diagonal Matrices 2.1.1 Theorem (Powers of Matrices) 2.2 Multiplying Matrices on the Left Right by

Lecture Notes: Matrix Inverse. 1 Inverse Definition

Lecture Notes: Matrix Inverse Yufei Tao Department of Computer Science and Engineering Chinese University of Hong Kong taoyf@cse.cuhk.edu.hk Inverse Definition We use I to represent identity matrices,

4. Matrix inverses. left and right inverse. linear independence. nonsingular matrices. matrices with linearly independent columns

L. Vandenberghe EE133A (Spring 2016) 4. Matrix inverses left and right inverse linear independence nonsingular matrices matrices with linearly independent columns matrices with linearly independent rows