Visual Servoing Methodology for Selective Tree Pruning by Human-Robot Collaborative System
|
|
|
- James Skinner
- 10 years ago
- Views:
Transcription
1 Ref: C0287 Visual Servoing Methodology for Selective Tree Pruning by Human-Robot Collaborative System Avital Bechar, Victor Bloch, Roee Finkelshtain, Sivan Levi, Aharon Hoffman, Haim Egozi and Ze ev Schmilovitch, Institute of Agricultural Engineering, ARO, Colcani Center, Israel Abstract Orchards pruning is a labor intensive task which requires more than 25% of the labor costs. The main objectives of this task are to increase exposure to sun light, control the tree shape and remove unfitted branches. In most orchards this task conducted once a year and up to 20% of the branches are removed selectively. Robots are perceptive machines that can be programmed to perform a variety of agricultural tasks, such as cultivating, transplanting, spraying, and selective harvesting. Agricultural robots have the potential to enhance the quality of fresh produce, lower production costs and reduce the drudgery of manual labor. However, in agriculture, the environment is highly unstructured. The terrain, vegetation, landscape, visibility, illumination and other atmospheric conditions are not well defined; they continuously vary, have inherent uncertainty, and generate unpredictable and dynamic situations, and therefore, autonomous robots in real-world, dynamic and unstructured environments still yield inadequate results, and the promise of automatic and efficient autonomous operations has fallen short of expectations in such environments. Introducing a human operator into the system can help improve performance and simplify the robotic system. In this work, we developed a visual servoing methodology and a human-robot collaborative system for selective tree pruning. The system consists of a Motoman manipulator, a color camera, a single beam laser distance sensor, an HMI and a cutting tool based on a circular saw developed for this task. The cutting tool, the camera and the laser sensor are mounted on the manipulator s end-effector, parallel aligned one to the other. A human-robot collaborative system for selective tree pruning was developed. The system consists of a Motoman manipulator, a color camera, a single beam laser distance sensor, an HMI and a cutting tool based on a circular saw developed for this task. The cutting tool, the camera and the laser sensor are mounted on the manipulator s end-effector, parallel aligned one to the other. Experiments were conducted to examine the performance of the system under different conditions, human-robot collaboration methods and different trajectory types. A cutting tool was designed for pruning branches with diameter of up to 26mm at 45 cutting angle. The saw diameter determined to be 115mm with standard shaft diameter of 41mm. An interface to connect the cutting tool to the robot end effector was designed in order to minimize the total dimensions of the tool and increase the robot dexterity. An actual average cycle time of 9.2 s was achieved when the human operator actions and the robot are performing simultaneously. The results also revealed that the average time required to determine the location and orientation of the cut was 2.51 s. Keywords: Tree pruning, vision, laser, human-robot collaboration, cutting tool Proceedings International Conference of Agricultural Engineering, Zurich, /6
2 Number of branches 1 Introduction Orchards pruning is a labor intensive task which requires more than 25% of the labor costs. The main objectives of this task are to increase exposure to sun light, control the tree shape and remove unfitted branches. In most orchards this task conducted once a year and up to 20% of the branches are removed selectively. Robots are perceptive machines that can be programmed to perform a variety of agricultural tasks, such as cultivating, transplanting, spraying, and selective harvesting. Agricultural robots have the potential to enhance the quality of fresh produce, lower production costs and reduce the drudgery of manual labor. However, in agriculture, the environment is highly unstructured. The terrain, vegetation, landscape, visibility, illumination and other atmospheric conditions are not well defined; they continuously vary, have inherent uncertainty, and generate unpredicta-ble and dynamic situations, and therefore, autonomous robots in real-world, dynamic and un-structured environments still yield inadequate results, and the promise of automatic and effi-cient autonomous operations has fallen short of expectations in such environments. Introduc-ing a human operator into the system can help improve performance and simplify the robotic system. 2 Materials and methods The system developed consists of a Motoman manipulator, a color camera, a single beam laser distance sensor, an HMI and a cutting tool based on a circular saw developed for this task. The cutting tool, the camera and the laser sensor are mounted on the manipulator s end-effector, parallel aligned one to the other. An experiment was conducted to examine the performance of the system under different conditions, human-robot collaboration methods and different trajectory types. 2.1 Cutting tool A cutting tool was developed for pruning branches with diameter of up to 26mm at 45 cutting angle. The maximum cutting diameter was determined based on a measurement of 238 nectarine branches in the field using a Caliber. A histogram of the branches diameter was generated in order to examine the branches diameter distribution (Figure 1) Branch Diameter Figure 1: Branches diameter distribution. The maximum branch diameter was 36mm and in order to be able to cut most of the branches and maintain minimal dimensions of the tool, it was determined that the tool will cut branches with diameter of up to 26mm which correspond to 98% of the branches. Based on this and the following equation, the saw diameter determined to be Proceedings International Conference of Agricultural Engineering, Zurich, /6
3 115mm with standard shaft diameter of 41mm. The cutting tool prototype was tested manually in the field (Figure 2) and then mounted on the end effector of a Motoman 5L manipulator in the Agricultural Robotics Lab (ARL) at Volcani Center. An interface to connect the cutting tool to the robot end effector was designed in order to minimize the total dimensions of the tool and increase the robot dexterity. The tool orientation can be changed when it is required to change the tool cross section signature while maintaining the cutting contact point on the end effective axis. The drawing of the system with the end effector, interface and cutting tool is shown in figure 3. Figure 2: Cutting tool test in the field and mounted on the Motoman manipulator Figure 3: A draw of the cutting tool system. 2.2 Human-Robot Collaborative System A human-robot collaborative system for selective tree pruning was developed. The system consists of a Motoman manipulator, a color camera, a single beam laser distance sensor, an HMI, a computer and a circular saw cutting tool prototype. The cutting tool, camera and laser sensor are mounted on the manipulator s end-effector, aligned parallel to each other (Figure 4). The system works in two phases. In the first phase, the camera transfer a 2D image of the tree to a human operator which in turn marks on a display the branches to be removed. In the second phase, the system works autonomously: the laser sensor measure the branch distance and calculates a trajectory to the cutting point. Once this trajectory has been calculated, the robotic arm performs the corresponding moves and cuts the branch at the prescribed location. 2.3 Experiments Proceedings International Conference of Agricultural Engineering, Zurich, /6
4 Two experiments were conducted. In the first, Two types of motion planning were investigated, i) a linear motion between the tool initial location and the cutting point in global Cartesian coordinates and, ii) in robot joint space. In the second experiment, two types of human-robot collaboration methods were examined: a) the human subject marks two points in the picture received from the end-effector camera, the first point mark the location of the cut on the branch and the second point to calculate the orientation of the cutting tool when pruning the branch; and, b) the human subject marks a single point in the picture received from the endeffector camera to denote the location of the cut on the branch. A computer vision algorithm extracts the orientation of the branch and calculates the desire orientation of the cutting tool. The experimental apparatus is given in figure 5. Figure 4: End-effector system. Figure 5: The experimental apparatus. 3 Results and Discussion 3.1 Experiment 1 Figure 6 shows the mean time of the different movement stages for the linear motion and the robot joint space. The robot trajectory is consist of 1) a movement to scan location, 2) per- Proceedings International Conference of Agricultural Engineering, Zurich, /6
5 forming the scan, 3) movement to the branch and performing the cut, and 3) return to the initial position. In addition the human mark of the selected location in the branch is shown and denoted as 'cut sign'. Two cycle times are presented: the cycle time including the human actions and the cycle time of the robot movement. Since the human action and the robot movement can be performed simultaneously, the actual cycle times will be similar to the robot movement cycle time. In all movement stages the times were shorter in the robot joint space than in linear movement. The average robot movement cycle time was 9.2 s for the robot joint space movement and was shorter by 43% than in the linear movement (16.1 s). The advantage of the linear movement is that the chances to encounter obstacles is lower since the end effector is moving along the line of site marked by the human operator and by its nature it is obstacle free. Nevertheless, the differences in the trajectories between the two movement methods was minimal. Figure 6: the times for different movement stages in the linear movement and robot joint space. 3.2 Experiment 2 In this experiment, the response time of the human operators were measured for the two collaboration methods denoted as '1 click method' the human operator marked only the location of the cut on the branch and the orientation of the cut was determined by a vision algorithm; and '2 clicks method' the human operator marked 2 points on the branch to retrieve the location and orientation of the cut. The first mark (click 1) in both methods was similar, 2.51 s and 2.76 s for the '1 click method' and '2 clicks method' respectively with no significant difference. The second mark (click 2) was significantly shorter (1.56 s) in comparison to the first mark in the '2 clicks method'. For all human subjects the total time to retrieve location and orientation of the cut was shorter in the '1 click method' in comparison to the '2 clicks method' by approximately 40% (in average 2.51 s in the '1 click method' and 4.31 s in the '2 clicks method'). Although there was no difference in the accuracy of the cut location between the two methods, the orientation in the '2 clicks method' was more accurate than in the '1 click method'. Proceedings International Conference of Agricultural Engineering, Zurich, /6
6 Figure 7: times to determine the location and orientation of the cut in the two methods. 4 Summary and Conclusions Orchards pruning is a labor intensive task which requires more than 25% of the labor costs. The main objectives of this task are to increase exposure to sun light, control the tree shape and remove unfitted branches. In most orchards this task conducted once a year and up to 20% of the branches are removed selectively. A human-robot collaborative system for selective tree pruning was developed. The system consists of a Motoman manipulator, a color camera, a single beam laser distance sensor, an HMI and a cutting tool based on a circular saw developed for this task. The cutting tool, the camera and the laser sensor are mounted on the manipulator s end-effector, parallel aligned one to the other. An experiment was conducted to examine the performance of the system under different conditions, human-robot collaboration methods and different trajectory types. A cutting tool was designed for pruning branches with diameter of up to 26mm at 45 cutting angle. The saw diameter determined to be 115mm with standard shaft diameter of 41mm. An interface to connect the cutting tool to the robot end effector was designed in order to minimize the total dimensions of the tool and increase the robot dexterity. The designed system was examined in two experiments evaluating the performance of two types of motion planning and two types of human-robot collaboration methods. An actual average cycle time of 9.2 s was achieved when the human operator actions and the robot are performing simultaneously. The results also revealed that the average time required to determine the location and orientation of the cut was 2.51 s in the '1 click method' The finding implies that in an efficient environment and working method, one human operator can supervise three to four tree pruning robots and increase the total production rate. Although the current cycle time achieved is acceptable, reducing the cycle time is feasible and in future work we will focus on optimizing the scanning stages and develop a multi targets (branches) procedure instead of one target (branch) at a time. Proceedings International Conference of Agricultural Engineering, Zurich, /6
Robotic Apple Harvesting in Washington State
Robotic Apple Harvesting in Washington State Joe Davidson b & Abhisesh Silwal a IEEE Agricultural Robotics & Automation Webinar December 15 th, 2015 a Center for Precision and Automated Agricultural Systems
Industrial Robotics. Training Objective
Training Objective After watching the program and reviewing this printed material, the viewer will learn the basics of industrial robot technology and how robots are used in a variety of manufacturing
CROPS: Intelligent sensing and manipulation for sustainable production and harvesting of high valued crops, clever robots for crops.
CROPS GA 246252 www.crops-robots.eu CROPS: Intelligent sensing and manipulation for sustainable production and harvesting of high valued crops, clever robots for crops. The main objective of CROPS is to
2/26/2008. Sensors For Robotics. What is sensing? Why do robots need sensors? What is the angle of my arm? internal information
Sensors For Robotics What makes a machine a robot? Sensing Planning Acting information about the environment action on the environment where is the truck? What is sensing? Sensing is converting a quantity
CALIBRATION OF A ROBUST 2 DOF PATH MONITORING TOOL FOR INDUSTRIAL ROBOTS AND MACHINE TOOLS BASED ON PARALLEL KINEMATICS
CALIBRATION OF A ROBUST 2 DOF PATH MONITORING TOOL FOR INDUSTRIAL ROBOTS AND MACHINE TOOLS BASED ON PARALLEL KINEMATICS E. Batzies 1, M. Kreutzer 1, D. Leucht 2, V. Welker 2, O. Zirn 1 1 Mechatronics Research
Design of a Robotic Arm with Gripper & End Effector for Spot Welding
Universal Journal of Mechanical Engineering 1(3): 92-97, 2013 DOI: 10.13189/ujme.2013.010303 http://www.hrpub.org Design of a Robotic Arm with Gripper & End Effector for Spot Welding Puran Singh *, Anil
Design of a six Degree-of-Freedom Articulated Robotic Arm for Manufacturing Electrochromic Nanofilms
Abstract Design of a six Degree-of-Freedom Articulated Robotic Arm for Manufacturing Electrochromic Nanofilms by Maxine Emerich Advisor: Dr. Scott Pierce The subject of this report is the development of
CMA ROBOTICS ROBOT PROGRAMMING SYSTEMS COMPARISON
CMA ROBOTICS ROBOT PROGRAMMING SYSTEMS COMPARISON CMA Robotics use different methods to program his robot depending model and process, this document will explain all this system advantage connected with
Introduction to Computer Graphics
Introduction to Computer Graphics Torsten Möller TASC 8021 778-782-2215 [email protected] www.cs.sfu.ca/~torsten Today What is computer graphics? Contents of this course Syllabus Overview of course topics
INSTRUCTOR WORKBOOK Quanser Robotics Package for Education for MATLAB /Simulink Users
INSTRUCTOR WORKBOOK for MATLAB /Simulink Users Developed by: Amir Haddadi, Ph.D., Quanser Peter Martin, M.A.SC., Quanser Quanser educational solutions are powered by: CAPTIVATE. MOTIVATE. GRADUATE. PREFACE
Autonomous Mobile Robot-I
Autonomous Mobile Robot-I Sabastian, S.E and Ang, M. H. Jr. Department of Mechanical Engineering National University of Singapore 21 Lower Kent Ridge Road, Singapore 119077 ABSTRACT This report illustrates
Operational Space Control for A Scara Robot
Operational Space Control for A Scara Robot Francisco Franco Obando D., Pablo Eduardo Caicedo R., Oscar Andrés Vivas A. Universidad del Cauca, {fobando, pacaicedo, avivas }@unicauca.edu.co Abstract This
Robotics. Chapter 25. Chapter 25 1
Robotics Chapter 25 Chapter 25 1 Outline Robots, Effectors, and Sensors Localization and Mapping Motion Planning Motor Control Chapter 25 2 Mobile Robots Chapter 25 3 Manipulators P R R R R R Configuration
High Resolution RF Analysis: The Benefits of Lidar Terrain & Clutter Datasets
0 High Resolution RF Analysis: The Benefits of Lidar Terrain & Clutter Datasets January 15, 2014 Martin Rais 1 High Resolution Terrain & Clutter Datasets: Why Lidar? There are myriad methods, techniques
- 2.12 Lecture Notes - H. Harry Asada Ford Professor of Mechanical Engineering
- 2.12 Lecture Notes - H. Harry Asada Ford Professor of Mechanical Engineering Fall 2005 1 Chapter 1 Introduction Many definitions have been suggested for what we call a robot. The word may conjure up
CONCEPTUAL DESIGN OF A HYBRID ROBOT
CONCEPTUAL DESIGN OF A HYBRID ROBOT Víctor Javier González-Villela 1, Patricio Martínez-Zamudio 2, Marcelo López-Parra 3, Juan de Dios Flores-Méndez 4, Ignacio Carlos Cruz-López 5 1, 2, 4, 5 Departamento
Development of Easy Teaching Interface for a Dual Arm Robot Manipulator
Development of Easy Teaching Interface for a Dual Arm Robot Manipulator Chanhun Park and Doohyeong Kim Department of Robotics and Mechatronics, Korea Institute of Machinery & Materials, 156, Gajeongbuk-Ro,
Robotics. Lecture 3: Sensors. See course website http://www.doc.ic.ac.uk/~ajd/robotics/ for up to date information.
Robotics Lecture 3: Sensors See course website http://www.doc.ic.ac.uk/~ajd/robotics/ for up to date information. Andrew Davison Department of Computing Imperial College London Review: Locomotion Practical
Development of Docking System for Mobile Robots Using Cheap Infrared Sensors
Development of Docking System for Mobile Robots Using Cheap Infrared Sensors K. H. Kim a, H. D. Choi a, S. Yoon a, K. W. Lee a, H. S. Ryu b, C. K. Woo b, and Y. K. Kwak a, * a Department of Mechanical
The Scientific Data Mining Process
Chapter 4 The Scientific Data Mining Process When I use a word, Humpty Dumpty said, in rather a scornful tone, it means just what I choose it to mean neither more nor less. Lewis Carroll [87, p. 214] In
Design Aspects of Robot Manipulators
Design Aspects of Robot Manipulators Dr. Rohan Munasinghe Dept of Electronic and Telecommunication Engineering University of Moratuwa System elements Manipulator (+ proprioceptive sensors) End-effector
Photogrammetric Point Clouds
Photogrammetric Point Clouds Origins of digital point clouds: Basics have been around since the 1980s. Images had to be referenced to one another. The user had to specify either where the camera was in
Shape Measurement of a Sewer Pipe. Using a Mobile Robot with Computer Vision
International Journal of Advanced Robotic Systems ARTICLE Shape Measurement of a Sewer Pipe Using a Mobile Robot with Computer Vision Regular Paper Kikuhito Kawasue 1,* and Takayuki Komatsu 1 1 Department
Robotic motion planning for 8- DOF motion stage
Robotic motion planning for 8- DOF motion stage 12 November Mark Geelen Simon Jansen Alten Mechatronics www.alten.nl [email protected] Introduction Introduction Alten FEI Motion planning MoveIt! Proof
Force/position control of a robotic system for transcranial magnetic stimulation
Force/position control of a robotic system for transcranial magnetic stimulation W.N. Wan Zakaria School of Mechanical and System Engineering Newcastle University Abstract To develop a force control scheme
New development of automation for agricultural machinery
New development of automation for agricultural machinery a versitale technology in automation of agriculture machinery VDI-Expertenforum 2011-04-06 1 Mechanisation & Automation Bigger and bigger Jaguar
Human Interaction with Robots Working in Complex and Hazardous Environments
Human Interaction with Robots Working in Complex and Hazardous Environments Bill Hamel, Professor & Head IEEE Fellow RAS Vice President for Publication Activities Mechanical, Aerospace, & Biomedical Engineering
IRB 2600ID-15/1.85 Simple integration, high performance
Per Lowgren, Product Manager, Medium robots IRB 2600ID-15/1.85 Simple integration, high performance February 9, 2011 Slide 1 Overview of main features General purpose robot for integrated dressing solutions.
A Cognitive Approach to Vision for a Mobile Robot
A Cognitive Approach to Vision for a Mobile Robot D. Paul Benjamin Christopher Funk Pace University, 1 Pace Plaza, New York, New York 10038, 212-346-1012 [email protected] Damian Lyons Fordham University,
Vibrations can have an adverse effect on the accuracy of the end effector of a
EGR 315 Design Project - 1 - Executive Summary Vibrations can have an adverse effect on the accuracy of the end effector of a multiple-link robot. The ability of the machine to move to precise points scattered
MSc in Autonomous Robotics Engineering University of York
MSc in Autonomous Robotics Engineering University of York Practical Robotics Module 2015 A Mobile Robot Navigation System: Labs 1a, 1b, 2a, 2b. Associated lectures: Lecture 1 and lecture 2, given by Nick
RIA : 2013 Market Trends Webinar Series
RIA : 2013 Market Trends Webinar Series Robotic Industries Association A market trends education Available at no cost to audience Watch live or archived webinars anytime Learn about the latest innovations
Intelligent Submersible Manipulator-Robot, Design, Modeling, Simulation and Motion Optimization for Maritime Robotic Research
20th International Congress on Modelling and Simulation, Adelaide, Australia, 1 6 December 2013 www.mssanz.org.au/modsim2013 Intelligent Submersible Manipulator-Robot, Design, Modeling, Simulation and
WAVELENGTH OF LIGHT - DIFFRACTION GRATING
PURPOSE In this experiment we will use the diffraction grating and the spectrometer to measure wavelengths in the mercury spectrum. THEORY A diffraction grating is essentially a series of parallel equidistant
Integrated sensors for robotic laser welding
Proceedings of the Third International WLT-Conference on Lasers in Manufacturing 2005,Munich, June 2005 Integrated sensors for robotic laser welding D. Iakovou *, R.G.K.M Aarts, J. Meijer University of
Stirling Paatz of robot integrators Barr & Paatz describes the anatomy of an industrial robot.
Ref BP128 Anatomy Of A Robot Stirling Paatz of robot integrators Barr & Paatz describes the anatomy of an industrial robot. The term robot stems from the Czech word robota, which translates roughly as
Sensory-motor control scheme based on Kohonen Maps and AVITE model
Sensory-motor control scheme based on Kohonen Maps and AVITE model Juan L. Pedreño-Molina, Antonio Guerrero-González, Oscar A. Florez-Giraldo, J. Molina-Vilaplana Technical University of Cartagena Department
Using NI Vision & Motion for Automated Inspection of Medical Devices and Pharmaceutical Processes. Morten Jensen 2004
Using NI Vision & Motion for Automated Inspection of Medical Devices and Pharmaceutical Processes. Morten Jensen, National Instruments Pittcon 2004 As more control and verification is needed in medical
Mobile Robot FastSLAM with Xbox Kinect
Mobile Robot FastSLAM with Xbox Kinect Design Team Taylor Apgar, Sean Suri, Xiangdong Xi Design Advisor Prof. Greg Kowalski Abstract Mapping is an interesting and difficult problem in robotics. In order
High-accuracy ultrasound target localization for hand-eye calibration between optical tracking systems and three-dimensional ultrasound
High-accuracy ultrasound target localization for hand-eye calibration between optical tracking systems and three-dimensional ultrasound Ralf Bruder 1, Florian Griese 2, Floris Ernst 1, Achim Schweikard
CASE STUDY LANDSLIDE MONITORING
Introduction Monitoring of terrain movements (unstable slopes, landslides, glaciers, ) is an increasingly important task for today s geotechnical people asked to prevent or forecast natural disaster that
- Time-lapse panorama - TWAN (The World At Night) - Astro-Panoramic Photography
User manual for PHOTOROBOT Photo Robot is a simple, small, lightweight (only 900g), but very reliable panoramic and astro photo head. It is motorised and allows quick and easy entry to all three "exotic"
How To Fuse A Point Cloud With A Laser And Image Data From A Pointcloud
REAL TIME 3D FUSION OF IMAGERY AND MOBILE LIDAR Paul Mrstik, Vice President Technology Kresimir Kusevic, R&D Engineer Terrapoint Inc. 140-1 Antares Dr. Ottawa, Ontario K2E 8C4 Canada [email protected]
Mobile Mapping. VZ-400 Conversion to a Mobile Platform Guide. By: Joshua I France. Riegl USA
Mobile Mapping VZ-400 Conversion to a Mobile Platform Guide By: Joshua I France Riegl USA Table of Contents Introduction... 5 Installation Checklist... 5 Software Required... 5 Hardware Required... 5 Connections...
Types of 3D Scanners and 3D Scanning Technologies.
Types of 3D Scanners and 3D Scanning Technologies. There are many types of 3D scanners and 3D scanning technologies. Some are ideal for short range scanning while others are better suited for mid or long
Definitions. A [non-living] physical agent that performs tasks by manipulating the physical world. Categories of robots
Definitions A robot is A programmable, multifunction manipulator designed to move material, parts, tools, or specific devices through variable programmed motions for the performance of a variety of tasks.
Automatic Labeling of Lane Markings for Autonomous Vehicles
Automatic Labeling of Lane Markings for Autonomous Vehicles Jeffrey Kiske Stanford University 450 Serra Mall, Stanford, CA 94305 [email protected] 1. Introduction As autonomous vehicles become more popular,
A Measurement of 3-D Water Velocity Components During ROV Tether Simulations in a Test Tank Using Hydroacoustic Doppler Velocimeter
A Measurement of 3-D Water Velocity Components During ROV Tether Simulations in a Test Tank Using Hydroacoustic Doppler Velocimeter Leszek Kwapisz (*) Marek Narewski Lech A.Rowinski Cezary Zrodowski Faculty
Autodesk Fusion 360: Assemblies. Overview
Overview In this module you will learn how different components can be put together to create an assembly. We will use several tools in Fusion 360 to make sure that these assemblies are constrained appropriately
INTRODUCTION. Robotics is a relatively young field of modern technology that crosses traditional
1 INTRODUCTION Robotics is a relatively young field of modern technology that crosses traditional engineering boundaries. Understanding the complexity of robots and their applications requires knowledge
FRC WPI Robotics Library Overview
FRC WPI Robotics Library Overview Contents 1.1 Introduction 1.2 RobotDrive 1.3 Sensors 1.4 Actuators 1.5 I/O 1.6 Driver Station 1.7 Compressor 1.8 Camera 1.9 Utilities 1.10 Conclusion Introduction In this
Toward commercialization of robotic systems for high-value crops: state-of-theart review and challenges ahead
Toward commercialization of robotic systems for high-value crops: state-of-theart review and challenges ahead Wouter Bac MSc 27 September 2012 Wageningen UR Greenhouse Horticulture Overview Introduction
Design-Simulation-Optimization Package for a Generic 6-DOF Manipulator with a Spherical Wrist
Design-Simulation-Optimization Package for a Generic 6-DOF Manipulator with a Spherical Wrist MHER GRIGORIAN, TAREK SOBH Department of Computer Science and Engineering, U. of Bridgeport, USA ABSTRACT Robot
Polarization of Light
Polarization of Light References Halliday/Resnick/Walker Fundamentals of Physics, Chapter 33, 7 th ed. Wiley 005 PASCO EX997A and EX999 guide sheets (written by Ann Hanks) weight Exercises and weights
3D Vision An enabling Technology for Advanced Driver Assistance and Autonomous Offroad Driving
3D Vision An enabling Technology for Advanced Driver Assistance and Autonomous Offroad Driving AIT Austrian Institute of Technology Safety & Security Department Christian Zinner Safe and Autonomous Systems
Simulation of Trajectories and Comparison of Joint Variables for Robotic Manipulator Using Multibody Dynamics (MBD)
Simulation of Trajectories and Comparison of Joint Variables for Robotic Manipulator Using Multibody Dynamics (MBD) Jatin Dave Assistant Professor Nirma University Mechanical Engineering Department, Institute
Making Better Medical Devices with Multisensor Metrology
Making Better Medical Devices with Multisensor Metrology by Nate J. Rose, Chief Applications Engineer, Optical Gaging Products (OGP) Multisensor metrology is becoming a preferred quality control technology
Static Environment Recognition Using Omni-camera from a Moving Vehicle
Static Environment Recognition Using Omni-camera from a Moving Vehicle Teruko Yata, Chuck Thorpe Frank Dellaert The Robotics Institute Carnegie Mellon University Pittsburgh, PA 15213 USA College of Computing
Robot Perception Continued
Robot Perception Continued 1 Visual Perception Visual Odometry Reconstruction Recognition CS 685 11 Range Sensing strategies Active range sensors Ultrasound Laser range sensor Slides adopted from Siegwart
Improving a Gripper End Effector
PNNL-13440 Improving a Gripper End Effector OD Mullen CM Smith KL Gervais January 2001 Prepared for the U.S. Department of Energy under Contract DE-AC06-76RL01830 DISCLAIMER This report was prepared as
Differentiation of 3D scanners and their positioning method when applied to pipeline integrity
11th European Conference on Non-Destructive Testing (ECNDT 2014), October 6-10, 2014, Prague, Czech Republic More Info at Open Access Database www.ndt.net/?id=16317 Differentiation of 3D scanners and their
INTERNATIONAL HOCKEY FEDERATION PERFORMANCE REQUIREMENTS AND TEST PROCEDURES FOR HOCKEY BALLS. Published: April 1999
INTERNATIONAL HOCKEY FEDERATION PERFORMANCE REQUIREMENTS AND TEST PROCEDURES FOR HOCKEY BALLS Published: April 1999 CONTENTS 1 Introduction 2 Test Procedures General 3 Standards and Specific Test Procedures
Unit 1: INTRODUCTION TO ADVANCED ROBOTIC DESIGN & ENGINEERING
Unit 1: INTRODUCTION TO ADVANCED ROBOTIC DESIGN & ENGINEERING Technological Literacy Review of Robotics I Topics and understand and be able to implement the "design 8.1, 8.2 Technology Through the Ages
ROBOT END EFFECTORS SCRIPT
Slide 1 Slide 2 Slide 3 Slide 4 An end effector is the business end of a robot or where the work occurs. It is the device that is designed to allow the robot to interact with its environment. Similar in
GANTRY ROBOTIC CELL FOR AUTOMATIC STORAGE AND RETREIVAL SYSTEM
Advances in Production Engineering & Management 4 (2009) 4, 255-262 ISSN 1854-6250 Technical paper GANTRY ROBOTIC CELL FOR AUTOMATIC STORAGE AND RETREIVAL SYSTEM Ata, A., A.*; Elaryan, M.**; Gemaee, M.**;
HIGH-PERFORMANCE INSPECTION VEHICLE FOR RAILWAYS AND TUNNEL LININGS. HIGH-PERFORMANCE INSPECTION VEHICLE FOR RAILWAY AND ROAD TUNNEL LININGS.
HIGH-PERFORMANCE INSPECTION VEHICLE FOR RAILWAYS AND TUNNEL LININGS. HIGH-PERFORMANCE INSPECTION VEHICLE FOR RAILWAY AND ROAD TUNNEL LININGS. The vehicle developed by Euroconsult and Pavemetrics and described
Automated part positioning with the laser tracker
Automated part positioning with the laser tracker S. Kyle, R. Loser, D. Warren Leica Abstract Improvements and new developments for Leica's laser tracker make it suitable for measuring the relative position
Design of a Universal Robot End-effector for Straight-line Pick-up Motion
Session Design of a Universal Robot End-effector for Straight-line Pick-up Motion Gene Y. Liao Gregory J. Koshurba Wayne State University Abstract This paper describes a capstone design project in developing
Practical Work DELMIA V5 R20 Lecture 1. D. Chablat / S. Caro [email protected] [email protected]
Practical Work DELMIA V5 R20 Lecture 1 D. Chablat / S. Caro [email protected] [email protected] Native languages Definition of the language for the user interface English,
LIST OF CONTENTS CHAPTER CONTENT PAGE DECLARATION DEDICATION ACKNOWLEDGEMENTS ABSTRACT ABSTRAK
vii LIST OF CONTENTS CHAPTER CONTENT PAGE DECLARATION DEDICATION ACKNOWLEDGEMENTS ABSTRACT ABSTRAK LIST OF CONTENTS LIST OF TABLES LIST OF FIGURES LIST OF NOTATIONS LIST OF ABBREVIATIONS LIST OF APPENDICES
Force and Visual Control for Safe Human Robot Interaction
Force and Visual Control for Safe Human Robot Interaction Bruno SICILIANO www.prisma.unina.it PRISMA Team Force and Visual Control for Safe Human Robot Interaction 2/35 Bruno Siciliano Luigi Villani Vincenzo
TAGARNO AS Sandøvej 4 8700 Horsens Denmark Tel: +45 7625 1111 Mail: [email protected]
8 TAGARNO AS Sandøvej 4 8700 Horsens Denmark Tel: +45 7625 1111 Mail: [email protected] TAGARNO 2 Quick Image Capture Split Screen Function Magnification up to 320x Easy Height Adjustment SD-card ESD Security
Automotive Applications of 3D Laser Scanning Introduction
Automotive Applications of 3D Laser Scanning Kyle Johnston, Ph.D., Metron Systems, Inc. 34935 SE Douglas Street, Suite 110, Snoqualmie, WA 98065 425-396-5577, www.metronsys.com 2002 Metron Systems, Inc
National Performance Evaluation Facility for LADARs
National Performance Evaluation Facility for LADARs Kamel S. Saidi (presenter) Geraldine S. Cheok William C. Stone The National Institute of Standards and Technology Construction Metrology and Automation
Deflectable & Steerable Catheter Handbook
Deflectable & Steerable Catheter Handbook Terminology Guide & Design Options www.cregannatactx.com California Minnesota Ohio Ireland Singapore Terminology Steering v s Deflection Steerability This refers
EXPERIMENT O-6. Michelson Interferometer. Abstract. References. Pre-Lab
EXPERIMENT O-6 Michelson Interferometer Abstract A Michelson interferometer, constructed by the student, is used to measure the wavelength of He-Ne laser light and the index of refraction of a flat transparent
How To Use Trackeye
Product information Image Systems AB Main office: Ågatan 40, SE-582 22 Linköping Phone +46 13 200 100, fax +46 13 200 150 [email protected], Introduction TrackEye is the world leading system for motion
A STRATEGIC PLANNER FOR ROBOT EXCAVATION' by Humberto Romero-Lois, Research Assistant, Department of Civil Engineering
A STRATEGIC PLANNER FOR ROBOT EXCAVATION' by Humberto Romero-Lois, Research Assistant, Department of Civil Engineering Chris Hendrickson, Professor, Department of Civil Engineering, and Irving Oppenheim,
THE CONTROL OF A ROBOT END-EFFECTOR USING PHOTOGRAMMETRY
THE CONTROL OF A ROBOT END-EFFECTOR USING PHOTOGRAMMETRY Dr. T. Clarke & Dr. X. Wang Optical Metrology Centre, City University, Northampton Square, London, EC1V 0HB, UK [email protected], [email protected]
ROBOT SYSTEM FOR REMOVING ASBESTOS SPRAYED ON BEAMS
ROBOT SYSTEM FOR REMOVING ASBESTOS SPRAYED ON BEAMS Mitsunori Arai* and Haruo Hoshino Advanced Research Department R&D Institute, Takenaka Corp, Chiba, Japan * Corresponding author ([email protected])
CNC Machine Control Unit
NC Hardware a NC Hardware CNC Machine Control Unit Servo Drive Control Hydraulic Servo Drive Hydraulic power supply unit Servo valve Servo amplifiers Hydraulic motor Hydraulic Servo Valve Hydraulic Servo
Developing a Sewer Inspection Robot through a Mechatronics Approach
Developing a Sewer Inspection Robot through a Mechatronics Approach Alireza. Hadi, Gholamhossein. Mohammadi Abstract Sewerage is a harsh environment which requires periodically inspection. The inspection
3D SCANNING: A NEW APPROACH TOWARDS MODEL DEVELOPMENT IN ADVANCED MANUFACTURING SYSTEM
3D SCANNING: A NEW APPROACH TOWARDS MODEL DEVELOPMENT IN ADVANCED MANUFACTURING SYSTEM Dr. Trikal Shivshankar 1, Patil Chinmay 2, Patokar Pradeep 3 Professor, Mechanical Engineering Department, SSGM Engineering
What is Visualization? Information Visualization An Overview. Information Visualization. Definitions
What is Visualization? Information Visualization An Overview Jonathan I. Maletic, Ph.D. Computer Science Kent State University Visualize/Visualization: To form a mental image or vision of [some
E190Q Lecture 5 Autonomous Robot Navigation
E190Q Lecture 5 Autonomous Robot Navigation Instructor: Chris Clark Semester: Spring 2014 1 Figures courtesy of Siegwart & Nourbakhsh Control Structures Planning Based Control Prior Knowledge Operator
Simultaneous Gamma Correction and Registration in the Frequency Domain
Simultaneous Gamma Correction and Registration in the Frequency Domain Alexander Wong [email protected] William Bishop [email protected] Department of Electrical and Computer Engineering University
E3T Miniature Photoelectric Sensors
E3T Miniature Photoelectric Sensors Ultra-Compact with Visible Red Beam»» Ultra slim to fit and perform where others won't»» Visible red beam for simple set-up»» Five different sensing methods E3T Miniature
Solving Simultaneous Equations and Matrices
Solving Simultaneous Equations and Matrices The following represents a systematic investigation for the steps used to solve two simultaneous linear equations in two unknowns. The motivation for considering
User Guide MTD-3. Motion Lab Systems, Inc.
User Guide MTD-3 Motion Lab Systems, Inc. This manual was written by Motion Lab Systems using ComponentOne Doc-To-Help. Updated Tuesday, June 07, 2016 Intended Audience This manual is written to provide
How To Measure Contactless Measurement On A Robot
Thickness and surface area measurements in free space Jan Reinder Fransens Overview Introduction Irmato Contactless measurement Current system Control software White light sensor Free form measurement
Analecta Vol. 8, No. 2 ISSN 2064-7964
EXPERIMENTAL APPLICATIONS OF ARTIFICIAL NEURAL NETWORKS IN ENGINEERING PROCESSING SYSTEM S. Dadvandipour Institute of Information Engineering, University of Miskolc, Egyetemváros, 3515, Miskolc, Hungary,
Programming ABB Industrial Robot for an Accurate Handwriting
Programming ABB Industrial Robot for an Accurate Handwriting ABIGO IZABO 1, TARIG FAISAL 1* MAHMUD IWAN 1, H M A A AL-ASSADI 2, HANIF RAMLI 2 1 Faculty of Engineering, Technology & Built Environment, UCSI
An Energy-Based Vehicle Tracking System using Principal Component Analysis and Unsupervised ART Network
Proceedings of the 8th WSEAS Int. Conf. on ARTIFICIAL INTELLIGENCE, KNOWLEDGE ENGINEERING & DATA BASES (AIKED '9) ISSN: 179-519 435 ISBN: 978-96-474-51-2 An Energy-Based Vehicle Tracking System using Principal
TRIMBLE ATS TOTAL STATION ADVANCED TRACKING SYSTEMS FOR HIGH-PRECISION CONSTRUCTION APPLICATIONS
TRIMBLE ATS TOTAL STATION ADVANCED TRACKING SYSTEMS FOR HIGH-PRECISION CONSTRUCTION APPLICATIONS BY MARTIN WAGENER APPLICATIONS ENGINEER, TRIMBLE EUROPE OVERVIEW Today s construction industry demands more
A laboratory work: A teaching robot arm for mechanics and electronic circuits
A laboratory work: A teaching robot arm for mechanics and electronic circuits Omer Sise * Department of Physics, Kocatepe University, Science and Art Faculty, Afyon, 03200, Turkey * e-mail: [email protected]
Animations in Creo 3.0
Animations in Creo 3.0 ME170 Part I. Introduction & Outline Animations provide useful demonstrations and analyses of a mechanism's motion. This document will present two ways to create a motion animation
High speed 3D capture for Configuration Management DOE SBIR Phase II Paul Banks [email protected]
High speed 3D capture for Configuration Management DOE SBIR Phase II Paul Banks [email protected] Advanced Methods for Manufacturing Workshop September 29, 2015 1 TetraVue does high resolution 3D
A Simple Guide To Understanding 3D Scanning Technologies
A Simple Guide To Understanding 3D Scanning Technologies First Edition www.lmi3d.com Table of Contents Introduction At LMI Technologies, solving complex problems in a simple way is the philosophy that
