System Identification for Acoustic Comms.:


 May Harrison
 3 years ago
 Views:
Transcription
1 System Identification for Acoustic Comms.: New Insights and Approaches for Tracking Sparse and Rapidly Fluctuating Channels Weichang Li and James Preisig Woods Hole Oceanographic Institution The demodulation of coherent acoustic communications signals requires estimating the state of the communications channel. A Class of Underwater Acoustic Channel (sparse and rapidly timevarying) Adaptive Equalizers for Coherent Communications require estimates of the timevarying channel impulse response. Rapid Time Variation > need to estimate both channel impulse response and the parameters describing the time variation. Sparseness results in some of the parameters describing the time variation being unobservable in a statespace model sense. Several classes of methods of jointly address the challenges posed by sparse and rapidly timevarying channels. Results with experimental data
2 Surface Scattered Channels Wavefronts II Experiment (40 meter range) Surface Wave Field Impulse Response Estimation Error
3 Acoustic Focusing by Surface Waves TimeVarying Channel Impulse Response Dynamics of the first surface scattered arrival Time (seconds)
4 Channel Dynamics (Scattering Function)
5 Surface wave focusing and the signal prediction error (channel estimation error) Signal Prediction Error using RLS algorithm Channel Estimate using RLS algorithm
6 Impulse Response Estimation Error (surface scattering dominates, 238 m range) Signal Prediction Error is good surrogate for channel estimation error. Time scale of error oscillations is same as that for dominant surface waves. Single surface bounce arrivals contribute most significantly to the channel estimation error.
7 Relevant Aspects of Surface Scattered Channels The surface scattered arrivals can have very high intensities and be rapidly fluctuating. Thus, they can be a major source of error in estimating the channel impulse response. The dynamics of the impulse response containing surface scattered arrivals can change almost as rapidly as the impulse response itself. Algorithms must accommodate rapid time variation of both the impulse response and the parameters describing the dynamics of the impulse response fluctuations. The channel can be sparse and the subset of energetic taps of the impulse response can change rapidly with time. Arrivals appear and disappear as surface conditions evolve in addition to the movement of arrivals in delay.
8 System Equations TimeVarying Channel Impulse Response Vector Transmitted Data Vector Channel StateSpace Model Received Signal (Observation Equation)
9 Model Simplifications A(θ,n) and the covariance matrix of the process noise, w[n], are a diagonal matrices. The temporal fluctuations of the elements channel impulse response vector, g[n], are uncorrelated from element to element. The temporal fluctuations of each element of the channel impulse response vector is a first order AR process. (Single pole) The process noise, w[n], and observation noise, v[n], are both white noise processes. Covariance of process and observation noise assumed known (in reality, they are used as algorithm tuning parameters).
10 Algorithm Approaches The Extended Kalman Filter (EKF) (developed in the context of joint parameter/state estimation and must be modified to address issues related to sparse channels) Comments on the Estimate Maximize (EM) and related approaches. Matching Pursuit and related approaches (developed in the context of representation with a sparse set of basis vectors and must be modified to address issues related to the identification of timevarying systems)
11 The Extended Kalman Filter Approach Random Walk Parameter Model > Augmented State > Augmented State and Observation Equations Linearized State Equation
12 Parameter Observability and Detectability Intuition: Estimating the state transition coefficient associated with a state variable that equals zero or is very weak is a ill defined problem. Formally: A necessary and sufficient condition for the observability of the parameter vector a[n] is that the sequence of channel estimates is persistently exciting and the underlying channel model is observable. In a sparse channel and the random walk (unstable) assumed parameter model, the elements of the a[n] vector associated with the very weak channel taps are not detectable. Result: The EKF can be unstable and the error covariance can grow without bound.
13 A DualModel EKF Approach: Partition the channel taps (elements of the vector g[n]) into two sets: the energetic taps and the nonenergetic or quiescent taps. Different models for the time evolution of the elements of the parameter vector a[n] associated with the energetic and quiescent taps. Model for parameters associated with quiescent taps is stable and tends towards a fixed value.
14 Channel and Doppler Estimates
15 Doppler Estimates
16 Effect of Changing β Parameter
17 Estimate Maximize (EM) Based Approaches Intuition: For typical state estimation algorithms, the dynamics of the sequence of state estimates can be close to the dynamics of the sequence of states. This holds even if the algorithm has too long an averaging interval to accurately estimate the state sequence. State Model: Notional Estimate of Dynamics: The EM Algorithm formalizes this in an iterative estimation algorithm which accounts for the errors in the state estimates. Estimate State Sequence Estimate Transition Matrix (A)
18 Comments on EM based approaches The EM algorithm customarily operates on blocks of data. The parameter A is treated as a nonrandom parameter that is constant over each block. We have developed recursive variants of the traditional EM algorithm and are working on developing methods of accommodating time variability in the parameter A. The EM algorithm suffers from the same unobservabilty problem as the EKF.
19 Matching Pursuit Approaches Sparse system: MP > sequentially select columns of C[n] (or equivalently, elements of g[n]). When columns of C[n] are not orthogonal, use variants based on orthogonalization and least squares metrics.
20 Modification for timevariability The i th column of C[n] contains the time series of the transmitted data symbols that map the i th channel tap onto the received signal vector y[n]. Scattering Function Representation:
21 Signal Estimation Error (Wavefronts II data) (NOTE: STANDARD EKF WILL BECOME UNSTABLE)
22 Conclusions Surface scattered channels can be both highly dynamic and sparse. Rapid fluctuations require explicitly estimating parameters describing channel dynamics as well as the channel state. Parameters can be unobservable if the channel is sparse (I.e., some taps of the channel impulse response have low energy.) Channel estimation techniques that jointly account for both the channel sparseness and the rapid fluctuations show performance improvements over techniques that do not account for both factors.
Hybrid processing of SCADA and synchronized phasor measurements for tracking network state
IEEE PES General Meeting, Denver, USA, July 2015 1 Hybrid processing of SCADA and synchronized phasor measurements for tracking network state Boris AlcaideMoreno Claudio FuerteEsquivel Universidad Michoacana
More informationAnalysis of Bayesian Dynamic Linear Models
Analysis of Bayesian Dynamic Linear Models Emily M. Casleton December 17, 2010 1 Introduction The main purpose of this project is to explore the Bayesian analysis of Dynamic Linear Models (DLMs). The main
More information4F7 Adaptive Filters (and Spectrum Estimation) Kalman Filter. Sumeetpal Singh Email : sss40@eng.cam.ac.uk
4F7 Adaptive Filters (and Spectrum Estimation) Kalman Filter Sumeetpal Singh Email : sss40@eng.cam.ac.uk 1 1 Outline State space model Kalman filter Examples 2 2 Parameter Estimation We have repeated observations
More informationAdvanced Signal Processing and Digital Noise Reduction
Advanced Signal Processing and Digital Noise Reduction Saeed V. Vaseghi Queen's University of Belfast UK WILEY HTEUBNER A Partnership between John Wiley & Sons and B. G. Teubner Publishers Chichester New
More information4F7 Adaptive Filters (and Spectrum Estimation) Least Mean Square (LMS) Algorithm Sumeetpal Singh Engineering Department Email : sss40@eng.cam.ac.
4F7 Adaptive Filters (and Spectrum Estimation) Least Mean Square (LMS) Algorithm Sumeetpal Singh Engineering Department Email : sss40@eng.cam.ac.uk 1 1 Outline The LMS algorithm Overview of LMS issues
More informationLMS is a simple but powerful algorithm and can be implemented to take advantage of the Lattice FPGA architecture.
February 2012 Introduction Reference Design RD1031 Adaptive algorithms have become a mainstay in DSP. They are used in wide ranging applications including wireless channel estimation, radar guidance systems,
More informationLecture 5: Variants of the LMS algorithm
1 Standard LMS Algorithm FIR filters: Lecture 5: Variants of the LMS algorithm y(n) = w 0 (n)u(n)+w 1 (n)u(n 1) +...+ w M 1 (n)u(n M +1) = M 1 k=0 w k (n)u(n k) =w(n) T u(n), Error between filter output
More informationUnderstanding and Applying Kalman Filtering
Understanding and Applying Kalman Filtering Lindsay Kleeman Department of Electrical and Computer Systems Engineering Monash University, Clayton 1 Introduction Objectives: 1. Provide a basic understanding
More informationEnvironmental Effects On Phase Coherent Underwater Acoustic Communications: A Perspective From Several Experimental Measurements
Environmental Effects On Phase Coherent Underwater Acoustic Communications: A Perspective From Several Experimental Measurements T. C. Yang, Naval Research Lab., Washington DC 20375 Abstract. This paper
More informationThe Filteredx LMS Algorithm
The Filteredx LMS Algorithm L. Håkansson Department of Telecommunications and Signal Processing, University of Karlskrona/Ronneby 372 25 Ronneby Sweden Adaptive filters are normally defined for problems
More informationStefanos D. Georgiadis Perttu O. Rantaaho Mika P. Tarvainen Pasi A. Karjalainen. University of Kuopio Department of Applied Physics Kuopio, FINLAND
5 Finnish Signal Processing Symposium (Finsig 5) Kuopio, Finland Stefanos D. Georgiadis Perttu O. Rantaaho Mika P. Tarvainen Pasi A. Karjalainen University of Kuopio Department of Applied Physics Kuopio,
More informationEE 570: Location and Navigation
EE 570: Location and Navigation OnLine Bayesian Tracking Aly ElOsery 1 Stephen Bruder 2 1 Electrical Engineering Department, New Mexico Tech Socorro, New Mexico, USA 2 Electrical and Computer Engineering
More informationEnhancing the SNR of the Fiber Optic Rotation Sensor using the LMS Algorithm
1 Enhancing the SNR of the Fiber Optic Rotation Sensor using the LMS Algorithm Hani Mehrpouyan, Student Member, IEEE, Department of Electrical and Computer Engineering Queen s University, Kingston, Ontario,
More informationNonlinear Iterative Partial Least Squares Method
Numerical Methods for Determining Principal Component Analysis Abstract Factors Béchu, S., RichardPlouet, M., Fernandez, V., Walton, J., and Fairley, N. (2016) Developments in numerical treatments for
More informationADAPTIVE EQUALIZATION. Prepared by Deepa.T, Asst.Prof. /TCE
ADAPTIVE EQUALIZATION Prepared by Deepa.T, Asst.Prof. /TCE INTRODUCTION TO EQUALIZATION Equalization is a technique used to combat inter symbol interference(isi). An Equalizer within a receiver compensates
More informationMultiple Linear Regression in Data Mining
Multiple Linear Regression in Data Mining Contents 2.1. A Review of Multiple Linear Regression 2.2. Illustration of the Regression Process 2.3. Subset Selection in Linear Regression 1 2 Chap. 2 Multiple
More informationStability of the LMS Adaptive Filter by Means of a State Equation
Stability of the LMS Adaptive Filter by Means of a State Equation Vítor H. Nascimento and Ali H. Sayed Electrical Engineering Department University of California Los Angeles, CA 90095 Abstract This work
More informationISI Mitigation in Image Data for Wireless Wideband Communications Receivers using Adjustment of Estimated Flat Fading Errors
International Journal of Engineering and Management Research, Volume3, Issue3, June 2013 ISSN No.: 22500758 Pages: 2429 www.ijemr.net ISI Mitigation in Image Data for Wireless Wideband Communications
More informationPOTENTIAL OF STATEFEEDBACK CONTROL FOR MACHINE TOOLS DRIVES
POTENTIAL OF STATEFEEDBACK CONTROL FOR MACHINE TOOLS DRIVES L. Novotny 1, P. Strakos 1, J. Vesely 1, A. Dietmair 2 1 Research Center of Manufacturing Technology, CTU in Prague, Czech Republic 2 SW, Universität
More informationSequential Tracking in Pricing Financial Options using Model Based and Neural Network Approaches
Sequential Tracking in Pricing Financial Options using Model Based and Neural Network Approaches Mahesan Niranjan Cambridge University Engineering Department Cambridge CB2 IPZ, England niranjan@eng.cam.ac.uk
More information19 LINEAR QUADRATIC REGULATOR
19 LINEAR QUADRATIC REGULATOR 19.1 Introduction The simple form of loopshaping in scalar systems does not extend directly to multivariable (MIMO) plants, which are characterized by transfer matrices instead
More informationUnivariate and Multivariate Methods PEARSON. Addison Wesley
Time Series Analysis Univariate and Multivariate Methods SECOND EDITION William W. S. Wei Department of Statistics The Fox School of Business and Management Temple University PEARSON Addison Wesley Boston
More informationState Space Time Series Analysis
State Space Time Series Analysis p. 1 State Space Time Series Analysis Siem Jan Koopman http://staff.feweb.vu.nl/koopman Department of Econometrics VU University Amsterdam Tinbergen Institute 2011 State
More informationAdaptive Equalization of binary encoded signals Using LMS Algorithm
SSRG International Journal of Electronics and Communication Engineering (SSRGIJECE) volume issue7 Sep Adaptive Equalization of binary encoded signals Using LMS Algorithm Dr.K.Nagi Reddy Professor of ECE,NBKR
More information1 Short Introduction to Time Series
ECONOMICS 7344, Spring 202 Bent E. Sørensen January 24, 202 Short Introduction to Time Series A time series is a collection of stochastic variables x,.., x t,.., x T indexed by an integer value t. The
More informationPrinciples of Digital Communication
Principles of Digital Communication Robert G. Gallager January 5, 2008 ii Preface: introduction and objectives The digital communication industry is an enormous and rapidly growing industry, roughly comparable
More informationMUSIClike Processing of Pulsed Continuous Wave Signals in Active Sonar Experiments
23rd European Signal Processing Conference EUSIPCO) MUSIClike Processing of Pulsed Continuous Wave Signals in Active Sonar Experiments Hock Siong LIM hales Research and echnology, Singapore hales Solutions
More informationAdvanced Linear Modeling
Ronald Christensen Advanced Linear Modeling Multivariate, Time Series, and Spatial Data; Nonparametric Regression and Response Surface Maximization Second Edition Springer Preface to the Second Edition
More informationSparsitypromoting recovery from simultaneous data: a compressive sensing approach
SEG 2011 San Antonio Sparsitypromoting recovery from simultaneous data: a compressive sensing approach Haneet Wason*, Tim T. Y. Lin, and Felix J. Herrmann September 19, 2011 SLIM University of British
More informationAdaptive DemandForecasting Approach based on Principal Components Timeseries an application of datamining technique to detection of market movement
Adaptive DemandForecasting Approach based on Principal Components Timeseries an application of datamining technique to detection of market movement Toshio Sugihara Abstract In this study, an adaptive
More informationCommon factor analysis
Common factor analysis This is what people generally mean when they say "factor analysis" This family of techniques uses an estimate of common variance among the original variables to generate the factor
More informationLinear Dependence Tests
Linear Dependence Tests The book omits a few key tests for checking the linear dependence of vectors. These short notes discuss these tests, as well as the reasoning behind them. Our first test checks
More informationProbability and Random Variables. Generation of random variables (r.v.)
Probability and Random Variables Method for generating random variables with a specified probability distribution function. Gaussian And Markov Processes Characterization of Stationary Random Process Linearly
More informationFormulations of Model Predictive Control. Dipartimento di Elettronica e Informazione
Formulations of Model Predictive Control Riccardo Scattolini Riccardo Scattolini Dipartimento di Elettronica e Informazione Impulse and step response models 2 At the beginning of the 80, the early formulations
More informationGeneral Framework for an Iterative Solution of Ax b. Jacobi s Method
2.6 Iterative Solutions of Linear Systems 143 2.6 Iterative Solutions of Linear Systems Consistent linear systems in real life are solved in one of two ways: by direct calculation (using a matrix factorization,
More informationSPECIAL PERTURBATIONS UNCORRELATED TRACK PROCESSING
AAS 07228 SPECIAL PERTURBATIONS UNCORRELATED TRACK PROCESSING INTRODUCTION James G. Miller * Two historical uncorrelated track (UCT) processing approaches have been employed using general perturbations
More informationMaximum Likelihood Estimation of an ARMA(p,q) Model
Maximum Likelihood Estimation of an ARMA(p,q) Model Constantino Hevia The World Bank. DECRG. October 8 This note describes the Matlab function arma_mle.m that computes the maximum likelihood estimates
More informationBackground 2. Lecture 2 1. The Least Mean Square (LMS) algorithm 4. The Least Mean Square (LMS) algorithm 3. br(n) = u(n)u H (n) bp(n) = u(n)d (n)
Lecture 2 1 During this lecture you will learn about The Least Mean Squares algorithm (LMS) Convergence analysis of the LMS Equalizer (Kanalutjämnare) Background 2 The method of the Steepest descent that
More informationCollaborative Filtering. Radek Pelánek
Collaborative Filtering Radek Pelánek 2015 Collaborative Filtering assumption: users with similar taste in past will have similar taste in future requires only matrix of ratings applicable in many domains
More informationDATA MINING CLUSTER ANALYSIS: BASIC CONCEPTS
DATA MINING CLUSTER ANALYSIS: BASIC CONCEPTS 1 AND ALGORITHMS Chiara Renso KDDLAB ISTI CNR, Pisa, Italy WHAT IS CLUSTER ANALYSIS? Finding groups of objects such that the objects in a group will be similar
More informationCommunication on the Grassmann Manifold: A Geometric Approach to the Noncoherent MultipleAntenna Channel
IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 48, NO. 2, FEBRUARY 2002 359 Communication on the Grassmann Manifold: A Geometric Approach to the Noncoherent MultipleAntenna Channel Lizhong Zheng, Student
More informationDimensionality Reduction: Principal Components Analysis
Dimensionality Reduction: Principal Components Analysis In data mining one often encounters situations where there are a large number of variables in the database. In such situations it is very likely
More informationInverse problems. Nikolai Piskunov 2014. Regularization: Example Lecture 4
Inverse problems Nikolai Piskunov 2014 Regularization: Example Lecture 4 Now that we know the theory, let s try an application: Problem: Optimal filtering of 1D and 2D data Solution: formulate an inverse
More informationDoptimal plans in observational studies
Doptimal plans in observational studies Constanze Pumplün Stefan Rüping Katharina Morik Claus Weihs October 11, 2005 Abstract This paper investigates the use of Design of Experiments in observational
More informationKalman Filter Applied to a Active Queue Management Problem
IOSR Journal of Electrical and Electronics Engineering (IOSRJEEE) eissn: 22781676,pISSN: 23203331, Volume 9, Issue 4 Ver. III (Jul Aug. 2014), PP 2327 Jyoti Pandey 1 and Prof. Aashih Hiradhar 2 Department
More informationA SIMULATION STUDY ON SPACETIME EQUALIZATION FOR MOBILE BROADBAND COMMUNICATION IN AN INDUSTRIAL INDOOR ENVIRONMENT
A SIMULATION STUDY ON SPACETIME EQUALIZATION FOR MOBILE BROADBAND COMMUNICATION IN AN INDUSTRIAL INDOOR ENVIRONMENT U. Trautwein, G. Sommerkorn, R. S. Thomä FG EMT, Ilmenau University of Technology P.O.B.
More informationADAPTIVE ALGORITHMS FOR ACOUSTIC ECHO CANCELLATION IN SPEECH PROCESSING
www.arpapress.com/volumes/vol7issue1/ijrras_7_1_05.pdf ADAPTIVE ALGORITHMS FOR ACOUSTIC ECHO CANCELLATION IN SPEECH PROCESSING 1,* Radhika Chinaboina, 1 D.S.Ramkiran, 2 Habibulla Khan, 1 M.Usha, 1 B.T.P.Madhav,
More informationJava Modules for Time Series Analysis
Java Modules for Time Series Analysis Agenda Clustering Nonnormal distributions Multifactor modeling Implied ratings Time series prediction 1. Clustering + Cluster 1 Synthetic Clustering + Time series
More information6. Cholesky factorization
6. Cholesky factorization EE103 (Fall 201112) triangular matrices forward and backward substitution the Cholesky factorization solving Ax = b with A positive definite inverse of a positive definite matrix
More information11. Time series and dynamic linear models
11. Time series and dynamic linear models Objective To introduce the Bayesian approach to the modeling and forecasting of time series. Recommended reading West, M. and Harrison, J. (1997). models, (2 nd
More informationClustering & Visualization
Chapter 5 Clustering & Visualization Clustering in highdimensional databases is an important problem and there are a number of different clustering paradigms which are applicable to highdimensional data.
More informationFinancial TIme Series Analysis: Part II
Department of Mathematics and Statistics, University of Vaasa, Finland January 29 February 13, 2015 Feb 14, 2015 1 Univariate linear stochastic models: further topics Unobserved component model Signal
More informationObject tracking & Motion detection in video sequences
Introduction Object tracking & Motion detection in video sequences Recomended link: http://cmp.felk.cvut.cz/~hlavac/teachpresen/17compvision3d/41imagemotion.pdf 1 2 DYNAMIC SCENE ANALYSIS The input to
More informationChapter 2: Systems of Linear Equations and Matrices:
At the end of the lesson, you should be able to: Chapter 2: Systems of Linear Equations and Matrices: 2.1: Solutions of Linear Systems by the Echelon Method Define linear systems, unique solution, inconsistent,
More informationKristine L. Bell and Harry L. Van Trees. Center of Excellence in C 3 I George Mason University Fairfax, VA 220304444, USA kbell@gmu.edu, hlv@gmu.
POSERIOR CRAMÉRRAO BOUND FOR RACKING ARGE BEARING Kristine L. Bell and Harry L. Van rees Center of Excellence in C 3 I George Mason University Fairfax, VA 220304444, USA bell@gmu.edu, hlv@gmu.edu ABSRAC
More informationEigenvalues and eigenvectors of a matrix
Eigenvalues and eigenvectors of a matrix Definition: If A is an n n matrix and there exists a real number λ and a nonzero column vector V such that AV = λv then λ is called an eigenvalue of A and V is
More informationTime Series Analysis III
Lecture 12: Time Series Analysis III MIT 18.S096 Dr. Kempthorne Fall 2013 MIT 18.S096 Time Series Analysis III 1 Outline Time Series Analysis III 1 Time Series Analysis III MIT 18.S096 Time Series Analysis
More informationRegression Clustering
Chapter 449 Introduction This algorithm provides for clustering in the multiple regression setting in which you have a dependent variable Y and one or more independent variables, the X s. The algorithm
More informationIntroduction to Principal Components and FactorAnalysis
Introduction to Principal Components and FactorAnalysis Multivariate Analysis often starts out with data involving a substantial number of correlated variables. Principal Component Analysis (PCA) is a
More informationSYSTEMS OF REGRESSION EQUATIONS
SYSTEMS OF REGRESSION EQUATIONS 1. MULTIPLE EQUATIONS y nt = x nt n + u nt, n = 1,...,N, t = 1,...,T, x nt is 1 k, and n is k 1. This is a version of the standard regression model where the observations
More informationNonlinear Blind Source Separation and Independent Component Analysis
Nonlinear Blind Source Separation and Independent Component Analysis Prof. Juha Karhunen Helsinki University of Technology Neural Networks Research Centre Espoo, Finland Helsinki University of Technology,
More informationOutline. Random Variables. Examples. Random Variable
Outline Random Variables M. Sami Fadali Professor of Electrical Engineering University of Nevada, Reno Random variables. CDF and pdf. Joint random variables. Correlated, independent, orthogonal. Correlation,
More informationOverview of Math Standards
Algebra 2 Welcome to math curriculum design maps for Manhattan Ogden USD 383, striving to produce learners who are: Effective Communicators who clearly express ideas and effectively communicate with diverse
More informationSolving Linear Diophantine Matrix Equations Using the Smith Normal Form (More or Less)
Solving Linear Diophantine Matrix Equations Using the Smith Normal Form (More or Less) Raymond N. Greenwell 1 and Stanley Kertzner 2 1 Department of Mathematics, Hofstra University, Hempstead, NY 11549
More informationELECE8104 Stochastics models and estimation, Lecture 3b: Linear Estimation in Static Systems
Stochastics models and estimation, Lecture 3b: Linear Estimation in Static Systems Minimum Mean Square Error (MMSE) MMSE estimation of Gaussian random vectors Linear MMSE estimator for arbitrarily distributed
More informationP164 Tomographic Velocity Model Building Using Iterative Eigendecomposition
P164 Tomographic Velocity Model Building Using Iterative Eigendecomposition K. Osypov* (WesternGeco), D. Nichols (WesternGeco), M. Woodward (WesternGeco) & C.E. Yarman (WesternGeco) SUMMARY Tomographic
More informationPolitecnico di Torino. Porto Institutional Repository
Politecnico di Torino Porto Institutional Repository [Proceeding] Multiport network analyzer selfcalibration: a new approach and some interesting results Original Citation: G.L. Madonna, A. Ferrero, U.
More informationSolving Systems of Linear Equations Using Matrices
Solving Systems of Linear Equations Using Matrices What is a Matrix? A matrix is a compact grid or array of numbers. It can be created from a system of equations and used to solve the system of equations.
More informationDynamic data processing
Dynamic data processing recursive leastsquares P.J.G. Teunissen Series on Mathematical Geodesy and Positioning Dynamic data processing recursive leastsquares Dynamic data processing recursive leastsquares
More informationLinear regression methods for large n and streaming data
Linear regression methods for large n and streaming data Large n and small or moderate p is a fairly simple problem. The sufficient statistic for β in OLS (and ridge) is: The concept of sufficiency is
More informationIMPROVED NETWORK PARAMETER ERROR IDENTIFICATION USING MULTIPLE MEASUREMENT SCANS
IMPROVED NETWORK PARAMETER ERROR IDENTIFICATION USING MULTIPLE MEASUREMENT SCANS Liuxi Zhang and Ali Abur Department of Electrical and Computer Engineering Northeastern University Boston, MA, USA lzhang@ece.neu.edu
More informationTable 1: Unit Root Tests KPSS Test Augmented DickeyFuller Test with Time Trend
Table 1: Unit Root Tests KPSS Test Augmented DickeyFuller Test with Time Trend with Time Trend test statistic pvalue test statistic Corn 2.953.146.179 Soy 2.663.252.353 Corn 2.752.215.171 Soy 2.588.285.32
More informationPrincipal components analysis
CS229 Lecture notes Andrew Ng Part XI Principal components analysis In our discussion of factor analysis, we gave a way to model data x R n as approximately lying in some kdimension subspace, where k
More informationReduced echelon form: Add the following conditions to conditions 1, 2, and 3 above:
Section 1.2: Row Reduction and Echelon Forms Echelon form (or row echelon form): 1. All nonzero rows are above any rows of all zeros. 2. Each leading entry (i.e. left most nonzero entry) of a row is in
More information10.2 ITERATIVE METHODS FOR SOLVING LINEAR SYSTEMS. The Jacobi Method
578 CHAPTER 1 NUMERICAL METHODS 1. ITERATIVE METHODS FOR SOLVING LINEAR SYSTEMS As a numerical technique, Gaussian elimination is rather unusual because it is direct. That is, a solution is obtained after
More informationDiscrete FrobeniusPerron Tracking
Discrete FrobeniusPerron Tracing Barend J. van Wy and Michaël A. van Wy French SouthAfrican Technical Institute in Electronics at the Tshwane University of Technology Staatsartillerie Road, Pretoria,
More informationAcoustic Echo Cancellation For Speech And Random Signal Using Estimated Impulse Responses
Adaptive Filter International Journal of Recent Development in Engineering and Technology Acoustic Echo Cancellation For Speech And Random Signal Using Estimated Impulse Responses S. I. M. M. Raton Mondol
More informationT complicated environments for data communications. The
42 IEEE JOURNAL OF OCEANIC ENGINEERING, VOL. 16, NO. 1, JANUARY 1991 Algorithms For Joint Channel Estimation and Data Recovery Application to Equalization in Underwater Communications Meir Feder, Member,
More information7. LU factorization. factorsolve method. LU factorization. solving Ax = b with A nonsingular. the inverse of a nonsingular matrix
7. LU factorization EE103 (Fall 201112) factorsolve method LU factorization solving Ax = b with A nonsingular the inverse of a nonsingular matrix LU factorization algorithm effect of rounding error sparse
More informationRow Echelon Form and Reduced Row Echelon Form
These notes closely follow the presentation of the material given in David C Lay s textbook Linear Algebra and its Applications (3rd edition) These notes are intended primarily for inclass presentation
More informationGRADES 7, 8, AND 9 BIG IDEAS
Table 1: Strand A: BIG IDEAS: MATH: NUMBER Introduce perfect squares, square roots, and all applications Introduce rational numbers (positive and negative) Introduce the meaning of negative exponents for
More informationPMR5406 Redes Neurais e Lógica Fuzzy Aula 3 Multilayer Percetrons
PMR5406 Redes Neurais e Aula 3 Multilayer Percetrons Baseado em: Neural Networks, Simon Haykin, PrenticeHall, 2 nd edition Slides do curso por Elena Marchiori, Vrie Unviersity Multilayer Perceptrons Architecture
More informationEE289 Lab Fall 2009. LAB 4. Ambient Noise Reduction. 1 Introduction. 2 Simulation in Matlab Simulink
EE289 Lab Fall 2009 LAB 4. Ambient Noise Reduction 1 Introduction Noise canceling devices reduce unwanted ambient noise (acoustic noise) by means of active noise control. Among these devices are noisecanceling
More informationHybrid Data and Decision Fusion Techniques for ModelBased Data Gathering in Wireless Sensor Networks
Hybrid Data and Decision Fusion Techniques for ModelBased Data Gathering in Wireless Sensor Networks Lorenzo A. Rossi, Bhaskar Krishnamachari and C.C. Jay Kuo Department of Electrical Engineering, University
More informationTime Series Analysis
Time Series Analysis Time series and stochastic processes Andrés M. Alonso Carolina GarcíaMartos Universidad Carlos III de Madrid Universidad Politécnica de Madrid June July, 2012 Alonso and GarcíaMartos
More informationFactor analysis. Angela Montanari
Factor analysis Angela Montanari 1 Introduction Factor analysis is a statistical model that allows to explain the correlations between a large number of observed correlated variables through a small number
More informationADVANCED APPLICATIONS OF ELECTRICAL ENGINEERING
Development of a Software Tool for Performance Evaluation of MIMO OFDM Alamouti using a didactical Approach as a Educational and Research support in Wireless Communications JOSE CORDOVA, REBECA ESTRADA
More informationForecasting Hospital Bed Availability Using Simulation and Neural Networks
Forecasting Hospital Bed Availability Using Simulation and Neural Networks Matthew J. Daniels Michael E. Kuhl Industrial & Systems Engineering Department Rochester Institute of Technology Rochester, NY
More informationComponent Ordering in Independent Component Analysis Based on Data Power
Component Ordering in Independent Component Analysis Based on Data Power Anne Hendrikse Raymond Veldhuis University of Twente University of Twente Fac. EEMCS, Signals and Systems Group Fac. EEMCS, Signals
More informationBag of Pursuits and Neural Gas for Improved Sparse Coding
Bag of Pursuits and Neural Gas for Improved Sparse Coding Kai Labusch, Erhardt Barth, and Thomas Martinetz University of Lübec Institute for Neuro and Bioinformatics Ratzeburger Allee 6 23562 Lübec, Germany
More informationMaster s Thesis. A Study on Active Queue Management Mechanisms for. Internet Routers: Design, Performance Analysis, and.
Master s Thesis Title A Study on Active Queue Management Mechanisms for Internet Routers: Design, Performance Analysis, and Parameter Tuning Supervisor Prof. Masayuki Murata Author Tomoya Eguchi February
More informationhttp://www.jstor.org This content downloaded on Tue, 19 Feb 2013 17:28:43 PM All use subject to JSTOR Terms and Conditions
A Significance Test for Time Series Analysis Author(s): W. Allen Wallis and Geoffrey H. Moore Reviewed work(s): Source: Journal of the American Statistical Association, Vol. 36, No. 215 (Sep., 1941), pp.
More informationIntroduction to Inverse Problems (2 lectures)
Introduction to Inverse Problems (2 lectures) Summary Direct and inverse problems Examples of direct (forward) problems Deterministic and statistical points of view Illposed and illconditioned problems
More information3.5.1 CORRELATION MODELS FOR FREQUENCY SELECTIVE FADING
Environment Spread Flat Rural.5 µs Urban 5 µs Hilly 2 µs Mall.3 µs Indoors.1 µs able 3.1: ypical delay spreads for various environments. If W > 1 τ ds, then the fading is said to be frequency selective,
More informationChapter 4: Vector Autoregressive Models
Chapter 4: Vector Autoregressive Models 1 Contents: Lehrstuhl für Department Empirische of Wirtschaftsforschung Empirical Research and und Econometrics Ökonometrie IV.1 Vector Autoregressive Models (VAR)...
More informationActive Exploration Planning for SLAM using Extended Information Filters
Active Exploration Planning for SLAM using Extended Information Filters Robert Sim Department of Computer Science University of British Columbia 2366 Main Mall Vancouver, BC V6T 1Z4 simra@cs.ubc.ca Nicholas
More informationOrthogonal Diagonalization of Symmetric Matrices
MATH10212 Linear Algebra Brief lecture notes 57 Gram Schmidt Process enables us to find an orthogonal basis of a subspace. Let u 1,..., u k be a basis of a subspace V of R n. We begin the process of finding
More informationSolutions to Exam in Speech Signal Processing EN2300
Solutions to Exam in Speech Signal Processing EN23 Date: Thursday, Dec 2, 8: 3: Place: Allowed: Grades: Language: Solutions: Q34, Q36 Beta Math Handbook (or corresponding), calculator with empty memory.
More informationMATHEMATICAL METHODS OF STATISTICS
MATHEMATICAL METHODS OF STATISTICS By HARALD CRAMER TROFESSOK IN THE UNIVERSITY OF STOCKHOLM Princeton PRINCETON UNIVERSITY PRESS 1946 TABLE OF CONTENTS. First Part. MATHEMATICAL INTRODUCTION. CHAPTERS
More informationLecture 11: Graphical Models for Inference
Lecture 11: Graphical Models for Inference So far we have seen two graphical models that are used for inference  the Bayesian network and the Join tree. These two both represent the same joint probability
More information