Gauged supergravity and E 10

Size: px
Start display at page:

Download "Gauged supergravity and E 10"

Transcription

1 Gauged supergravity and E 10 Jakob Palmkvist Albert-Einstein-Institut in collaboration with Eric Bergshoeff, Olaf Hohm, Axel Kleinschmidt, Hermann Nicolai and Teake Nutma arxiv: JHEP01(2009)020

2 Three-dimensional maximal supergravity is globally invariant under E 8 (Julia 1983)

3 Three-dimensional maximal supergravity is globally invariant under E 8 and SL(2, R). (Julia 1983)

4 Three-dimensional maximal supergravity is globally invariant under E 8 and SL(2, R). Can we unify these symmetries into E 10? (Julia 1983) (Damour, Henneaux, Nicolai 2002)

5 Three-dimensional maximal supergravity is globally invariant under E 8 and SL(2, R). Can we unify these symmetries into E 10? What if we promote a subgroup of E 8 to a local symmetry? (Julia 1983) (Damour, Henneaux, Nicolai 2002)

6 Outline

7 Outline Gauged maximal supergravity in three dimensions

8 Outline Gauged maximal supergravity in three dimensions The E 10 /K(E 10 ) coset model

9 Outline Gauged maximal supergravity in three dimensions The E 10 /K(E 10 ) coset model Comparison between the two theories

10 Consider the bosonic sector of maximal (N = 16) supergravity in three dimensions:

11 Consider the bosonic sector of maximal (N = 16) supergravity in three dimensions: Pure gravity does not propagate

12 Consider the bosonic sector of maximal (N = 16) supergravity in three dimensions: Pure gravity does not propagate Vectors are dual to scalars

13 Consider the bosonic sector of maximal (N = 16) supergravity in three dimensions: Pure gravity does not propagate Vectors are dual to scalars All propagating degrees of freedom of supergravity are scalars.

14 Consider the bosonic sector of maximal (N = 16) supergravity in three dimensions: L = 1 4 er ηαβ η AB P α A P β B α, β = 0, 1, 2 A, B = 1, 2,..., 248

15 The Maurer-Cartan form of the gravity sector decomposes into its symmetric and antisymmetric parts: (e 1 µ e) αβ = P µ(αβ) + Q µ[αβ]

16 The Maurer-Cartan form of the gravity sector decomposes into its symmetric and antisymmetric parts: (e 1 µ e) αβ = P µ(αβ) + Q µ[αβ] The Maurer-Cartan form of the scalar sector decomposes into a spinor and the adjoint of SO(16): (E 1 µ E) A P µ A, Q µ IJ

17 The Maurer-Cartan form of the scalar sector decomposes into a spinor and the adjoint of SO(16): (E 1 µ E) A P µ A, Q µ IJ

18 The Maurer-Cartan form of the scalar sector decomposes into a spinor and the adjoint of SO(16): (E 1 µ E) A P µ A, Q µ IJ

19 The Maurer-Cartan form of the scalar sector decomposes into a spinor and the adjoint of SO(16): (E 1 µ E) A P µ A, Q µ IJ A, B,... = 1, 2,..., 248 A, B,... = 1, 2,..., 128 I, J,... = 1, 2,..., 16

20 The scalar sector is described by an element E of the coset E 8 /SO(16), and is invariant under the transformations E(x) ge(x)h(x) g E 8 h(x) SO(16)

21 Gauging the theory: Promote a subgroup G E 8 to a local symmetry E(x) g(x)e(x)h(x) g(x) G E 8 h(x) SO(16)

22 Gauging the theory: Promote a subgroup G E 8 to a local symmetry E(x) g(x)e(x)h(x) g(x) G E 8 h(x) SO(16) This is done by dualizing the scalars to vectors A µ A.

23 Gauging the theory: Replace partial derivatives with gauge covariant ones P µ A = (E 1 µ E) A (E 1 D µ E) A

24 Gauging the theory: Replace partial derivatives with gauge covariant ones P µ A = (E 1 µ E) A (E 1 D µ E) A Add a potential term L V

25 Gauging the theory: Replace partial derivatives with gauge covariant ones P µ A = (E 1 µ E) A (E 1 D µ E) A Add a potential term L V Add a Chern-Simons term L CS

26 We can keep an E 8 covariant notation by using the embedding tensor Θ MN, the projection of the Killing form η MN onto the gauge group G E 8.

27 We can keep an E 8 covariant notation by using the embedding tensor Θ MN, the projection of the Killing form η MN onto the gauge group G E 8. Thus it has two symmetric E 8 indices.

28 We can keep an E 8 covariant notation by using the embedding tensor Θ MN, the projection of the Killing form η MN onto the gauge group G E 8. Thus it has two symmetric E 8 indices. The symmetric product of two adjoint E 8 representations:

29 We can keep an E 8 covariant notation by using the embedding tensor Θ MN, the projection of the Killing form η MN onto the gauge group G E 8. Thus it has two symmetric E 8 indices. The symmetric product of two adjoint E 8 representations: ( ) + =

30 We can keep an E 8 covariant notation by using the embedding tensor Θ MN, the projection of the Killing form η MN onto the gauge group G E 8. Thus it has two symmetric E 8 indices. The condition for supersymmetry: Θ MN (Nicolai, Samtleben 2001)

31 Θ MN

32 We divide the embedding tensor into its irreducible parts: Θ MN Θ MN = η MN θ + Θ MN

33 We divide the embedding tensor into its irreducible parts: θ Θ MN

34 We divide the embedding tensor into its irreducible parts: θ 1 Θ MN 3875

35 We divide the embedding tensor into its irreducible parts: θ 1 Θ MN 3875

36 We divide the embedding tensor into its irreducible parts: θ 1 Θ MN 3875 The embedding tensor in flat indices: T AB (x) = E A M (x)e B N (x) Θ MN

37 L V = eg2 112 (3 T AB TAB + T A IJ TA IJ T IJ KL TIJ KL ) + 2eg 2 θ 2

38 L V = eg2 112 (3 T AB TAB + T A IJ TA IJ T IJ KL TIJ KL ) + 2eg 2 θ 2 L CS = g 4 εµνρ Θ MN A µ M ν A ρ N g2 12 εµνρ Θ MN Θ PQ f MP RA µ N A ν Q A ρ R

39 L V = eg2 112 (3 T AB TAB + T A IJ TA IJ T IJ KL TIJ KL ) + 2eg 2 θ 2 L CS = g 4 εµνρ Θ MN A µ M ν A ρ N g2 12 εµνρ Θ MN Θ PQ f MP RA µ N A ν Q A ρ R E 1 D µ E = E 1 µ E + ga µ M Θ MN (E 1 t N E)

40 To compare with the E 10 model, we must choose...

41 To compare with the E 10 model, we must choose... An ADM-like split of the dreibein: N 0 0 e µ α = 0 0 e m a

42 To compare with the E 10 model, we must choose... An ADM-like split of the dreibein: N 0 0 e µ α = 0 0 e m a A temporal gauge for the vector fields: A t M = 0

43 The Lie algebra of SL(2, R): [h, e] = 2e [h, f] = 2f [e, f] = h

44 The Lie algebra of SL(2, R): [h, e] = 2e [h, f] = 2f [e, f] = h Matrix realization: e = ( ) f = ( ) h = ( )

45 A Kac-Moody algebra g of rank r is generated by r copies of SL(2, R), modulo the Chevalley-Serre relations:

46 A Kac-Moody algebra g of rank r is generated by r copies of SL(2, R), modulo the Chevalley-Serre relations:

47 A Kac-Moody algebra g of rank r is generated by r copies of SL(2, R), modulo the Chevalley-Serre relations: i j i j

48 A Kac-Moody algebra g of rank r is generated by r copies of SL(2, R), modulo the Chevalley-Serre relations: i j i j [h i, e j ] = e j [h i, f j ] = f j [e i, e j ] 0 [f i, f j ] 0 [h i, e j ] = 0 [h i, f j ] = 0 [e i, e j ] = 0 [f i, f j ] = 0 [h i, h j ] = [e i, f j ] = 0

49 A Kac-Moody algebra g of rank r is generated by r copies of SL(2, R), modulo the Chevalley-Serre relations: i j i j [h i, e j ] = e j [h i, f j ] = f j [[e i, e j ], e j ] = 0 [[f i, f j ], f j ] = 0 [h i, e j ] = 0 [h i, f j ] = 0 [e i, e j ] = 0 [f i, f j ] = 0 [h i, h j ] = [e i, f j ] = 0

50 The Kac-Moody algebra g is spanned by all multiple (k 1) commutators [ [[e i1, e i2 ], e i3 ],..., e ik ] [ [[f i1, f i2 ], f i3 ],..., f ik ] together with the r Cartan elements h i.

51 For any i = 1, 2,..., r, we can write g = + g 1 + g 0 + g 1 + where each subspace g l is spanned by all multiple commutators at level l = number of e i number of f i.

52 For any i = 1, 2,..., r, we can write g = + g 1 + g 0 + g 1 + where each subspace g l is spanned by all multiple commutators at level l = number of e i number of f i. This gives a grading: [g m, g n ] g m+n

53 For any i = 1, 2,..., r, we can write g = + g 1 + g 0 + g 1 + where each subspace g l is spanned by all multiple commutators at level l = number of e i number of f i. This gives a grading: [g m, g n ] g m+n The adjoint representation of g decomposes into representations of g 0.

54 The maximal compact subalgebra K(g) of a Kac-Moody algebra g is invariant under the Chevalley involution

55 The maximal compact subalgebra K(g) of a Kac-Moody algebra g is invariant under the Chevalley involution ω(e i ) = f i ω(f i ) = e i ω(h i ) = h i

56 The maximal compact subalgebra K(g) of a Kac-Moody algebra g is invariant under the Chevalley involution ω(e i ) = f i ω(f i ) = e i ω(h i ) = h i It is generated by all elements e i f i modulo the Chevalley-Serre relations.

57 Consider the E 10 /K(E 10 ) coset model L = n(t) 1 P(t) P(t) where Q K(E 10 ) and P Q = 0.

58 Consider the E 10 /K(E 10 ) coset model L = n(t) 1 P(t) P(t) where Q K(E 10 ) and P Q = 0. The local K(E 10 ) invariance makes it possible to choose the Borel gauge:

59 Consider the E 10 /K(E 10 ) coset model L = n(t) 1 P(t) P(t) where Q K(E 10 ) and P Q = 0. The local K(E 10 ) invariance makes it possible to choose the Borel gauge: P + Q g 0 + g 1 + g 2 +

60 Level decomposition of E 10 under SL(2, R) E 8 up to level l = 2:

61 Level decomposition of E 10 under SL(2, R) E 8 up to level l = 2: Level SL(2, R) E 8 Components l representation of P + Q 0 (1 3, 1) P ab, Q ab (1, 248) P A, Q IJ 1 (2, 248) P a A 2 (1, 1) P (1, 3875) P AB (3, 248) P ab A

62 Level decomposition of E 10 under SL(2, R) E 8 up to level l = 2: Level SL(2, R) E 8 Components l representation of P + Q 0 (1 3, 1) P ab, Q ab (1, 248) P A, Q IJ 1 (2, 248) P a A 2 (1, 1) P (1, 3875) P AB

63 P ab P A P a A Q ab Q IJ P P AB

64 P ab P A Q ab Q IJ P a A P a IJ P P AB

65 P ab P A Q ab Q IJ P a A P a IJ P P AB

66 The dictionary of the E 10 /supergravity correspondence: P ab (t) P ab (t, x 0 ) Q ab (t) Q ab (t, x 0 ) P A (t) P t A (t, x 0 ) Q IJ (t) Q t IJ (t, x 0 ) P a A (t) Nε ab P b A (t, x 0 ) P a IJ (t) Nε ab Q b IJ (t, x 0 ) P (t) Ngθ(t, x 0 ) P AB (t) 1 28 Ng T AB (t, x 0 )

67 With this identification, the equations of motion coincide, up to...

68 With this identification, the equations of motion coincide, up to... The gauge choices on both sides

69 With this identification, the equations of motion coincide, up to... The gauge choices on both sides Higher order spatial derivatives

70 With this identification, the equations of motion coincide, up to... The gauge choices on both sides Higher order spatial derivatives Higher levels in the decomposition

71 With this identification, the equations of motion coincide, up to... The gauge choices on both sides Higher order spatial derivatives Higher levels in the decomposition Some other mismatches...

72 Open questions:

73 Open questions: No interpretation of P ab A

74 Open questions: No interpretation of P ab A Second order spatial gradient? Trombone gauging?

75 Open questions: No interpretation of P ab A Second order spatial gradient? Trombone gauging? What about the higher levels?

76 Open questions: No interpretation of P ab A Second order spatial gradient? Trombone gauging? What about the higher levels? How the reconcile the Killing form with the indefinite potential?

77 Open questions: No interpretation of P ab A Second order spatial gradient? Trombone gauging? What about the higher levels? How the reconcile the Killing form with the indefinite potential? To be continued...

78 Thank you!

Group Theory. 1 Cartan Subalgebra and the Roots. November 23, 2011. 1.1 Cartan Subalgebra. 1.2 Root system

Group Theory. 1 Cartan Subalgebra and the Roots. November 23, 2011. 1.1 Cartan Subalgebra. 1.2 Root system Group Theory November 23, 2011 1 Cartan Subalgebra and the Roots 1.1 Cartan Subalgebra Let G be the Lie algebra, if h G it is called a subalgebra of G. Now we seek a basis in which [x, T a ] = ζ a T a

More information

Structure of the Root Spaces for Simple Lie Algebras

Structure of the Root Spaces for Simple Lie Algebras Structure of the Root Spaces for Simple Lie Algebras I. Introduction A Cartan subalgebra, H, of a Lie algebra, G, is a subalgebra, H G, such that a. H is nilpotent, i.e., there is some n such that (H)

More information

Lecture 18 - Clifford Algebras and Spin groups

Lecture 18 - Clifford Algebras and Spin groups Lecture 18 - Clifford Algebras and Spin groups April 5, 2013 Reference: Lawson and Michelsohn, Spin Geometry. 1 Universal Property If V is a vector space over R or C, let q be any quadratic form, meaning

More information

On Bhargava s representations and Vinberg s invariant theory

On Bhargava s representations and Vinberg s invariant theory On Bhargava s representations and Vinberg s invariant theory Benedict H. Gross Department of Mathematics, Harvard University Cambridge, MA 02138 gross@math.harvard.edu January, 2011 1 Introduction Manjul

More information

A Primer on Index Notation

A Primer on Index Notation A Primer on John Crimaldi August 28, 2006 1. Index versus Index notation (a.k.a. Cartesian notation) is a powerful tool for manipulating multidimensional equations. However, there are times when the more

More information

Tensors on a vector space

Tensors on a vector space APPENDIX B Tensors on a vector space In this Appendix, we gather mathematical definitions and results pertaining to tensors. The purpose is mostly to introduce the modern, geometrical view on tensors,

More information

α = u v. In other words, Orthogonal Projection

α = u v. In other words, Orthogonal Projection Orthogonal Projection Given any nonzero vector v, it is possible to decompose an arbitrary vector u into a component that points in the direction of v and one that points in a direction orthogonal to v

More information

Classification of Cartan matrices

Classification of Cartan matrices Chapter 7 Classification of Cartan matrices In this chapter we describe a classification of generalised Cartan matrices This classification can be compared as the rough classification of varieties in terms

More information

MATH 304 Linear Algebra Lecture 18: Rank and nullity of a matrix.

MATH 304 Linear Algebra Lecture 18: Rank and nullity of a matrix. MATH 304 Linear Algebra Lecture 18: Rank and nullity of a matrix. Nullspace Let A = (a ij ) be an m n matrix. Definition. The nullspace of the matrix A, denoted N(A), is the set of all n-dimensional column

More information

1 Introduction to Matrices

1 Introduction to Matrices 1 Introduction to Matrices In this section, important definitions and results from matrix algebra that are useful in regression analysis are introduced. While all statements below regarding the columns

More information

MATH 304 Linear Algebra Lecture 9: Subspaces of vector spaces (continued). Span. Spanning set.

MATH 304 Linear Algebra Lecture 9: Subspaces of vector spaces (continued). Span. Spanning set. MATH 304 Linear Algebra Lecture 9: Subspaces of vector spaces (continued). Span. Spanning set. Vector space A vector space is a set V equipped with two operations, addition V V (x,y) x + y V and scalar

More information

Matrix generators for exceptional groups of Lie type

Matrix generators for exceptional groups of Lie type J. Symbolic Computation (2000) 11, 1 000 Matrix generators for exceptional groups of Lie type R. B. HOWLETT, L. J. RYLANDS AND D. E. TAYLOR School of Mathematics and Statistics, University of Sydney, Australia

More information

Recall that two vectors in are perpendicular or orthogonal provided that their dot

Recall that two vectors in are perpendicular or orthogonal provided that their dot Orthogonal Complements and Projections Recall that two vectors in are perpendicular or orthogonal provided that their dot product vanishes That is, if and only if Example 1 The vectors in are orthogonal

More information

Grassmann Algebra in Game Development. Eric Lengyel, PhD Terathon Software

Grassmann Algebra in Game Development. Eric Lengyel, PhD Terathon Software Grassmann Algebra in Game Development Eric Lengyel, PhD Terathon Software Math used in 3D programming Dot / cross products, scalar triple product Planes as 4D vectors Homogeneous coordinates Plücker coordinates

More information

CBE 6333, R. Levicky 1. Tensor Notation.

CBE 6333, R. Levicky 1. Tensor Notation. CBE 6333, R. Levicky 1 Tensor Notation. Engineers and scientists find it useful to have a general terminology to indicate how many directions are associated with a physical quantity such as temperature

More information

Index notation in 3D. 1 Why index notation?

Index notation in 3D. 1 Why index notation? Index notation in 3D 1 Why index notation? Vectors are objects that have properties that are independent of the coordinate system that they are written in. Vector notation is advantageous since it is elegant

More information

NOTES ON LINEAR TRANSFORMATIONS

NOTES ON LINEAR TRANSFORMATIONS NOTES ON LINEAR TRANSFORMATIONS Definition 1. Let V and W be vector spaces. A function T : V W is a linear transformation from V to W if the following two properties hold. i T v + v = T v + T v for all

More information

Introduction to Geometric Algebra Lecture II

Introduction to Geometric Algebra Lecture II Introduction to Geometric Algebra Lecture II Leandro A. F. Fernandes laffernandes@inf.ufrgs.br Manuel M. Oliveira oliveira@inf.ufrgs.br Visgraf - Summer School in Computer Graphics - 2010 CG UFRGS Checkpoint

More information

Chapter 9 Unitary Groups and SU(N)

Chapter 9 Unitary Groups and SU(N) Chapter 9 Unitary Groups and SU(N) The irreducible representations of SO(3) are appropriate for describing the degeneracies of states of quantum mechanical systems which have rotational symmetry in three

More information

Monodromies, Fluxes, and Compact Three-Generation F-theory GUTs

Monodromies, Fluxes, and Compact Three-Generation F-theory GUTs arxiv:0906.4672 CALT-68-2733 Monodromies, Fluxes, and Compact Three-Generation F-theory GUTs arxiv:0906.4672v2 [hep-th] 1 Jul 2009 Joseph Marsano, Natalia Saulina, and Sakura Schäfer-Nameki California

More information

some algebra prelim solutions

some algebra prelim solutions some algebra prelim solutions David Morawski August 19, 2012 Problem (Spring 2008, #5). Show that f(x) = x p x + a is irreducible over F p whenever a F p is not zero. Proof. First, note that f(x) has no

More information

Mathematics Course 111: Algebra I Part IV: Vector Spaces

Mathematics Course 111: Algebra I Part IV: Vector Spaces Mathematics Course 111: Algebra I Part IV: Vector Spaces D. R. Wilkins Academic Year 1996-7 9 Vector Spaces A vector space over some field K is an algebraic structure consisting of a set V on which are

More information

The Matrix Elements of a 3 3 Orthogonal Matrix Revisited

The Matrix Elements of a 3 3 Orthogonal Matrix Revisited Physics 116A Winter 2011 The Matrix Elements of a 3 3 Orthogonal Matrix Revisited 1. Introduction In a class handout entitled, Three-Dimensional Proper and Improper Rotation Matrices, I provided a derivation

More information

A Some Basic Rules of Tensor Calculus

A Some Basic Rules of Tensor Calculus A Some Basic Rules of Tensor Calculus The tensor calculus is a powerful tool for the description of the fundamentals in continuum mechanics and the derivation of the governing equations for applied problems.

More information

Section 6.1 - Inner Products and Norms

Section 6.1 - Inner Products and Norms Section 6.1 - Inner Products and Norms Definition. Let V be a vector space over F {R, C}. An inner product on V is a function that assigns, to every ordered pair of vectors x and y in V, a scalar in F,

More information

Finite dimensional C -algebras

Finite dimensional C -algebras Finite dimensional C -algebras S. Sundar September 14, 2012 Throughout H, K stand for finite dimensional Hilbert spaces. 1 Spectral theorem for self-adjoint opertors Let A B(H) and let {ξ 1, ξ 2,, ξ n

More information

DIMENSIONS OF AFFINE SPRINGER FIBERS FOR SOME GL N SYMMETRIC SPACES

DIMENSIONS OF AFFINE SPRINGER FIBERS FOR SOME GL N SYMMETRIC SPACES DIMENSIONS OF AFFINE SPRINGER FIBERS FOR SOME GL N SYMMETRIC SPACES JASON K.C. POLÁK Abstract. We determine a formula for the dimension of a family of affine Springer fibers associated to a symmetric space

More information

CONTROLLABILITY. Chapter 2. 2.1 Reachable Set and Controllability. Suppose we have a linear system described by the state equation

CONTROLLABILITY. Chapter 2. 2.1 Reachable Set and Controllability. Suppose we have a linear system described by the state equation Chapter 2 CONTROLLABILITY 2 Reachable Set and Controllability Suppose we have a linear system described by the state equation ẋ Ax + Bu (2) x() x Consider the following problem For a given vector x in

More information

ISU Department of Mathematics. Graduate Examination Policies and Procedures

ISU Department of Mathematics. Graduate Examination Policies and Procedures ISU Department of Mathematics Graduate Examination Policies and Procedures There are four primary criteria to be used in evaluating competence on written or oral exams. 1. Knowledge Has the student demonstrated

More information

T ( a i x i ) = a i T (x i ).

T ( a i x i ) = a i T (x i ). Chapter 2 Defn 1. (p. 65) Let V and W be vector spaces (over F ). We call a function T : V W a linear transformation form V to W if, for all x, y V and c F, we have (a) T (x + y) = T (x) + T (y) and (b)

More information

Math 312 Homework 1 Solutions

Math 312 Homework 1 Solutions Math 31 Homework 1 Solutions Last modified: July 15, 01 This homework is due on Thursday, July 1th, 01 at 1:10pm Please turn it in during class, or in my mailbox in the main math office (next to 4W1) Please

More information

BILINEAR FORMS KEITH CONRAD

BILINEAR FORMS KEITH CONRAD BILINEAR FORMS KEITH CONRAD The geometry of R n is controlled algebraically by the dot product. We will abstract the dot product on R n to a bilinear form on a vector space and study algebraic and geometric

More information

IRREDUCIBLE OPERATOR SEMIGROUPS SUCH THAT AB AND BA ARE PROPORTIONAL. 1. Introduction

IRREDUCIBLE OPERATOR SEMIGROUPS SUCH THAT AB AND BA ARE PROPORTIONAL. 1. Introduction IRREDUCIBLE OPERATOR SEMIGROUPS SUCH THAT AB AND BA ARE PROPORTIONAL R. DRNOVŠEK, T. KOŠIR Dedicated to Prof. Heydar Radjavi on the occasion of his seventieth birthday. Abstract. Let S be an irreducible

More information

On the representability of the bi-uniform matroid

On the representability of the bi-uniform matroid On the representability of the bi-uniform matroid Simeon Ball, Carles Padró, Zsuzsa Weiner and Chaoping Xing August 3, 2012 Abstract Every bi-uniform matroid is representable over all sufficiently large

More information

GROUP ALGEBRAS. ANDREI YAFAEV

GROUP ALGEBRAS. ANDREI YAFAEV GROUP ALGEBRAS. ANDREI YAFAEV We will associate a certain algebra to a finite group and prove that it is semisimple. Then we will apply Wedderburn s theory to its study. Definition 0.1. Let G be a finite

More information

Elements of Abstract Group Theory

Elements of Abstract Group Theory Chapter 2 Elements of Abstract Group Theory Mathematics is a game played according to certain simple rules with meaningless marks on paper. David Hilbert The importance of symmetry in physics, and for

More information

Tensor product of vector spaces

Tensor product of vector spaces Tensor product of vector spaces Construction Let V,W be vector spaces over K = R or C. Let F denote the vector space freely generated by the set V W and let N F denote the subspace spanned by the elements

More information

CARTAN S GENERALIZATION OF LIE S THIRD THEOREM

CARTAN S GENERALIZATION OF LIE S THIRD THEOREM CARTAN S GENERALIZATION OF LIE S THIRD THEOREM ROBERT L. BRYANT MATHEMATICAL SCIENCES RESEARCH INSTITUTE JUNE 13, 2011 CRM, MONTREAL In many ways, this talk (and much of the work it reports on) owes its

More information

Semi-Simple Lie Algebras and Their Representations

Semi-Simple Lie Algebras and Their Representations i Semi-Simple Lie Algebras and Their Representations Robert N. Cahn Lawrence Berkeley Laboratory University of California Berkeley, California 1984 THE BENJAMIN/CUMMINGS PUBLISHING COMPANY Advanced Book

More information

Arbitrary Spin Representations in de Sitter from ds/cft with Applications to ds Supergravity

Arbitrary Spin Representations in de Sitter from ds/cft with Applications to ds Supergravity BRX-TH 511 Arbitrary Spin Representations in de Sitter from ds/cft with Applications to ds Supergravity S. Deser and A. Waldron Physics Department, Brandeis University, Waltham, MA 02454, USA deser@brandeis.edu

More information

Chemical group theory for quantum simulation

Chemical group theory for quantum simulation Title JDWhitfield@gmail.com 1/19 Chemical group theory for quantum simulation James Daniel Whitfield U. Ghent September 28, 2015 Title JDWhitfield@gmail.com 2/19 1. Computational chemistry 2. Symmetry

More information

Lecture 2: Essential quantum mechanics

Lecture 2: Essential quantum mechanics Department of Physical Sciences, University of Helsinki http://theory.physics.helsinki.fi/ kvanttilaskenta/ p. 1/46 Quantum information and computing Lecture 2: Essential quantum mechanics Jani-Petri Martikainen

More information

Matrix Differentiation

Matrix Differentiation 1 Introduction Matrix Differentiation ( and some other stuff ) Randal J. Barnes Department of Civil Engineering, University of Minnesota Minneapolis, Minnesota, USA Throughout this presentation I have

More information

Orthogonal Diagonalization of Symmetric Matrices

Orthogonal Diagonalization of Symmetric Matrices MATH10212 Linear Algebra Brief lecture notes 57 Gram Schmidt Process enables us to find an orthogonal basis of a subspace. Let u 1,..., u k be a basis of a subspace V of R n. We begin the process of finding

More information

Gauge theories and the standard model of elementary particle physics

Gauge theories and the standard model of elementary particle physics Gauge theories and the standard model of elementary particle physics Mark Hamilton 21st July 2014 1 / 35 Table of contents 1 The standard model 2 3 2 / 35 The standard model The standard model is the most

More information

OPERS. The geometric Langlands correspondence conjectures a correspondence

OPERS. The geometric Langlands correspondence conjectures a correspondence OPERS JONATHAN BARLEV The geometric Langlands correspondence conjectures a correspondence Qcoloc-sysL Gx)) = D-modBun G )) on the level of derived categories. As remarked previously in theseminar,toeach

More information

Continuous Groups, Lie Groups, and Lie Algebras

Continuous Groups, Lie Groups, and Lie Algebras Chapter 7 Continuous Groups, Lie Groups, and Lie Algebras Zeno was concerned with three problems... These are the problem of the infinitesimal, the infinite, and continuity... Bertrand Russell The groups

More information

The basic unit in matrix algebra is a matrix, generally expressed as: a 11 a 12. a 13 A = a 21 a 22 a 23

The basic unit in matrix algebra is a matrix, generally expressed as: a 11 a 12. a 13 A = a 21 a 22 a 23 (copyright by Scott M Lynch, February 2003) Brief Matrix Algebra Review (Soc 504) Matrix algebra is a form of mathematics that allows compact notation for, and mathematical manipulation of, high-dimensional

More information

arxiv:quant-ph/0603009v3 8 Sep 2006

arxiv:quant-ph/0603009v3 8 Sep 2006 Deciding universality of quantum gates arxiv:quant-ph/0603009v3 8 Sep 2006 Gábor Ivanyos February 1, 2008 Abstract We say that collection of n-qudit gates is universal if there exists N 0 n such that for

More information

Torgerson s Classical MDS derivation: 1: Determining Coordinates from Euclidean Distances

Torgerson s Classical MDS derivation: 1: Determining Coordinates from Euclidean Distances Torgerson s Classical MDS derivation: 1: Determining Coordinates from Euclidean Distances It is possible to construct a matrix X of Cartesian coordinates of points in Euclidean space when we know the Euclidean

More information

Quantum Mechanics and Representation Theory

Quantum Mechanics and Representation Theory Quantum Mechanics and Representation Theory Peter Woit Columbia University Texas Tech, November 21 2013 Peter Woit (Columbia University) Quantum Mechanics and Representation Theory November 2013 1 / 30

More information

MICROLOCAL ANALYSIS OF THE BOCHNER-MARTINELLI INTEGRAL

MICROLOCAL ANALYSIS OF THE BOCHNER-MARTINELLI INTEGRAL PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY Volume 00, Number 0, Pages 000 000 S 0002-9939(XX)0000-0 MICROLOCAL ANALYSIS OF THE BOCHNER-MARTINELLI INTEGRAL NIKOLAI TARKHANOV AND NIKOLAI VASILEVSKI

More information

Nilpotent Lie and Leibniz Algebras

Nilpotent Lie and Leibniz Algebras This article was downloaded by: [North Carolina State University] On: 03 March 2014, At: 08:05 Publisher: Taylor & Francis Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered

More information

Quantum Field Theory and Representation Theory

Quantum Field Theory and Representation Theory Quantum Field Theory and Representation Theory Peter Woit woit@math.columbia.edu Department of Mathematics Columbia University Quantum Field Theory and Representation Theory p.1 Outline of the talk Quantum

More information

( ) which must be a vector

( ) which must be a vector MATH 37 Linear Transformations from Rn to Rm Dr. Neal, WKU Let T : R n R m be a function which maps vectors from R n to R m. Then T is called a linear transformation if the following two properties are

More information

Topologically Massive Gravity with a Cosmological Constant

Topologically Massive Gravity with a Cosmological Constant Topologically Massive Gravity with a Cosmological Constant Derek K. Wise Joint work with S. Carlip, S. Deser, A. Waldron Details and references at arxiv:0803.3998 [hep-th] (or for the short story, 0807.0486,

More information

Kindergarten Math Content 1

Kindergarten Math Content 1 Kindergarten Math Content 1 Number and Operations: Whole Numbers Counting and the Number System A main focus in Kindergarten is counting, which is the basis for understanding the number system and for

More information

5.04 Principles of Inorganic Chemistry II

5.04 Principles of Inorganic Chemistry II MIT OpenourseWare http://ocw.mit.edu 5.4 Principles of Inorganic hemistry II Fall 8 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. 5.4, Principles of

More information

Special Theory of Relativity

Special Theory of Relativity June 1, 2010 1 1 J.D.Jackson, Classical Electrodynamics, 3rd Edition, Chapter 11 Introduction Einstein s theory of special relativity is based on the assumption (which might be a deep-rooted superstition

More information

13 MATH FACTS 101. 2 a = 1. 7. The elements of a vector have a graphical interpretation, which is particularly easy to see in two or three dimensions.

13 MATH FACTS 101. 2 a = 1. 7. The elements of a vector have a graphical interpretation, which is particularly easy to see in two or three dimensions. 3 MATH FACTS 0 3 MATH FACTS 3. Vectors 3.. Definition We use the overhead arrow to denote a column vector, i.e., a linear segment with a direction. For example, in three-space, we write a vector in terms

More information

The three-dimensional rotations are defined as the linear transformations of the vector x = (x 1, x 2, x 3 ) x i = R ij x j, (2.1) x 2 = x 2. (2.

The three-dimensional rotations are defined as the linear transformations of the vector x = (x 1, x 2, x 3 ) x i = R ij x j, (2.1) x 2 = x 2. (2. 2 The rotation group In this Chapter we give a short account of the main properties of the threedimensional rotation group SO(3) and of its universal covering group SU(2). The group SO(3) is an important

More information

is in plane V. However, it may be more convenient to introduce a plane coordinate system in V.

is in plane V. However, it may be more convenient to introduce a plane coordinate system in V. .4 COORDINATES EXAMPLE Let V be the plane in R with equation x +2x 2 +x 0, a two-dimensional subspace of R. We can describe a vector in this plane by its spatial (D)coordinates; for example, vector x 5

More information

Sec 4.1 Vector Spaces and Subspaces

Sec 4.1 Vector Spaces and Subspaces Sec 4. Vector Spaces and Subspaces Motivation Let S be the set of all solutions to the differential equation y + y =. Let T be the set of all 2 3 matrices with real entries. These two sets share many common

More information

MATH 423 Linear Algebra II Lecture 38: Generalized eigenvectors. Jordan canonical form (continued).

MATH 423 Linear Algebra II Lecture 38: Generalized eigenvectors. Jordan canonical form (continued). MATH 423 Linear Algebra II Lecture 38: Generalized eigenvectors Jordan canonical form (continued) Jordan canonical form A Jordan block is a square matrix of the form λ 1 0 0 0 0 λ 1 0 0 0 0 λ 0 0 J = 0

More information

Name: Section Registered In:

Name: Section Registered In: Name: Section Registered In: Math 125 Exam 3 Version 1 April 24, 2006 60 total points possible 1. (5pts) Use Cramer s Rule to solve 3x + 4y = 30 x 2y = 8. Be sure to show enough detail that shows you are

More information

RESULTANT AND DISCRIMINANT OF POLYNOMIALS

RESULTANT AND DISCRIMINANT OF POLYNOMIALS RESULTANT AND DISCRIMINANT OF POLYNOMIALS SVANTE JANSON Abstract. This is a collection of classical results about resultants and discriminants for polynomials, compiled mainly for my own use. All results

More information

Three-generation models in heterotic asymmetric orbifolds

Three-generation models in heterotic asymmetric orbifolds Three-generation models in heterotic asymmetric orbifolds Shogo Kuwakino (Chung Yuan Christian U., Taiwan) Based on arxiv:1304.5621 [hep-th] and 1311.4687 [hep-th] Collaborator : Florian Beye (Nagoya university)

More information

COBORDISM IN ALGEBRA AND TOPOLOGY

COBORDISM IN ALGEBRA AND TOPOLOGY COBORDISM IN ALGEBRA AND TOPOLOGY ANDREW RANICKI (Edinburgh) http://www.maths.ed.ac.uk/ aar Dedicated to Robert Switzer and Desmond Sheiham Göttingen, 13th May, 2005 1 Cobordism There is a cobordism equivalence

More information

Linear Algebra Review. Vectors

Linear Algebra Review. Vectors Linear Algebra Review By Tim K. Marks UCSD Borrows heavily from: Jana Kosecka kosecka@cs.gmu.edu http://cs.gmu.edu/~kosecka/cs682.html Virginia de Sa Cogsci 8F Linear Algebra review UCSD Vectors The length

More information

1 0 5 3 3 A = 0 0 0 1 3 0 0 0 0 0 0 0 0 0 0

1 0 5 3 3 A = 0 0 0 1 3 0 0 0 0 0 0 0 0 0 0 Solutions: Assignment 4.. Find the redundant column vectors of the given matrix A by inspection. Then find a basis of the image of A and a basis of the kernel of A. 5 A The second and third columns are

More information

LECTURE III. Bi-Hamiltonian chains and it projections. Maciej B laszak. Poznań University, Poland

LECTURE III. Bi-Hamiltonian chains and it projections. Maciej B laszak. Poznań University, Poland LECTURE III Bi-Hamiltonian chains and it projections Maciej B laszak Poznań University, Poland Maciej B laszak (Poznań University, Poland) LECTURE III 1 / 18 Bi-Hamiltonian chains Let (M, Π) be a Poisson

More information

Hermitian Clifford Analysis and Its Connections with Representation Theory

Hermitian Clifford Analysis and Its Connections with Representation Theory Hermitian Clifford Analysis and Its Connections with Representation Theory arxiv:1604.08647v1 [math.rt] 28 Apr 2016 Stuart Shirrell 1 and Raymond Walter 2,3 1 IDinsight, Patna, Bihar, India 2 Department

More information

arxiv:1306.1358v1 [cs.cv] 6 Jun 2013

arxiv:1306.1358v1 [cs.cv] 6 Jun 2013 Geometric operations implemented by conformal geometric algebra neural nodes Eckhard HITZER University of Fukui Abstract: Geometric algebra is an optimal frame work for calculating with vectors. The geometric

More information

2.1: MATRIX OPERATIONS

2.1: MATRIX OPERATIONS .: MATRIX OPERATIONS What are diagonal entries and the main diagonal of a matrix? What is a diagonal matrix? When are matrices equal? Scalar Multiplication 45 Matrix Addition Theorem (pg 0) Let A, B, and

More information

MA 242 LINEAR ALGEBRA C1, Solutions to Second Midterm Exam

MA 242 LINEAR ALGEBRA C1, Solutions to Second Midterm Exam MA 4 LINEAR ALGEBRA C, Solutions to Second Midterm Exam Prof. Nikola Popovic, November 9, 6, 9:3am - :5am Problem (5 points). Let the matrix A be given by 5 6 5 4 5 (a) Find the inverse A of A, if it exists.

More information

GROUPS ACTING ON A SET

GROUPS ACTING ON A SET GROUPS ACTING ON A SET MATH 435 SPRING 2012 NOTES FROM FEBRUARY 27TH, 2012 1. Left group actions Definition 1.1. Suppose that G is a group and S is a set. A left (group) action of G on S is a rule for

More information

Communication on the Grassmann Manifold: A Geometric Approach to the Noncoherent Multiple-Antenna Channel

Communication on the Grassmann Manifold: A Geometric Approach to the Noncoherent Multiple-Antenna Channel IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 48, NO. 2, FEBRUARY 2002 359 Communication on the Grassmann Manifold: A Geometric Approach to the Noncoherent Multiple-Antenna Channel Lizhong Zheng, Student

More information

Let H and J be as in the above lemma. The result of the lemma shows that the integral

Let H and J be as in the above lemma. The result of the lemma shows that the integral Let and be as in the above lemma. The result of the lemma shows that the integral ( f(x, y)dy) dx is well defined; we denote it by f(x, y)dydx. By symmetry, also the integral ( f(x, y)dx) dy is well defined;

More information

The Uncontroversial Mathematics Behind Garrett Lisi s Controversial Theory of Everything In Memory of My Grandmother Vilicia Auguste (1914-2008)

The Uncontroversial Mathematics Behind Garrett Lisi s Controversial Theory of Everything In Memory of My Grandmother Vilicia Auguste (1914-2008) The Uncontroversial Mathematics Behind Garrett Lisi s Controversial Theory of Everything In Memory of My Grandmother Vilicia Auguste (1914-2008) Alfred G. Noël Mathematics Department The University of

More information

1 Introduction. 2 Matrices: Definition. Matrix Algebra. Hervé Abdi Lynne J. Williams

1 Introduction. 2 Matrices: Definition. Matrix Algebra. Hervé Abdi Lynne J. Williams In Neil Salkind (Ed.), Encyclopedia of Research Design. Thousand Oaks, CA: Sage. 00 Matrix Algebra Hervé Abdi Lynne J. Williams Introduction Sylvester developed the modern concept of matrices in the 9th

More information

Fiber Bundles and Connections. Norbert Poncin

Fiber Bundles and Connections. Norbert Poncin Fiber Bundles and Connections Norbert Poncin 2012 1 N. Poncin, Fiber bundles and connections 2 Contents 1 Introduction 4 2 Fiber bundles 5 2.1 Definition and first remarks........................ 5 2.2

More information

4. MATRICES Matrices

4. MATRICES Matrices 4. MATRICES 170 4. Matrices 4.1. Definitions. Definition 4.1.1. A matrix is a rectangular array of numbers. A matrix with m rows and n columns is said to have dimension m n and may be represented as follows:

More information

Contents. Goldstone Bosons in 3He-A Soft Modes Dynamics and Lie Algebra of Group G:

Contents. Goldstone Bosons in 3He-A Soft Modes Dynamics and Lie Algebra of Group G: ... Vlll Contents 3. Textures and Supercurrents in Superfluid Phases of 3He 3.1. Textures, Gradient Energy and Rigidity 3.2. Why Superfuids are Superfluid 3.3. Superfluidity and Response to a Transverse

More information

r(x + y) =rx + ry; (r + s)x = rx + sx; r(sx) =(rs)x; 1x = x

r(x + y) =rx + ry; (r + s)x = rx + sx; r(sx) =(rs)x; 1x = x Chapter 4 Module Fundamentals 4.1 Modules and Algebras 4.1.1 Definitions and Comments A vector space M over a field R is a set of objects called vectors, which can be added, subtracted and multiplied by

More information

Effective actions for fluids from holography

Effective actions for fluids from holography Effective actions for fluids from holography Based on: arxiv:1405.4243 and arxiv:1504.07616 with Michal Heller and Natalia Pinzani Fokeeva Jan de Boer, Amsterdam Benasque, July 21, 2015 (see also arxiv:1504.07611

More information

ABSTRACT ALGEBRA. Romyar Sharifi

ABSTRACT ALGEBRA. Romyar Sharifi ABSTRACT ALGEBRA Romyar Sharifi Contents Introduction 7 Part 1. A First Course 11 Chapter 1. Set theory 13 1.1. Sets and functions 13 1.2. Relations 15 1.3. Binary operations 19 Chapter 2. Group theory

More information

Nonzero degree tangential maps between dual symmetric spaces

Nonzero degree tangential maps between dual symmetric spaces ISSN 1472-2739 (on-line) 1472-2747 (printed) 709 Algebraic & Geometric Topology Volume 1 (2001) 709 718 Published: 30 November 2001 ATG Nonzero degree tangential maps between dual symmetric spaces Boris

More information

LINEAR ALGEBRA. September 23, 2010

LINEAR ALGEBRA. September 23, 2010 LINEAR ALGEBRA September 3, 00 Contents 0. LU-decomposition.................................... 0. Inverses and Transposes................................. 0.3 Column Spaces and NullSpaces.............................

More information

Linear Algebra Done Wrong. Sergei Treil. Department of Mathematics, Brown University

Linear Algebra Done Wrong. Sergei Treil. Department of Mathematics, Brown University Linear Algebra Done Wrong Sergei Treil Department of Mathematics, Brown University Copyright c Sergei Treil, 2004, 2009, 2011, 2014 Preface The title of the book sounds a bit mysterious. Why should anyone

More information

Extensions of the Partial Least Squares approach for the analysis of biomolecular interactions. Nina Kirschbaum

Extensions of the Partial Least Squares approach for the analysis of biomolecular interactions. Nina Kirschbaum Dissertation am Fachbereich Statistik der Universität Dortmund Extensions of the Partial Least Squares approach for the analysis of biomolecular interactions Nina Kirschbaum Erstgutachter: Prof. Dr. W.

More information

Inner product. Definition of inner product

Inner product. Definition of inner product Math 20F Linear Algebra Lecture 25 1 Inner product Review: Definition of inner product. Slide 1 Norm and distance. Orthogonal vectors. Orthogonal complement. Orthogonal basis. Definition of inner product

More information

Schemes for Deterministic Polynomial Factoring

Schemes for Deterministic Polynomial Factoring Schemes for Deterministic Polynomial Factoring Gábor Ivanyos 1 Marek Karpinski 2 Nitin Saxena 3 1 Computer and Automation Research Institute, Budapest 2 Dept. of Computer Science, University of Bonn 3

More information

9.4. The Scalar Product. Introduction. Prerequisites. Learning Style. Learning Outcomes

9.4. The Scalar Product. Introduction. Prerequisites. Learning Style. Learning Outcomes The Scalar Product 9.4 Introduction There are two kinds of multiplication involving vectors. The first is known as the scalar product or dot product. This is so-called because when the scalar product of

More information

Francesco Sorrentino Department of Mechanical Engineering

Francesco Sorrentino Department of Mechanical Engineering Master stability function approaches to analyze stability of the synchronous evolution for hypernetworks and of synchronized clusters for networks with symmetries Francesco Sorrentino Department of Mechanical

More information

MATH 304 Linear Algebra Lecture 20: Inner product spaces. Orthogonal sets.

MATH 304 Linear Algebra Lecture 20: Inner product spaces. Orthogonal sets. MATH 304 Linear Algebra Lecture 20: Inner product spaces. Orthogonal sets. Norm The notion of norm generalizes the notion of length of a vector in R n. Definition. Let V be a vector space. A function α

More information

BANACH AND HILBERT SPACE REVIEW

BANACH AND HILBERT SPACE REVIEW BANACH AND HILBET SPACE EVIEW CHISTOPHE HEIL These notes will briefly review some basic concepts related to the theory of Banach and Hilbert spaces. We are not trying to give a complete development, but

More information

Applied Linear Algebra I Review page 1

Applied Linear Algebra I Review page 1 Applied Linear Algebra Review 1 I. Determinants A. Definition of a determinant 1. Using sum a. Permutations i. Sign of a permutation ii. Cycle 2. Uniqueness of the determinant function in terms of properties

More information

Introduction to Matrix Algebra I

Introduction to Matrix Algebra I Appendix A Introduction to Matrix Algebra I Today we will begin the course with a discussion of matrix algebra. Why are we studying this? We will use matrix algebra to derive the linear regression model

More information

Introduction to Matrix Algebra

Introduction to Matrix Algebra Psychology 7291: Multivariate Statistics (Carey) 8/27/98 Matrix Algebra - 1 Introduction to Matrix Algebra Definitions: A matrix is a collection of numbers ordered by rows and columns. It is customary

More information

The Singular Value Decomposition in Symmetric (Löwdin) Orthogonalization and Data Compression

The Singular Value Decomposition in Symmetric (Löwdin) Orthogonalization and Data Compression The Singular Value Decomposition in Symmetric (Löwdin) Orthogonalization and Data Compression The SVD is the most generally applicable of the orthogonal-diagonal-orthogonal type matrix decompositions Every

More information