Gauged supergravity and E 10


 Leo Riley
 1 years ago
 Views:
Transcription
1 Gauged supergravity and E 10 Jakob Palmkvist AlbertEinsteinInstitut in collaboration with Eric Bergshoeff, Olaf Hohm, Axel Kleinschmidt, Hermann Nicolai and Teake Nutma arxiv: JHEP01(2009)020
2 Threedimensional maximal supergravity is globally invariant under E 8 (Julia 1983)
3 Threedimensional maximal supergravity is globally invariant under E 8 and SL(2, R). (Julia 1983)
4 Threedimensional maximal supergravity is globally invariant under E 8 and SL(2, R). Can we unify these symmetries into E 10? (Julia 1983) (Damour, Henneaux, Nicolai 2002)
5 Threedimensional maximal supergravity is globally invariant under E 8 and SL(2, R). Can we unify these symmetries into E 10? What if we promote a subgroup of E 8 to a local symmetry? (Julia 1983) (Damour, Henneaux, Nicolai 2002)
6 Outline
7 Outline Gauged maximal supergravity in three dimensions
8 Outline Gauged maximal supergravity in three dimensions The E 10 /K(E 10 ) coset model
9 Outline Gauged maximal supergravity in three dimensions The E 10 /K(E 10 ) coset model Comparison between the two theories
10 Consider the bosonic sector of maximal (N = 16) supergravity in three dimensions:
11 Consider the bosonic sector of maximal (N = 16) supergravity in three dimensions: Pure gravity does not propagate
12 Consider the bosonic sector of maximal (N = 16) supergravity in three dimensions: Pure gravity does not propagate Vectors are dual to scalars
13 Consider the bosonic sector of maximal (N = 16) supergravity in three dimensions: Pure gravity does not propagate Vectors are dual to scalars All propagating degrees of freedom of supergravity are scalars.
14 Consider the bosonic sector of maximal (N = 16) supergravity in three dimensions: L = 1 4 er ηαβ η AB P α A P β B α, β = 0, 1, 2 A, B = 1, 2,..., 248
15 The MaurerCartan form of the gravity sector decomposes into its symmetric and antisymmetric parts: (e 1 µ e) αβ = P µ(αβ) + Q µ[αβ]
16 The MaurerCartan form of the gravity sector decomposes into its symmetric and antisymmetric parts: (e 1 µ e) αβ = P µ(αβ) + Q µ[αβ] The MaurerCartan form of the scalar sector decomposes into a spinor and the adjoint of SO(16): (E 1 µ E) A P µ A, Q µ IJ
17 The MaurerCartan form of the scalar sector decomposes into a spinor and the adjoint of SO(16): (E 1 µ E) A P µ A, Q µ IJ
18 The MaurerCartan form of the scalar sector decomposes into a spinor and the adjoint of SO(16): (E 1 µ E) A P µ A, Q µ IJ
19 The MaurerCartan form of the scalar sector decomposes into a spinor and the adjoint of SO(16): (E 1 µ E) A P µ A, Q µ IJ A, B,... = 1, 2,..., 248 A, B,... = 1, 2,..., 128 I, J,... = 1, 2,..., 16
20 The scalar sector is described by an element E of the coset E 8 /SO(16), and is invariant under the transformations E(x) ge(x)h(x) g E 8 h(x) SO(16)
21 Gauging the theory: Promote a subgroup G E 8 to a local symmetry E(x) g(x)e(x)h(x) g(x) G E 8 h(x) SO(16)
22 Gauging the theory: Promote a subgroup G E 8 to a local symmetry E(x) g(x)e(x)h(x) g(x) G E 8 h(x) SO(16) This is done by dualizing the scalars to vectors A µ A.
23 Gauging the theory: Replace partial derivatives with gauge covariant ones P µ A = (E 1 µ E) A (E 1 D µ E) A
24 Gauging the theory: Replace partial derivatives with gauge covariant ones P µ A = (E 1 µ E) A (E 1 D µ E) A Add a potential term L V
25 Gauging the theory: Replace partial derivatives with gauge covariant ones P µ A = (E 1 µ E) A (E 1 D µ E) A Add a potential term L V Add a ChernSimons term L CS
26 We can keep an E 8 covariant notation by using the embedding tensor Θ MN, the projection of the Killing form η MN onto the gauge group G E 8.
27 We can keep an E 8 covariant notation by using the embedding tensor Θ MN, the projection of the Killing form η MN onto the gauge group G E 8. Thus it has two symmetric E 8 indices.
28 We can keep an E 8 covariant notation by using the embedding tensor Θ MN, the projection of the Killing form η MN onto the gauge group G E 8. Thus it has two symmetric E 8 indices. The symmetric product of two adjoint E 8 representations:
29 We can keep an E 8 covariant notation by using the embedding tensor Θ MN, the projection of the Killing form η MN onto the gauge group G E 8. Thus it has two symmetric E 8 indices. The symmetric product of two adjoint E 8 representations: ( ) + =
30 We can keep an E 8 covariant notation by using the embedding tensor Θ MN, the projection of the Killing form η MN onto the gauge group G E 8. Thus it has two symmetric E 8 indices. The condition for supersymmetry: Θ MN (Nicolai, Samtleben 2001)
31 Θ MN
32 We divide the embedding tensor into its irreducible parts: Θ MN Θ MN = η MN θ + Θ MN
33 We divide the embedding tensor into its irreducible parts: θ Θ MN
34 We divide the embedding tensor into its irreducible parts: θ 1 Θ MN 3875
35 We divide the embedding tensor into its irreducible parts: θ 1 Θ MN 3875
36 We divide the embedding tensor into its irreducible parts: θ 1 Θ MN 3875 The embedding tensor in flat indices: T AB (x) = E A M (x)e B N (x) Θ MN
37 L V = eg2 112 (3 T AB TAB + T A IJ TA IJ T IJ KL TIJ KL ) + 2eg 2 θ 2
38 L V = eg2 112 (3 T AB TAB + T A IJ TA IJ T IJ KL TIJ KL ) + 2eg 2 θ 2 L CS = g 4 εµνρ Θ MN A µ M ν A ρ N g2 12 εµνρ Θ MN Θ PQ f MP RA µ N A ν Q A ρ R
39 L V = eg2 112 (3 T AB TAB + T A IJ TA IJ T IJ KL TIJ KL ) + 2eg 2 θ 2 L CS = g 4 εµνρ Θ MN A µ M ν A ρ N g2 12 εµνρ Θ MN Θ PQ f MP RA µ N A ν Q A ρ R E 1 D µ E = E 1 µ E + ga µ M Θ MN (E 1 t N E)
40 To compare with the E 10 model, we must choose...
41 To compare with the E 10 model, we must choose... An ADMlike split of the dreibein: N 0 0 e µ α = 0 0 e m a
42 To compare with the E 10 model, we must choose... An ADMlike split of the dreibein: N 0 0 e µ α = 0 0 e m a A temporal gauge for the vector fields: A t M = 0
43 The Lie algebra of SL(2, R): [h, e] = 2e [h, f] = 2f [e, f] = h
44 The Lie algebra of SL(2, R): [h, e] = 2e [h, f] = 2f [e, f] = h Matrix realization: e = ( ) f = ( ) h = ( )
45 A KacMoody algebra g of rank r is generated by r copies of SL(2, R), modulo the ChevalleySerre relations:
46 A KacMoody algebra g of rank r is generated by r copies of SL(2, R), modulo the ChevalleySerre relations:
47 A KacMoody algebra g of rank r is generated by r copies of SL(2, R), modulo the ChevalleySerre relations: i j i j
48 A KacMoody algebra g of rank r is generated by r copies of SL(2, R), modulo the ChevalleySerre relations: i j i j [h i, e j ] = e j [h i, f j ] = f j [e i, e j ] 0 [f i, f j ] 0 [h i, e j ] = 0 [h i, f j ] = 0 [e i, e j ] = 0 [f i, f j ] = 0 [h i, h j ] = [e i, f j ] = 0
49 A KacMoody algebra g of rank r is generated by r copies of SL(2, R), modulo the ChevalleySerre relations: i j i j [h i, e j ] = e j [h i, f j ] = f j [[e i, e j ], e j ] = 0 [[f i, f j ], f j ] = 0 [h i, e j ] = 0 [h i, f j ] = 0 [e i, e j ] = 0 [f i, f j ] = 0 [h i, h j ] = [e i, f j ] = 0
50 The KacMoody algebra g is spanned by all multiple (k 1) commutators [ [[e i1, e i2 ], e i3 ],..., e ik ] [ [[f i1, f i2 ], f i3 ],..., f ik ] together with the r Cartan elements h i.
51 For any i = 1, 2,..., r, we can write g = + g 1 + g 0 + g 1 + where each subspace g l is spanned by all multiple commutators at level l = number of e i number of f i.
52 For any i = 1, 2,..., r, we can write g = + g 1 + g 0 + g 1 + where each subspace g l is spanned by all multiple commutators at level l = number of e i number of f i. This gives a grading: [g m, g n ] g m+n
53 For any i = 1, 2,..., r, we can write g = + g 1 + g 0 + g 1 + where each subspace g l is spanned by all multiple commutators at level l = number of e i number of f i. This gives a grading: [g m, g n ] g m+n The adjoint representation of g decomposes into representations of g 0.
54 The maximal compact subalgebra K(g) of a KacMoody algebra g is invariant under the Chevalley involution
55 The maximal compact subalgebra K(g) of a KacMoody algebra g is invariant under the Chevalley involution ω(e i ) = f i ω(f i ) = e i ω(h i ) = h i
56 The maximal compact subalgebra K(g) of a KacMoody algebra g is invariant under the Chevalley involution ω(e i ) = f i ω(f i ) = e i ω(h i ) = h i It is generated by all elements e i f i modulo the ChevalleySerre relations.
57 Consider the E 10 /K(E 10 ) coset model L = n(t) 1 P(t) P(t) where Q K(E 10 ) and P Q = 0.
58 Consider the E 10 /K(E 10 ) coset model L = n(t) 1 P(t) P(t) where Q K(E 10 ) and P Q = 0. The local K(E 10 ) invariance makes it possible to choose the Borel gauge:
59 Consider the E 10 /K(E 10 ) coset model L = n(t) 1 P(t) P(t) where Q K(E 10 ) and P Q = 0. The local K(E 10 ) invariance makes it possible to choose the Borel gauge: P + Q g 0 + g 1 + g 2 +
60 Level decomposition of E 10 under SL(2, R) E 8 up to level l = 2:
61 Level decomposition of E 10 under SL(2, R) E 8 up to level l = 2: Level SL(2, R) E 8 Components l representation of P + Q 0 (1 3, 1) P ab, Q ab (1, 248) P A, Q IJ 1 (2, 248) P a A 2 (1, 1) P (1, 3875) P AB (3, 248) P ab A
62 Level decomposition of E 10 under SL(2, R) E 8 up to level l = 2: Level SL(2, R) E 8 Components l representation of P + Q 0 (1 3, 1) P ab, Q ab (1, 248) P A, Q IJ 1 (2, 248) P a A 2 (1, 1) P (1, 3875) P AB
63 P ab P A P a A Q ab Q IJ P P AB
64 P ab P A Q ab Q IJ P a A P a IJ P P AB
65 P ab P A Q ab Q IJ P a A P a IJ P P AB
66 The dictionary of the E 10 /supergravity correspondence: P ab (t) P ab (t, x 0 ) Q ab (t) Q ab (t, x 0 ) P A (t) P t A (t, x 0 ) Q IJ (t) Q t IJ (t, x 0 ) P a A (t) Nε ab P b A (t, x 0 ) P a IJ (t) Nε ab Q b IJ (t, x 0 ) P (t) Ngθ(t, x 0 ) P AB (t) 1 28 Ng T AB (t, x 0 )
67 With this identification, the equations of motion coincide, up to...
68 With this identification, the equations of motion coincide, up to... The gauge choices on both sides
69 With this identification, the equations of motion coincide, up to... The gauge choices on both sides Higher order spatial derivatives
70 With this identification, the equations of motion coincide, up to... The gauge choices on both sides Higher order spatial derivatives Higher levels in the decomposition
71 With this identification, the equations of motion coincide, up to... The gauge choices on both sides Higher order spatial derivatives Higher levels in the decomposition Some other mismatches...
72 Open questions:
73 Open questions: No interpretation of P ab A
74 Open questions: No interpretation of P ab A Second order spatial gradient? Trombone gauging?
75 Open questions: No interpretation of P ab A Second order spatial gradient? Trombone gauging? What about the higher levels?
76 Open questions: No interpretation of P ab A Second order spatial gradient? Trombone gauging? What about the higher levels? How the reconcile the Killing form with the indefinite potential?
77 Open questions: No interpretation of P ab A Second order spatial gradient? Trombone gauging? What about the higher levels? How the reconcile the Killing form with the indefinite potential? To be continued...
78 Thank you!
Group Theory. 1 Cartan Subalgebra and the Roots. November 23, 2011. 1.1 Cartan Subalgebra. 1.2 Root system
Group Theory November 23, 2011 1 Cartan Subalgebra and the Roots 1.1 Cartan Subalgebra Let G be the Lie algebra, if h G it is called a subalgebra of G. Now we seek a basis in which [x, T a ] = ζ a T a
More informationStructure of the Root Spaces for Simple Lie Algebras
Structure of the Root Spaces for Simple Lie Algebras I. Introduction A Cartan subalgebra, H, of a Lie algebra, G, is a subalgebra, H G, such that a. H is nilpotent, i.e., there is some n such that (H)
More informationLecture 18  Clifford Algebras and Spin groups
Lecture 18  Clifford Algebras and Spin groups April 5, 2013 Reference: Lawson and Michelsohn, Spin Geometry. 1 Universal Property If V is a vector space over R or C, let q be any quadratic form, meaning
More informationOn Bhargava s representations and Vinberg s invariant theory
On Bhargava s representations and Vinberg s invariant theory Benedict H. Gross Department of Mathematics, Harvard University Cambridge, MA 02138 gross@math.harvard.edu January, 2011 1 Introduction Manjul
More informationA Primer on Index Notation
A Primer on John Crimaldi August 28, 2006 1. Index versus Index notation (a.k.a. Cartesian notation) is a powerful tool for manipulating multidimensional equations. However, there are times when the more
More informationTensors on a vector space
APPENDIX B Tensors on a vector space In this Appendix, we gather mathematical definitions and results pertaining to tensors. The purpose is mostly to introduce the modern, geometrical view on tensors,
More informationα = u v. In other words, Orthogonal Projection
Orthogonal Projection Given any nonzero vector v, it is possible to decompose an arbitrary vector u into a component that points in the direction of v and one that points in a direction orthogonal to v
More informationClassification of Cartan matrices
Chapter 7 Classification of Cartan matrices In this chapter we describe a classification of generalised Cartan matrices This classification can be compared as the rough classification of varieties in terms
More informationMATH 304 Linear Algebra Lecture 18: Rank and nullity of a matrix.
MATH 304 Linear Algebra Lecture 18: Rank and nullity of a matrix. Nullspace Let A = (a ij ) be an m n matrix. Definition. The nullspace of the matrix A, denoted N(A), is the set of all ndimensional column
More information1 Introduction to Matrices
1 Introduction to Matrices In this section, important definitions and results from matrix algebra that are useful in regression analysis are introduced. While all statements below regarding the columns
More informationMATH 304 Linear Algebra Lecture 9: Subspaces of vector spaces (continued). Span. Spanning set.
MATH 304 Linear Algebra Lecture 9: Subspaces of vector spaces (continued). Span. Spanning set. Vector space A vector space is a set V equipped with two operations, addition V V (x,y) x + y V and scalar
More informationMatrix generators for exceptional groups of Lie type
J. Symbolic Computation (2000) 11, 1 000 Matrix generators for exceptional groups of Lie type R. B. HOWLETT, L. J. RYLANDS AND D. E. TAYLOR School of Mathematics and Statistics, University of Sydney, Australia
More informationRecall that two vectors in are perpendicular or orthogonal provided that their dot
Orthogonal Complements and Projections Recall that two vectors in are perpendicular or orthogonal provided that their dot product vanishes That is, if and only if Example 1 The vectors in are orthogonal
More informationGrassmann Algebra in Game Development. Eric Lengyel, PhD Terathon Software
Grassmann Algebra in Game Development Eric Lengyel, PhD Terathon Software Math used in 3D programming Dot / cross products, scalar triple product Planes as 4D vectors Homogeneous coordinates Plücker coordinates
More informationCBE 6333, R. Levicky 1. Tensor Notation.
CBE 6333, R. Levicky 1 Tensor Notation. Engineers and scientists find it useful to have a general terminology to indicate how many directions are associated with a physical quantity such as temperature
More informationIndex notation in 3D. 1 Why index notation?
Index notation in 3D 1 Why index notation? Vectors are objects that have properties that are independent of the coordinate system that they are written in. Vector notation is advantageous since it is elegant
More informationNOTES ON LINEAR TRANSFORMATIONS
NOTES ON LINEAR TRANSFORMATIONS Definition 1. Let V and W be vector spaces. A function T : V W is a linear transformation from V to W if the following two properties hold. i T v + v = T v + T v for all
More informationIntroduction to Geometric Algebra Lecture II
Introduction to Geometric Algebra Lecture II Leandro A. F. Fernandes laffernandes@inf.ufrgs.br Manuel M. Oliveira oliveira@inf.ufrgs.br Visgraf  Summer School in Computer Graphics  2010 CG UFRGS Checkpoint
More informationChapter 9 Unitary Groups and SU(N)
Chapter 9 Unitary Groups and SU(N) The irreducible representations of SO(3) are appropriate for describing the degeneracies of states of quantum mechanical systems which have rotational symmetry in three
More informationMonodromies, Fluxes, and Compact ThreeGeneration Ftheory GUTs
arxiv:0906.4672 CALT682733 Monodromies, Fluxes, and Compact ThreeGeneration Ftheory GUTs arxiv:0906.4672v2 [hepth] 1 Jul 2009 Joseph Marsano, Natalia Saulina, and Sakura SchäferNameki California
More informationsome algebra prelim solutions
some algebra prelim solutions David Morawski August 19, 2012 Problem (Spring 2008, #5). Show that f(x) = x p x + a is irreducible over F p whenever a F p is not zero. Proof. First, note that f(x) has no
More informationMathematics Course 111: Algebra I Part IV: Vector Spaces
Mathematics Course 111: Algebra I Part IV: Vector Spaces D. R. Wilkins Academic Year 19967 9 Vector Spaces A vector space over some field K is an algebraic structure consisting of a set V on which are
More informationThe Matrix Elements of a 3 3 Orthogonal Matrix Revisited
Physics 116A Winter 2011 The Matrix Elements of a 3 3 Orthogonal Matrix Revisited 1. Introduction In a class handout entitled, ThreeDimensional Proper and Improper Rotation Matrices, I provided a derivation
More informationA Some Basic Rules of Tensor Calculus
A Some Basic Rules of Tensor Calculus The tensor calculus is a powerful tool for the description of the fundamentals in continuum mechanics and the derivation of the governing equations for applied problems.
More informationSection 6.1  Inner Products and Norms
Section 6.1  Inner Products and Norms Definition. Let V be a vector space over F {R, C}. An inner product on V is a function that assigns, to every ordered pair of vectors x and y in V, a scalar in F,
More informationFinite dimensional C algebras
Finite dimensional C algebras S. Sundar September 14, 2012 Throughout H, K stand for finite dimensional Hilbert spaces. 1 Spectral theorem for selfadjoint opertors Let A B(H) and let {ξ 1, ξ 2,, ξ n
More informationDIMENSIONS OF AFFINE SPRINGER FIBERS FOR SOME GL N SYMMETRIC SPACES
DIMENSIONS OF AFFINE SPRINGER FIBERS FOR SOME GL N SYMMETRIC SPACES JASON K.C. POLÁK Abstract. We determine a formula for the dimension of a family of affine Springer fibers associated to a symmetric space
More informationCONTROLLABILITY. Chapter 2. 2.1 Reachable Set and Controllability. Suppose we have a linear system described by the state equation
Chapter 2 CONTROLLABILITY 2 Reachable Set and Controllability Suppose we have a linear system described by the state equation ẋ Ax + Bu (2) x() x Consider the following problem For a given vector x in
More informationISU Department of Mathematics. Graduate Examination Policies and Procedures
ISU Department of Mathematics Graduate Examination Policies and Procedures There are four primary criteria to be used in evaluating competence on written or oral exams. 1. Knowledge Has the student demonstrated
More informationT ( a i x i ) = a i T (x i ).
Chapter 2 Defn 1. (p. 65) Let V and W be vector spaces (over F ). We call a function T : V W a linear transformation form V to W if, for all x, y V and c F, we have (a) T (x + y) = T (x) + T (y) and (b)
More informationMath 312 Homework 1 Solutions
Math 31 Homework 1 Solutions Last modified: July 15, 01 This homework is due on Thursday, July 1th, 01 at 1:10pm Please turn it in during class, or in my mailbox in the main math office (next to 4W1) Please
More informationBILINEAR FORMS KEITH CONRAD
BILINEAR FORMS KEITH CONRAD The geometry of R n is controlled algebraically by the dot product. We will abstract the dot product on R n to a bilinear form on a vector space and study algebraic and geometric
More informationIRREDUCIBLE OPERATOR SEMIGROUPS SUCH THAT AB AND BA ARE PROPORTIONAL. 1. Introduction
IRREDUCIBLE OPERATOR SEMIGROUPS SUCH THAT AB AND BA ARE PROPORTIONAL R. DRNOVŠEK, T. KOŠIR Dedicated to Prof. Heydar Radjavi on the occasion of his seventieth birthday. Abstract. Let S be an irreducible
More informationOn the representability of the biuniform matroid
On the representability of the biuniform matroid Simeon Ball, Carles Padró, Zsuzsa Weiner and Chaoping Xing August 3, 2012 Abstract Every biuniform matroid is representable over all sufficiently large
More informationGROUP ALGEBRAS. ANDREI YAFAEV
GROUP ALGEBRAS. ANDREI YAFAEV We will associate a certain algebra to a finite group and prove that it is semisimple. Then we will apply Wedderburn s theory to its study. Definition 0.1. Let G be a finite
More informationElements of Abstract Group Theory
Chapter 2 Elements of Abstract Group Theory Mathematics is a game played according to certain simple rules with meaningless marks on paper. David Hilbert The importance of symmetry in physics, and for
More informationTensor product of vector spaces
Tensor product of vector spaces Construction Let V,W be vector spaces over K = R or C. Let F denote the vector space freely generated by the set V W and let N F denote the subspace spanned by the elements
More informationCARTAN S GENERALIZATION OF LIE S THIRD THEOREM
CARTAN S GENERALIZATION OF LIE S THIRD THEOREM ROBERT L. BRYANT MATHEMATICAL SCIENCES RESEARCH INSTITUTE JUNE 13, 2011 CRM, MONTREAL In many ways, this talk (and much of the work it reports on) owes its
More informationSemiSimple Lie Algebras and Their Representations
i SemiSimple Lie Algebras and Their Representations Robert N. Cahn Lawrence Berkeley Laboratory University of California Berkeley, California 1984 THE BENJAMIN/CUMMINGS PUBLISHING COMPANY Advanced Book
More informationArbitrary Spin Representations in de Sitter from ds/cft with Applications to ds Supergravity
BRXTH 511 Arbitrary Spin Representations in de Sitter from ds/cft with Applications to ds Supergravity S. Deser and A. Waldron Physics Department, Brandeis University, Waltham, MA 02454, USA deser@brandeis.edu
More informationChemical group theory for quantum simulation
Title JDWhitfield@gmail.com 1/19 Chemical group theory for quantum simulation James Daniel Whitfield U. Ghent September 28, 2015 Title JDWhitfield@gmail.com 2/19 1. Computational chemistry 2. Symmetry
More informationLecture 2: Essential quantum mechanics
Department of Physical Sciences, University of Helsinki http://theory.physics.helsinki.fi/ kvanttilaskenta/ p. 1/46 Quantum information and computing Lecture 2: Essential quantum mechanics JaniPetri Martikainen
More informationMatrix Differentiation
1 Introduction Matrix Differentiation ( and some other stuff ) Randal J. Barnes Department of Civil Engineering, University of Minnesota Minneapolis, Minnesota, USA Throughout this presentation I have
More informationOrthogonal Diagonalization of Symmetric Matrices
MATH10212 Linear Algebra Brief lecture notes 57 Gram Schmidt Process enables us to find an orthogonal basis of a subspace. Let u 1,..., u k be a basis of a subspace V of R n. We begin the process of finding
More informationGauge theories and the standard model of elementary particle physics
Gauge theories and the standard model of elementary particle physics Mark Hamilton 21st July 2014 1 / 35 Table of contents 1 The standard model 2 3 2 / 35 The standard model The standard model is the most
More informationOPERS. The geometric Langlands correspondence conjectures a correspondence
OPERS JONATHAN BARLEV The geometric Langlands correspondence conjectures a correspondence QcolocsysL Gx)) = DmodBun G )) on the level of derived categories. As remarked previously in theseminar,toeach
More informationContinuous Groups, Lie Groups, and Lie Algebras
Chapter 7 Continuous Groups, Lie Groups, and Lie Algebras Zeno was concerned with three problems... These are the problem of the infinitesimal, the infinite, and continuity... Bertrand Russell The groups
More informationThe basic unit in matrix algebra is a matrix, generally expressed as: a 11 a 12. a 13 A = a 21 a 22 a 23
(copyright by Scott M Lynch, February 2003) Brief Matrix Algebra Review (Soc 504) Matrix algebra is a form of mathematics that allows compact notation for, and mathematical manipulation of, highdimensional
More informationarxiv:quantph/0603009v3 8 Sep 2006
Deciding universality of quantum gates arxiv:quantph/0603009v3 8 Sep 2006 Gábor Ivanyos February 1, 2008 Abstract We say that collection of nqudit gates is universal if there exists N 0 n such that for
More informationTorgerson s Classical MDS derivation: 1: Determining Coordinates from Euclidean Distances
Torgerson s Classical MDS derivation: 1: Determining Coordinates from Euclidean Distances It is possible to construct a matrix X of Cartesian coordinates of points in Euclidean space when we know the Euclidean
More informationQuantum Mechanics and Representation Theory
Quantum Mechanics and Representation Theory Peter Woit Columbia University Texas Tech, November 21 2013 Peter Woit (Columbia University) Quantum Mechanics and Representation Theory November 2013 1 / 30
More informationMICROLOCAL ANALYSIS OF THE BOCHNERMARTINELLI INTEGRAL
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY Volume 00, Number 0, Pages 000 000 S 00029939(XX)00000 MICROLOCAL ANALYSIS OF THE BOCHNERMARTINELLI INTEGRAL NIKOLAI TARKHANOV AND NIKOLAI VASILEVSKI
More informationNilpotent Lie and Leibniz Algebras
This article was downloaded by: [North Carolina State University] On: 03 March 2014, At: 08:05 Publisher: Taylor & Francis Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered
More informationQuantum Field Theory and Representation Theory
Quantum Field Theory and Representation Theory Peter Woit woit@math.columbia.edu Department of Mathematics Columbia University Quantum Field Theory and Representation Theory p.1 Outline of the talk Quantum
More information( ) which must be a vector
MATH 37 Linear Transformations from Rn to Rm Dr. Neal, WKU Let T : R n R m be a function which maps vectors from R n to R m. Then T is called a linear transformation if the following two properties are
More informationTopologically Massive Gravity with a Cosmological Constant
Topologically Massive Gravity with a Cosmological Constant Derek K. Wise Joint work with S. Carlip, S. Deser, A. Waldron Details and references at arxiv:0803.3998 [hepth] (or for the short story, 0807.0486,
More informationKindergarten Math Content 1
Kindergarten Math Content 1 Number and Operations: Whole Numbers Counting and the Number System A main focus in Kindergarten is counting, which is the basis for understanding the number system and for
More information5.04 Principles of Inorganic Chemistry II
MIT OpenourseWare http://ocw.mit.edu 5.4 Principles of Inorganic hemistry II Fall 8 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. 5.4, Principles of
More informationSpecial Theory of Relativity
June 1, 2010 1 1 J.D.Jackson, Classical Electrodynamics, 3rd Edition, Chapter 11 Introduction Einstein s theory of special relativity is based on the assumption (which might be a deeprooted superstition
More information13 MATH FACTS 101. 2 a = 1. 7. The elements of a vector have a graphical interpretation, which is particularly easy to see in two or three dimensions.
3 MATH FACTS 0 3 MATH FACTS 3. Vectors 3.. Definition We use the overhead arrow to denote a column vector, i.e., a linear segment with a direction. For example, in threespace, we write a vector in terms
More informationThe threedimensional rotations are defined as the linear transformations of the vector x = (x 1, x 2, x 3 ) x i = R ij x j, (2.1) x 2 = x 2. (2.
2 The rotation group In this Chapter we give a short account of the main properties of the threedimensional rotation group SO(3) and of its universal covering group SU(2). The group SO(3) is an important
More informationis in plane V. However, it may be more convenient to introduce a plane coordinate system in V.
.4 COORDINATES EXAMPLE Let V be the plane in R with equation x +2x 2 +x 0, a twodimensional subspace of R. We can describe a vector in this plane by its spatial (D)coordinates; for example, vector x 5
More informationSec 4.1 Vector Spaces and Subspaces
Sec 4. Vector Spaces and Subspaces Motivation Let S be the set of all solutions to the differential equation y + y =. Let T be the set of all 2 3 matrices with real entries. These two sets share many common
More informationMATH 423 Linear Algebra II Lecture 38: Generalized eigenvectors. Jordan canonical form (continued).
MATH 423 Linear Algebra II Lecture 38: Generalized eigenvectors Jordan canonical form (continued) Jordan canonical form A Jordan block is a square matrix of the form λ 1 0 0 0 0 λ 1 0 0 0 0 λ 0 0 J = 0
More informationName: Section Registered In:
Name: Section Registered In: Math 125 Exam 3 Version 1 April 24, 2006 60 total points possible 1. (5pts) Use Cramer s Rule to solve 3x + 4y = 30 x 2y = 8. Be sure to show enough detail that shows you are
More informationRESULTANT AND DISCRIMINANT OF POLYNOMIALS
RESULTANT AND DISCRIMINANT OF POLYNOMIALS SVANTE JANSON Abstract. This is a collection of classical results about resultants and discriminants for polynomials, compiled mainly for my own use. All results
More informationThreegeneration models in heterotic asymmetric orbifolds
Threegeneration models in heterotic asymmetric orbifolds Shogo Kuwakino (Chung Yuan Christian U., Taiwan) Based on arxiv:1304.5621 [hepth] and 1311.4687 [hepth] Collaborator : Florian Beye (Nagoya university)
More informationCOBORDISM IN ALGEBRA AND TOPOLOGY
COBORDISM IN ALGEBRA AND TOPOLOGY ANDREW RANICKI (Edinburgh) http://www.maths.ed.ac.uk/ aar Dedicated to Robert Switzer and Desmond Sheiham Göttingen, 13th May, 2005 1 Cobordism There is a cobordism equivalence
More informationLinear Algebra Review. Vectors
Linear Algebra Review By Tim K. Marks UCSD Borrows heavily from: Jana Kosecka kosecka@cs.gmu.edu http://cs.gmu.edu/~kosecka/cs682.html Virginia de Sa Cogsci 8F Linear Algebra review UCSD Vectors The length
More information1 0 5 3 3 A = 0 0 0 1 3 0 0 0 0 0 0 0 0 0 0
Solutions: Assignment 4.. Find the redundant column vectors of the given matrix A by inspection. Then find a basis of the image of A and a basis of the kernel of A. 5 A The second and third columns are
More informationLECTURE III. BiHamiltonian chains and it projections. Maciej B laszak. Poznań University, Poland
LECTURE III BiHamiltonian chains and it projections Maciej B laszak Poznań University, Poland Maciej B laszak (Poznań University, Poland) LECTURE III 1 / 18 BiHamiltonian chains Let (M, Π) be a Poisson
More informationHermitian Clifford Analysis and Its Connections with Representation Theory
Hermitian Clifford Analysis and Its Connections with Representation Theory arxiv:1604.08647v1 [math.rt] 28 Apr 2016 Stuart Shirrell 1 and Raymond Walter 2,3 1 IDinsight, Patna, Bihar, India 2 Department
More informationarxiv:1306.1358v1 [cs.cv] 6 Jun 2013
Geometric operations implemented by conformal geometric algebra neural nodes Eckhard HITZER University of Fukui Abstract: Geometric algebra is an optimal frame work for calculating with vectors. The geometric
More information2.1: MATRIX OPERATIONS
.: MATRIX OPERATIONS What are diagonal entries and the main diagonal of a matrix? What is a diagonal matrix? When are matrices equal? Scalar Multiplication 45 Matrix Addition Theorem (pg 0) Let A, B, and
More informationMA 242 LINEAR ALGEBRA C1, Solutions to Second Midterm Exam
MA 4 LINEAR ALGEBRA C, Solutions to Second Midterm Exam Prof. Nikola Popovic, November 9, 6, 9:3am  :5am Problem (5 points). Let the matrix A be given by 5 6 5 4 5 (a) Find the inverse A of A, if it exists.
More informationGROUPS ACTING ON A SET
GROUPS ACTING ON A SET MATH 435 SPRING 2012 NOTES FROM FEBRUARY 27TH, 2012 1. Left group actions Definition 1.1. Suppose that G is a group and S is a set. A left (group) action of G on S is a rule for
More informationCommunication on the Grassmann Manifold: A Geometric Approach to the Noncoherent MultipleAntenna Channel
IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 48, NO. 2, FEBRUARY 2002 359 Communication on the Grassmann Manifold: A Geometric Approach to the Noncoherent MultipleAntenna Channel Lizhong Zheng, Student
More informationLet H and J be as in the above lemma. The result of the lemma shows that the integral
Let and be as in the above lemma. The result of the lemma shows that the integral ( f(x, y)dy) dx is well defined; we denote it by f(x, y)dydx. By symmetry, also the integral ( f(x, y)dx) dy is well defined;
More informationThe Uncontroversial Mathematics Behind Garrett Lisi s Controversial Theory of Everything In Memory of My Grandmother Vilicia Auguste (19142008)
The Uncontroversial Mathematics Behind Garrett Lisi s Controversial Theory of Everything In Memory of My Grandmother Vilicia Auguste (19142008) Alfred G. Noël Mathematics Department The University of
More information1 Introduction. 2 Matrices: Definition. Matrix Algebra. Hervé Abdi Lynne J. Williams
In Neil Salkind (Ed.), Encyclopedia of Research Design. Thousand Oaks, CA: Sage. 00 Matrix Algebra Hervé Abdi Lynne J. Williams Introduction Sylvester developed the modern concept of matrices in the 9th
More informationFiber Bundles and Connections. Norbert Poncin
Fiber Bundles and Connections Norbert Poncin 2012 1 N. Poncin, Fiber bundles and connections 2 Contents 1 Introduction 4 2 Fiber bundles 5 2.1 Definition and first remarks........................ 5 2.2
More information4. MATRICES Matrices
4. MATRICES 170 4. Matrices 4.1. Definitions. Definition 4.1.1. A matrix is a rectangular array of numbers. A matrix with m rows and n columns is said to have dimension m n and may be represented as follows:
More informationContents. Goldstone Bosons in 3HeA Soft Modes Dynamics and Lie Algebra of Group G:
... Vlll Contents 3. Textures and Supercurrents in Superfluid Phases of 3He 3.1. Textures, Gradient Energy and Rigidity 3.2. Why Superfuids are Superfluid 3.3. Superfluidity and Response to a Transverse
More informationr(x + y) =rx + ry; (r + s)x = rx + sx; r(sx) =(rs)x; 1x = x
Chapter 4 Module Fundamentals 4.1 Modules and Algebras 4.1.1 Definitions and Comments A vector space M over a field R is a set of objects called vectors, which can be added, subtracted and multiplied by
More informationEffective actions for fluids from holography
Effective actions for fluids from holography Based on: arxiv:1405.4243 and arxiv:1504.07616 with Michal Heller and Natalia Pinzani Fokeeva Jan de Boer, Amsterdam Benasque, July 21, 2015 (see also arxiv:1504.07611
More informationABSTRACT ALGEBRA. Romyar Sharifi
ABSTRACT ALGEBRA Romyar Sharifi Contents Introduction 7 Part 1. A First Course 11 Chapter 1. Set theory 13 1.1. Sets and functions 13 1.2. Relations 15 1.3. Binary operations 19 Chapter 2. Group theory
More informationNonzero degree tangential maps between dual symmetric spaces
ISSN 14722739 (online) 14722747 (printed) 709 Algebraic & Geometric Topology Volume 1 (2001) 709 718 Published: 30 November 2001 ATG Nonzero degree tangential maps between dual symmetric spaces Boris
More informationLINEAR ALGEBRA. September 23, 2010
LINEAR ALGEBRA September 3, 00 Contents 0. LUdecomposition.................................... 0. Inverses and Transposes................................. 0.3 Column Spaces and NullSpaces.............................
More informationLinear Algebra Done Wrong. Sergei Treil. Department of Mathematics, Brown University
Linear Algebra Done Wrong Sergei Treil Department of Mathematics, Brown University Copyright c Sergei Treil, 2004, 2009, 2011, 2014 Preface The title of the book sounds a bit mysterious. Why should anyone
More informationExtensions of the Partial Least Squares approach for the analysis of biomolecular interactions. Nina Kirschbaum
Dissertation am Fachbereich Statistik der Universität Dortmund Extensions of the Partial Least Squares approach for the analysis of biomolecular interactions Nina Kirschbaum Erstgutachter: Prof. Dr. W.
More informationInner product. Definition of inner product
Math 20F Linear Algebra Lecture 25 1 Inner product Review: Definition of inner product. Slide 1 Norm and distance. Orthogonal vectors. Orthogonal complement. Orthogonal basis. Definition of inner product
More informationSchemes for Deterministic Polynomial Factoring
Schemes for Deterministic Polynomial Factoring Gábor Ivanyos 1 Marek Karpinski 2 Nitin Saxena 3 1 Computer and Automation Research Institute, Budapest 2 Dept. of Computer Science, University of Bonn 3
More information9.4. The Scalar Product. Introduction. Prerequisites. Learning Style. Learning Outcomes
The Scalar Product 9.4 Introduction There are two kinds of multiplication involving vectors. The first is known as the scalar product or dot product. This is socalled because when the scalar product of
More informationFrancesco Sorrentino Department of Mechanical Engineering
Master stability function approaches to analyze stability of the synchronous evolution for hypernetworks and of synchronized clusters for networks with symmetries Francesco Sorrentino Department of Mechanical
More informationMATH 304 Linear Algebra Lecture 20: Inner product spaces. Orthogonal sets.
MATH 304 Linear Algebra Lecture 20: Inner product spaces. Orthogonal sets. Norm The notion of norm generalizes the notion of length of a vector in R n. Definition. Let V be a vector space. A function α
More informationBANACH AND HILBERT SPACE REVIEW
BANACH AND HILBET SPACE EVIEW CHISTOPHE HEIL These notes will briefly review some basic concepts related to the theory of Banach and Hilbert spaces. We are not trying to give a complete development, but
More informationApplied Linear Algebra I Review page 1
Applied Linear Algebra Review 1 I. Determinants A. Definition of a determinant 1. Using sum a. Permutations i. Sign of a permutation ii. Cycle 2. Uniqueness of the determinant function in terms of properties
More informationIntroduction to Matrix Algebra I
Appendix A Introduction to Matrix Algebra I Today we will begin the course with a discussion of matrix algebra. Why are we studying this? We will use matrix algebra to derive the linear regression model
More informationIntroduction to Matrix Algebra
Psychology 7291: Multivariate Statistics (Carey) 8/27/98 Matrix Algebra  1 Introduction to Matrix Algebra Definitions: A matrix is a collection of numbers ordered by rows and columns. It is customary
More informationThe Singular Value Decomposition in Symmetric (Löwdin) Orthogonalization and Data Compression
The Singular Value Decomposition in Symmetric (Löwdin) Orthogonalization and Data Compression The SVD is the most generally applicable of the orthogonaldiagonalorthogonal type matrix decompositions Every
More information