LECTURE III. BiHamiltonian chains and it projections. Maciej B laszak. Poznań University, Poland


 Margaret Willis
 1 years ago
 Views:
Transcription
1 LECTURE III BiHamiltonian chains and it projections Maciej B laszak Poznań University, Poland Maciej B laszak (Poznań University, Poland) LECTURE III 1 / 18
2 BiHamiltonian chains Let (M, Π) be a Poisson manifold with Π of constant rank (almost everywhere), with Poisson algebra given by the bracket {F 1, F 2 } Π = Π(dF 1, df 2 ) = df 1, ΠdF 2. Remark. In local Darboux coordinates (q 1,..., q n, p 1,..., p n, c 1,..., c m ) Π takes the form 0 I 0 Π = I where coordinates c i are Casimir functions. Definition A linear combination Π λ = π 1 λπ 0 (λ R) of two Poisson tensors Π 0, Π 1 is called a Poisson pencil if Π λ is Poisson for any value of λ. Then Π 0 and Π 1 are called compatible. Maciej B laszak (Poznań University, Poland) LECTURE III 2 / 18
3 BiHamiltonian chains Given a Π λ we can often construct a sequence of vector fields X i that have two Hamiltonian representations (bihamiltonian chains) X i = Π 1 dh i = Π 0 dh i+1, where H i C (M) are called Hamiltonians of a chain. Consider a bipoisson manifold (M, Π 0, Π 1 ) of dim M = 2n + m, where Π 0, Π 1 is a pair of compatible Poisson tensors of rank 2n. We further assume that Π λ admits m Casimir functions which are polynomial in λ H (k) (λ) = n k H (k) i λ n k i, k = 1,..., m i=0 so, that n n m = n and H (k) i are functionally independent. Maciej B laszak (Poznań University, Poland) LECTURE III 3 / 18
4 BiHamiltonian chains The collection of n bihamiltonian vector fields Π λ dh (k) (λ) = 0 Π 0 dh (k) 0 = 0 Π 0 dh (k) 1 = X (k) 1 = Π 1 dh (k) 0. Π 0 dh n (k) k = X n (k) k = Π 1 dh (k) n k 1 0 = Π 1 dh n (k) k (3.1) Lemma where k = 1,..., m, define bihamiltonian systems of Gel fandzakharevich type. Notice that each chain starts from a Casimir of Π 0 and terminates with a Casimir of Π 1. All H (k) i pairwise commute wit respect to Π 0 and Π 1. Maciej B laszak (Poznań University, Poland) LECTURE III 4 / 18
5 BiHamiltonian chains GZ bihamiltonian chain Liouville integrable system Having GZ bihamiltonian system the crucial toward construction of separation coordinates is the projection of second Poisson tensor Π 1 onto the symplectic foliation of the first Poisson tensor Π 0. Maciej B laszak (Poznań University, Poland) LECTURE III 5 / 18
6 Poisson projections onto submanifolds Consider manifold M of dim M = m and foliation S consisting of leaves S ν parametrized by ν R r, so r is codimension of every leave. Let Z be a distribution transversal to S, i.e. T x M = T x S ν Z x where S ν is a leave that passes through x. It defines a decomposition ( ) TM X = X + X, X x T xs ν, (X ) x Z x and induces splitting of dual space T x M = T x S ν Z x, where T x S ν annihilates Z x and Z x annihilates T x S ν. Maciej B laszak (Poznań University, Poland) LECTURE III 6 / 18
7 Poisson projections onto submanifolds Thus, any oneform α on M has a unique decomposition T ( ) M α = α + α, α x T x S ν, (α ) x Zx. Definition A function F C (M) is called Zinvariant if L Z F = Z (F ) = 0 for any Z Z. Obviously df T S. Definition The Poisson tensor Π is said to be Zinvariant if L Z {F, G } Π = 0 for any pair of Zinvariant functions F, G and any Z Z. Maciej B laszak (Poznań University, Poland) LECTURE III 7 / 18
8 Poisson projections onto submanifolds For any Poisson tensor Π on M define the following bivector Π D Π D  deformation of Π. Π D (α, β) := Π(α, β ), α, β T M (3.2) Lemma The image of Π D is tangent to the foliation S. Indeed, α, Π D β = α, Πβ = 0 for β Z = Z ker Π D. So, Π D can be naturally restricted to any leave S ν : π = Π D S. Theorem If Π is Zinvariant, then Π D is Poisson and so π. Maciej B laszak (Poznań University, Poland) LECTURE III 8 / 18
9 Poisson projections onto submanifolds Proof. From Zinvariant of Π : L Z df, ΠdG = 0, so d df, ΠdG T S = ( d df, ΠdG ) = d df, ΠdG, hence, the Jacobi identity {{F, G } ΠD + c.p. = ( d df, ΠdG ), ΠdH + c.p. = d df, ΠdG, Π is fulfilled. Observation. Annihilator Z of TS is defined as soon as S is determined. Definition Distribution D = Π(Z ), associated with the foliation S, is called Dirac distribution. Maciej B laszak (Poznań University, Poland) LECTURE III 9 / 18
10 Poisson projections onto submanifolds Two limited cases are possible: 1 TM = D TS Dirac case 2 D TS tangent case. Let S be parametrized by ϕ i (x) C (M) : S ν = {x M : ϕ i (x) = ν i, i = 1,..., r}, so {d ϕ i } basis in Z. Denote by {Z i } a basis dual to {d ϕ i }, so Z i (ϕ j ) = δ ij. Then, X = X r i=1 X (ϕ i )Z i, α = α r i=1 α(z i )d ϕ i. Obviously X (ϕ i ) = 0 and α (Z i ) = 0. Maciej B laszak (Poznań University, Poland) LECTURE III 10 / 18
11 Poisson projections onto submanifolds Then, from Π D (α, β) = Π(α, β ) we get r Π D = Π X i Z i + 1 i=1 2 where X i = Πd ϕ i, ϕ ij = {ϕ i, ϕ j } Π. r ϕ ij Z i Z j (3.3) i,j=1 In the Dirac case we have a canonical choice of Z = D, as all X i are transversal to S and are linearly independent (det(ϕ ij ) = 0). Moreover Π is naturally Zinvariant since L Xi Π = 0. ϕ i (x) are then second class constraints in Dirac terminology. The basis {Z i } dual to {d ϕ i } can be expressed by X i : Z i = r ( ϕ 1 ) ji X j, Z j (ϕ i ) = δ ij. j=1 Maciej B laszak (Poznań University, Poland) LECTURE III 11 / 18
12 Poisson projections onto submanifolds Π D (3.3) attains the form Π D = Π 1 2 r ( ϕ 1 ) ij X j X i. i,j=1 This Poisson tensor defines the following bracket on C (M) : {F, G } ΠD = {F, G } Π r i,j=1 known as a Dirac bracket. In tangent case all X i are tangent to S, i.e. X i (ϕ j ) = Π(d ϕ i, d ϕ j ) = 0, so Π D = Π {F, ϕ i } Π ( ϕ 1 ) ij {ϕ j, G } Π r i=1 X i Z i and Z i must be find separately from case to case. Maciej B laszak (Poznań University, Poland) LECTURE III 12 / 18
13 From bihamiltonian to quasibihamiltonian chains Our foliation is symplectic foliation of Π 0, so Z = Ker Π 0 = Sp{dc i }. For GZbiHamiltonian chains Π 1 (dc i, dc j ) = 0, so we are in tangent case when project Π 1 onto S. Assume we found Z transversal to S and such that Π 1 is Z  invariant. Then Π D is Poisson with Ker Π 0 Ker Π D, so both tensors can be restricted to S. Let π 0 = Π 0 S, π 1 = Π D S. Maciej B laszak (Poznań University, Poland) LECTURE III 13 / 18
14 From bihamiltonian to quasibihamiltonian chains Theorem BiHamiltonian chains (3.1) restricted to S take the form of quasibihamiltonian chains ( ) π 1 dh (k) i = π 0 dh (k) m i+1 α (k) ij dh (j) 1 j=1, (3.4) where ( ) α (k) ij = Z j (H (k) i ), S h(k) i = (H (k) i ) S. It follows from the fact that Π 1 = Π D + m k=1 X (k) 1 Z k. Maciej B laszak (Poznań University, Poland) LECTURE III 14 / 18
15 From bihamiltonian to quasibihamiltonian chains Lemma {H (k) i, H (r) j } ΠD = 0. Theorem Necessary and sufficient condition for compatibility of Π 0 and Π D (hence π 0 and π 1 ) is L Zi Π 0 = 0. Z i are symmetries of Π 0 (so Π 0 is Z  invariant), hence Z is integrable distribution and [Z i, Z j ] = 0. Maciej B laszak (Poznań University, Poland) LECTURE III 15 / 18
16 Nmanifolds Definition ωn manofold is a bipoisson manifold (π 0, π 1 ) with two compatible Poisson tensors, where at least one (say π 0 ) is nondegenerated. So M is endowed with a symplectic form ω = ω 0 = π 1 and the (1, 1) tensor field N = π 1 ω 0. From compatibility of π 0 and π 1 follows that Nijenhuis torsion of N vanishes T (N)(X, Y ) = [NX, NY ] N[NX, y] N[X, NY ] + N 2 [X, Y ] = 0 and hence, the second twoform is closed. L NX N = NL X N ω 1 = ω 0 π 1 ω 0 Maciej B laszak (Poznań University, Poland) LECTURE III 16 / 18
17 Nmanifolds We further restrict to generic case, when N has at every point n distinct eigenvalues which are functionally independent. It means that π 1 is also nondegenerated and ω 1 is symplectic. Notice that Moreover, π 1 = Nπ 0, ω 1 = N ω 0, N = ω 0 π 1. {f, g} πi = ω i (X f, X g ), X h = π 0 dh, i = 1, 2. Let us come back to our quasibihamiltonian chain (3.4). The distribution tangent to the foliation defined by (h (1) 1,..., h(m) n m ) is bilagrangian: ω 0 (X h (k) i, X h (r) j ) = ω 1 (X h (k) i, X (r) h ) = 0. j Maciej B laszak (Poznań University, Poland) LECTURE III 17 / 18
18 Nmanifolds Moreover, quasibihamiltonian equations can be put into one matrix equation N m dh i = F ij dh j N dh = Fdh j=1 where (h 1,..., h n ) = (h (1) 1,..., h(m) n m ) and F control matrix (recursion matrix). Maciej B laszak (Poznań University, Poland) LECTURE III 18 / 18
An Introduction to 3Dimensional Contact Topology. XiaoSong Lin
An Introduction to 3Dimensional Contact Topology XiaoSong Lin 2 Contents Preface 5 1 Basics 7 1.1 Contact structures............................... 7 1.2 Symplectic structures..............................
More informationInner Product Spaces and Orthogonality
Inner Product Spaces and Orthogonality week 34 Fall 2006 Dot product of R n The inner product or dot product of R n is a function, defined by u, v a b + a 2 b 2 + + a n b n for u a, a 2,, a n T, v b,
More informationTHE MINIMAL GENUS PROBLEM
THE MINIMAL GENUS PROBLEM TERRY LAWSON Abstract. This paper gives a survey of recent work on the problem of finding the minimal genus of an embedded surface which represents a twodimensional homology
More information1 Sets and Set Notation.
LINEAR ALGEBRA MATH 27.6 SPRING 23 (COHEN) LECTURE NOTES Sets and Set Notation. Definition (Naive Definition of a Set). A set is any collection of objects, called the elements of that set. We will most
More informationMODULES OVER A PID KEITH CONRAD
MODULES OVER A PID KEITH CONRAD Every vector space over a field K that has a finite spanning set has a finite basis: it is isomorphic to K n for some n 0. When we replace the scalar field K with a commutative
More informationChapter 5. Banach Spaces
9 Chapter 5 Banach Spaces Many linear equations may be formulated in terms of a suitable linear operator acting on a Banach space. In this chapter, we study Banach spaces and linear operators acting on
More informationThe Dirichlet Unit Theorem
Chapter 6 The Dirichlet Unit Theorem As usual, we will be working in the ring B of algebraic integers of a number field L. Two factorizations of an element of B are regarded as essentially the same if
More informationIntroduction to Differentiable Manifolds, Second Edition
Introduction to Differentiable Manifolds, Second Edition Serge Lang Springer Universitext Editorial Board (North America): S. Axler F.W. Gehring K.A. Ribet Springer New York Berlin Heidelberg Hong Kong
More informationGroup Theory. Contents
Group Theory Contents Chapter 1: Review... 2 Chapter 2: Permutation Groups and Group Actions... 3 Orbits and Transitivity... 6 Specific Actions The Right regular and coset actions... 8 The Conjugation
More informationGEOMETRIC REPRESENTATION THEORY, FALL 2005. Some references
GEOMETRIC REPRESENTATION THEORY, FALL 2005 Some references 1) J. P. Serre, Complex semisimple Lie algebras. 2) T. Springer, Linear algebraic groups. 3) A course on Dmodules by J. Bernstein, availiable
More informationClassification of Cartan matrices
Chapter 7 Classification of Cartan matrices In this chapter we describe a classification of generalised Cartan matrices This classification can be compared as the rough classification of varieties in terms
More informationLectures on Symplectic Geometry
Lectures on Symplectic Geometry Ana Cannas da Silva 1 revised January 2006 Published by SpringerVerlag as number 1764 of the series Lecture Notes in Mathematics. The original publication is available
More informationChapter 8. Lagrangian submanifolds in semipositive symplectic manifolds. 1. 34. Statement of the results in Chapter 8.
Chapter 8. Lagrangian submanifolds in semipositive symplectic manifolds. 1 34. Statement of the results in Chapter 8. So far we have been studying Floer cohomology with rational coefficients. If we put
More informationA SELFGUIDE TO OMINIMALITY
A SELFGUIDE TO OMINIMALITY CAMERINO TUTORIAL JUNE 2007 Y. PETERZIL, U. OF HAIFA 1. How to read these notes? These notes were written for the tutorial in the Camerino Modnet Summer school. The main source
More informationA Modern Course on Curves and Surfaces. Richard S. Palais
A Modern Course on Curves and Surfaces Richard S. Palais Contents Lecture 1. Introduction 1 Lecture 2. What is Geometry 4 Lecture 3. Geometry of InnerProduct Spaces 7 Lecture 4. Linear Maps and the Euclidean
More informationMA651 Topology. Lecture 6. Separation Axioms.
MA651 Topology. Lecture 6. Separation Axioms. This text is based on the following books: Fundamental concepts of topology by Peter O Neil Elements of Mathematics: General Topology by Nicolas Bourbaki Counterexamples
More informationINTRODUCTION TO TOPOLOGY OF REAL ALGEBRAIC VARIETIES
INTRODUCTION TO TOPOLOGY OF REAL ALGEBRAIC VARIETIES OLEG VIRO 1. The Early Topological Study of Real Algebraic Plane Curves 1.1. Basic Definitions and Problems. A curve (at least, an algebraic curve)
More informationLinear Algebra Done Wrong. Sergei Treil. Department of Mathematics, Brown University
Linear Algebra Done Wrong Sergei Treil Department of Mathematics, Brown University Copyright c Sergei Treil, 2004, 2009, 2011, 2014 Preface The title of the book sounds a bit mysterious. Why should anyone
More informationAlgebraic Number Theory
Algebraic Number Theory 1. Algebraic prerequisites 1.1. General 1.1.1. Definition. For a field F define the ring homomorphism Z F by n n 1 F. Its kernel I is an ideal of Z such that Z/I is isomorphic to
More informationQUANTIZATION OF HITCHIN S INTEGRABLE SYSTEM AND HECKE EIGENSHEAVES
QUANTIZATION OF HITCHIN S INTEGRABLE SYSTEM AND HECKE EIGENSHEAVES A. BEILINSON AND V. DRINFELD 1991 Mathematics Subject Classification. Subject classes here. This research was partially supported by INTAS
More informationThe Mathematics any Physicist Should Know. Thomas Hjortgaard Danielsen
The Mathematics any Physicist Should Know Thomas Hjortgaard Danielsen Contents Preface 5 I Representation Theory of Groups and Lie Algebras 7 1 PeterWeyl Theory 9 1.1 Foundations of Representation Theory...............
More informationTensor product of vector spaces
Tensor product of vector spaces Construction Let V,W be vector spaces over K = R or C. Let F denote the vector space freely generated by the set V W and let N F denote the subspace spanned by the elements
More informationLinear Control Systems
Chapter 3 Linear Control Systems Topics : 1. Controllability 2. Observability 3. Linear Feedback 4. Realization Theory Copyright c Claudiu C. Remsing, 26. All rights reserved. 7 C.C. Remsing 71 Intuitively,
More information2 Polynomials over a field
2 Polynomials over a field A polynomial over a field F is a sequence (a 0, a 1, a 2,, a n, ) where a i F i with a i = 0 from some point on a i is called the i th coefficient of f We define three special
More informationA UNIQUENESS RESULT FOR THE CONTINUITY EQUATION IN TWO DIMENSIONS. Dedicated to Constantine Dafermos on the occasion of his 70 th birthday
A UNIQUENESS RESULT FOR THE CONTINUITY EQUATION IN TWO DIMENSIONS GIOVANNI ALBERTI, STEFANO BIANCHINI, AND GIANLUCA CRIPPA Dedicated to Constantine Dafermos on the occasion of his 7 th birthday Abstract.
More informationLECTURES ON ALGEBRAIC NUMBER THEORY. Yichao TIAN
LECTURES ON ALGEBRAIC NUMBER THEORY Yichao TIAN Yichao TIAN Morningside Center of Mathematics, 55 Zhong Guan Cun East Road, Beijing, 100190, China. Email : yichaot@math.ac.cn LECTURES ON ALGEBRAIC NUMBER
More information(2) the identity map id : S 1 S 1 to the symmetry S 1 S 1 : x x (here x is considered a complex number because the circle S 1 is {x C : x = 1}),
Chapter VI Fundamental Group 29. Homotopy 29 1. Continuous Deformations of Maps 29.A. Is it possible to deform continuously: (1) the identity map id : R 2 R 2 to the constant map R 2 R 2 : x 0, (2) the
More informationSemiSimple Lie Algebras and Their Representations
i SemiSimple Lie Algebras and Their Representations Robert N. Cahn Lawrence Berkeley Laboratory University of California Berkeley, California 1984 THE BENJAMIN/CUMMINGS PUBLISHING COMPANY Advanced Book
More informationCLASSIFICATORY PROBLEMS IN AFFINE GEOMETRY APPROACHED BY DIFFERENTIAL EQUATIONS METHODS INTRODUCTION
REVISTA DE LA UNIÓN MATEMÁTICA ARGENTINA Volumen 47, Número 2, 2006, Páginas 95 107 CLASSIFICATORY PROBLEMS IN AFFINE GEOMETRY APPROACHED BY DIFFERENTIAL EQUATIONS METHODS SALVADOR GIGENA Abstract. We
More informationNotes on Group Theory
Notes on Group Theory Mark Reeder March 7, 2014 Contents 1 Notation for sets and functions 4 2 Basic group theory 4 2.1 The definition of a group................................. 4 2.2 Group homomorphisms..................................
More information