# Fiber bundles. Chapter 23. c Amitabha Lahiri: Lecture Notes on Differential Geometry for Physicists 2011

Save this PDF as:

Size: px
Start display at page:

Download "Fiber bundles. Chapter 23. c Amitabha Lahiri: Lecture Notes on Differential Geometry for Physicists 2011"

## Transcription

1 Chapter 23 Fiber bundles Consider a manifold M with the tangent bundle T M = P M T P M. Let us look at this more closely. T M can be thought of as the original manifold M with a tangent space stuck at each point P M. Thus there is a projection map π : T M M, T P M P, which associates the point P M with T P M. Then we can say that T M consists of pooints P M and vectors v T P M as an ordered pair (P, v P ). Then in the neighbourhood of any point P, we can think of T M as a product manifold, i.e. as the set of ordered pairs (P, v P ). This is generalized to the definition of a fiber bundle. Locally a fiber bundle is a product manifold E = B F with the following properties. B is a manifold called the base manifold, and F is another manifold called the typical fiber or the standard fiber. There is a projection map π : E B, and if P B, the preimage π 1 (P ) is homeomorphic, i.e. bicontinuously isomorphic, to the standard fiber. E is called the total space, but usually it is also called the bundle, even though the bundle is actually the triple (E, π, B). E is locally a product space. We express this in the following way. Given an open set U i of B, the pre-image π 1 (U i ) is homeomorphic to U i F, or in other words there is a bicontinuous isomorphism ϕ i : π 1 (U i ) U i F. The set {U i, ϕ i } is called a local trivializa tion of the bundle. If E can be written globally as a product space, i.e. E = B F, it is called a trivial bundle. 89

2 90 Chapter 23. Fiber bundles This description includes a homeomorphism π 1 (P ) F for each P U i. Let us denote this map by h i (P ). Then in some overlap U i U j the fiber on P, π 1 (P ), has homeomorphisms h i (P ) and h j (P ) onto F. It follows that h j (P ) h i (P ) 1 is a homeomorphism F F. These are called transition functions. The transition functions F F form a group, called the structure group of F. Let us consider an example. Suppose B = S 1. Then the tangent bundle E = T S 1 has F = R and π(p, v) P, where P S 1, v T S 1. Consider a covering of S 1 by open sets U i, and let the coordinates of U i S 1 be denoted by λ i. Then any vector at T P S 1 d can be written as v = a i (no sum) for P U i. dλ i So we can define a homeomorphism h i (P ) : T P S 1 R, v a i (fixed i). If P U i U j there are two such homeomorphisms T S 1 R, and since λ i and λ j are independent, a i and a j are also independent. Then h i (P ) h j (P ) 1 : F F (or R R) maps a j to a i. The homeomorphism, which in this case relates the component of the vector in two coordinate systems, is simply multiplication by the number r ij = a i R\{0}. So the structure group is R\{0} with a j multiplication. For an n-dimensional manifold M, the structure group of T M is GL(n, R). A fiber bundle where the standard fiber is a vector space is called a vector bundle. A cylinder can be made by glueing two opposite edges of a flat strip of paper. This is then a Cartesian product of acircle S 1 with a line segment I. So B = S 1, F = I and this is a trivial bundle, i.e. globally a product space. On the other hand, a Möbius strip is obtained by twisting the strip and then glueing. Locally for some open set U S 1 we can still write a segment of the Möbius strip as U I, but the total space is no longer a product space. As a bundle, the Möbius strip is non-trivial. Given two bundles (E 1, π 1, B 1 ) and (E 2, π 2, B 2 ), the relevant or useful maps between these are those which preserve the bundle structure locally, i.e. those which map fibers into fibers. They are called bundle morphisms. A bundle morphism is a pair of maps (F, f), F : E 1 E 2, f :

3 91 B 1 B 2, such that π 2 F = f π 1. (This is of course better understood in terms of a commutative diagram.) Not all systems of coordinates are appropriate for a bundle. But it is possible to define a set of fiber coordinates in the following way. Given a differentiable fiber bundle with n-dimensional base manifold B and p-dimensional fiber F, the coordinates of the bundle are given by bundle morphisms onto open sets of R n R p. Given a manifold M the tangent space T P M, consider A P = (e 1,, e n ), a set of n linearly independent vectors at P. A P is a basis in T P M. The typical fiber in the frame bundle is the set of all bases, F = {A P }. Given a particular basis A P = (e 1,, e n ), any basis A P may be expressed as e i = a j i e j. (23.1) The numbers a j i can be thought of as the components of a matrix, which must be invertible so that we can recover the original basis from the new one. Thus, starting from any one basis, any other basis can be reached by an n n invertible matrix, and any n n invertible matrix produces a new basis. So there is a bijection between the set of all frames in T P M and GL(n, R). Clearly the structure group of the typical fiber of the frame bundle is also GL(n, R). A fiber bundle in which the typical fiber F is identical (or homeomorphic) to the structure group G, and G acts on F by left translation is called a principal fiber bundle. Example: 1. Typical fiber = S 1, structure group U(1). 2. Typical fiber = S 3, structure group SU(2). 3. Bundle of frames, for which the typical fiber is GL(n, R), as is the structure group. A section of a fiber bundle (E, π, B) is a mapping s : B E, p s(p), where p B, s(p) π 1 (p). So we can also say π s = identity. Example: A vector field is a section of the tangent bundle, v : P v P. Example: A function on M is a section of the bundle which locally looks like M R (or M C if we are talking about complex functions).

4 92 Chapter 23. Fiber bundles Starting from the tangent bundle we can define the cotangent bundle, in which the typical fiber is the dual space of the tangent space. This is written as T M. As we have seen before, a section of T M is a 1-form field on M. Remember that a vector bundle F E π B is a bundle in which the typical fiber F is a vector space. A vector bundle (E, π, B, F, G) with typical fiber F and structure group G is said to be associated to the principal bundle (P, π, B, G) by the representation {D(g)} of G on F if its transition functions are the images under D of the transition functions of P. That is, suppose we have a covering {U i } of B, and local trivialization of P with respect to this covering is Φ i : π 1 (U i ) U i G, which is essentially the same as writing Φ i,x : π 1 (x) G, x U i. Then the transition functions of P are of the form g ij = Φ i Φ j 1 : U i U j G. (23.2) The transition functions of E corresponding to the same covering of B are given by φ i : π 1 (U i ) U i F with φ i φ j 1 = D(g ij ). That is, if v i and v j are images of the same vector v x F x under overlapping trivializations φ i and φ j, we must have v i = D (g ij (x)) v j. (23.3) A more physical way of saying this is that if two observers look at the same vector at the same point, their observations are relatted by a group transformation (p, v) (p, D(g ij v). These relations are what are called gauge transformations in physics, and G is called the gauge group. Usually G is a Lie group for reasons of continuity. Fields appearing in various physical theories are sections of vector bundles, which in some trivialization look like U α V where U α is some open neighborhood of the point we are interested in, and V is a vector space. V carries a representation of some group G, usually a Lie group, which characterizes the theory. To discuss this a little more concretely, let us consider an associated vector bundle (E, π, B, F, G) of a principal bundle (P, π, B, G). Then the transition functions are in some representation of the group G. Because the fiber carries a representation {D(g)} of G, there are

5 93 always linear transformations T x : E x E x which are members of the representation {D(g)}. Let us write the space of all sections of this bundle as Γ(E). An element of Γ(E) is a map from the base spacce to the bundle. Such a map assigns an element of V to each point of the base space. We say that a linear map T : Γ(E) Γ(E) is a gauge trans formation if at each point x of the base space, T x {D(g)} for some g, i.e. if T x : (x, v) α (x, D(g)v) α, (23.4) for some g G and for (x, v) α U α F. In other words, a gauge transformation is a representation-valued linear transformation of the sections at each point of the base space. The right hand side is often written as (x, gv) α. This definition is independent of the choice of U α. To see this, consider a point x U α U β. Then (x, v) α = (x, g βα v) β. (23.5) In the other notation we have been using, v α and v β are images of the same vector v x V x, and v β = D(g βα )v α. A gauge transformation T acts as But we also have using Eq. (23.5). So it is also true that T x : (x, v) α (x, gv) α. (23.6) (x, gv) α = (x, g βα gv) β (23.7) T x : (x, g βα v) β (x, g βα gv) β. (23.8) Since F carries a representation of G, we can think of gv as a change of variables, i.e. define v = g βα v. Then Eq. (23.8) can be written also as T x : (x, v ) β (x, g v ) β, (23.9) where now g = g βα gg βα 1. So T is a gauge transformation in U β as well. The definition of a gauge transformation is independent of the

6 94 Chapter 23. Fiber bundles choice of U α, but T itself is not. The set of all gauge transformations G is a group, with (gh)(x) = g(x)h(x), (g 1 )(x) = (g(x)) 1. (23.10) The groups G and G arre both called the gauge group by different people.

### Fiber Bundles. 4.1 Product Manifolds: A Visual Picture

4 Fiber Bundles In the discussion of topological manifolds, one often comes across the useful concept of starting with two manifolds M ₁ and M ₂, and building from them a new manifold, using the product

### Mathematics Course 111: Algebra I Part IV: Vector Spaces

Mathematics Course 111: Algebra I Part IV: Vector Spaces D. R. Wilkins Academic Year 1996-7 9 Vector Spaces A vector space over some field K is an algebraic structure consisting of a set V on which are

### CONNECTIONS ON PRINCIPAL G-BUNDLES

CONNECTIONS ON PRINCIPAL G-BUNDLES RAHUL SHAH Abstract. We will describe connections on principal G-bundles via two perspectives: that of distributions and that of connection 1-forms. We will show that

### A CONSTRUCTION OF THE UNIVERSAL COVER AS A FIBER BUNDLE

A CONSTRUCTION OF THE UNIVERSAL COVER AS A FIBER BUNDLE DANIEL A. RAMRAS In these notes we present a construction of the universal cover of a path connected, locally path connected, and semi-locally simply

### The Tangent Bundle. Jimmie Lawson Department of Mathematics Louisiana State University. Spring, 2006

The Tangent Bundle Jimmie Lawson Department of Mathematics Louisiana State University Spring, 2006 1 The Tangent Bundle on R n The tangent bundle gives a manifold structure to the set of tangent vectors

### SOME PROPERTIES OF FIBER PRODUCT PRESERVING BUNDLE FUNCTORS

SOME PROPERTIES OF FIBER PRODUCT PRESERVING BUNDLE FUNCTORS Ivan Kolář Abstract. Let F be a fiber product preserving bundle functor on the category FM m of the proper base order r. We deduce that the r-th

### Quantum manifolds. Manuel Hohmann

Quantum manifolds Manuel Hohmann Zentrum für Mathematische Physik und II. Institut für Theoretische Physik, Universität Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany Abstract. We propose a mathematical

### Fiber Bundles and Connections. Norbert Poncin

Fiber Bundles and Connections Norbert Poncin 2012 1 N. Poncin, Fiber bundles and connections 2 Contents 1 Introduction 4 2 Fiber bundles 5 2.1 Definition and first remarks........................ 5 2.2

### α = u v. In other words, Orthogonal Projection

Orthogonal Projection Given any nonzero vector v, it is possible to decompose an arbitrary vector u into a component that points in the direction of v and one that points in a direction orthogonal to v

### Math 225A, Differential Topology: Homework 3

Math 225A, Differential Topology: Homework 3 Ian Coley October 17, 2013 Problem 1.4.7. Suppose that y is a regular value of f : X Y, where X is compact and dim X = dim Y. Show that f 1 (y) is a finite

### INTRODUCTION TO MANIFOLDS IV. Appendix: algebraic language in Geometry

INTRODUCTION TO MANIFOLDS IV Appendix: algebraic language in Geometry 1. Algebras. Definition. A (commutative associatetive) algebra (over reals) is a linear space A over R, endowed with two operations,

### Fiber bundles and non-abelian cohomology

Fiber bundles and non-abelian cohomology Nicolas Addington April 22, 2007 Abstract The transition maps of a fiber bundle are often said to satisfy the cocycle condition. If we take this terminology seriously

### FIXED POINT SETS OF FIBER-PRESERVING MAPS

FIXED POINT SETS OF FIBER-PRESERVING MAPS Robert F. Brown Department of Mathematics University of California Los Angeles, CA 90095 e-mail: rfb@math.ucla.edu Christina L. Soderlund Department of Mathematics

### FIBER BUNDLES AND UNIVALENCE

FIBER BUNDLES AND UNIVALENCE TALK BY IEKE MOERDIJK; NOTES BY CHRIS KAPULKIN This talk presents a proof that a universal Kan fibration is univalent. The talk was given by Ieke Moerdijk during the conference

### 5.3 The Cross Product in R 3

53 The Cross Product in R 3 Definition 531 Let u = [u 1, u 2, u 3 ] and v = [v 1, v 2, v 3 ] Then the vector given by [u 2 v 3 u 3 v 2, u 3 v 1 u 1 v 3, u 1 v 2 u 2 v 1 ] is called the cross product (or

### Mathematical Research Letters 1, 249 255 (1994) MAPPING CLASS GROUPS ARE AUTOMATIC. Lee Mosher

Mathematical Research Letters 1, 249 255 (1994) MAPPING CLASS GROUPS ARE AUTOMATIC Lee Mosher Let S be a compact surface, possibly with the extra structure of an orientation or a finite set of distinguished

### Mathematical Physics, Lecture 9

Mathematical Physics, Lecture 9 Hoshang Heydari Fysikum April 25, 2012 Hoshang Heydari (Fysikum) Mathematical Physics, Lecture 9 April 25, 2012 1 / 42 Table of contents 1 Differentiable manifolds 2 Differential

### LECTURE 1: DIFFERENTIAL FORMS. 1. 1-forms on R n

LECTURE 1: DIFFERENTIAL FORMS 1. 1-forms on R n In calculus, you may have seen the differential or exterior derivative df of a function f(x, y, z) defined to be df = f f f dx + dy + x y z dz. The expression

### The Isometry Dimension and Orbit Number of a Finite Group

The Isometry Dimension and Orbit Number of a Finite Group Michael O. Albertson Department of Mathematics Smith College, Northampton, MA 0106 albertson@math.smith.edu Debra L. Boutin Department of Mathematics

### Matrix Representations of Linear Transformations and Changes of Coordinates

Matrix Representations of Linear Transformations and Changes of Coordinates 01 Subspaces and Bases 011 Definitions A subspace V of R n is a subset of R n that contains the zero element and is closed under

### FIBER PRODUCTS AND ZARISKI SHEAVES

FIBER PRODUCTS AND ZARISKI SHEAVES BRIAN OSSERMAN 1. Fiber products and Zariski sheaves We recall the definition of a fiber product: Definition 1.1. Let C be a category, and X, Y, Z objects of C. Fix also

### FIBRATION SEQUENCES AND PULLBACK SQUARES. Contents. 2. Connectivity and fiber sequences. 3

FIRTION SEQUENES ND PULLK SQURES RY MLKIEWIH bstract. We lay out some foundational facts about fibration sequences and pullback squares of topological spaces. We pay careful attention to connectivity ranges

### Chapter 10. Abstract algebra

Chapter 10. Abstract algebra C.O.S. Sorzano Biomedical Engineering December 17, 2013 10. Abstract algebra December 17, 2013 1 / 62 Outline 10 Abstract algebra Sets Relations and functions Partitions and

### Let H and J be as in the above lemma. The result of the lemma shows that the integral

Let and be as in the above lemma. The result of the lemma shows that the integral ( f(x, y)dy) dx is well defined; we denote it by f(x, y)dydx. By symmetry, also the integral ( f(x, y)dx) dy is well defined;

### TOPOLOGY OF SINGULAR FIBERS OF GENERIC MAPS

TOPOLOGY OF SINGULAR FIBERS OF GENERIC MAPS OSAMU SAEKI Dedicated to Professor Yukio Matsumoto on the occasion of his 60th birthday Abstract. We classify singular fibers of C stable maps of orientable

### ORIENTATIONS. Contents

ORIENTATIONS Contents 1. Generators for H n R n, R n p 1 1. Generators for H n R n, R n p We ended last time by constructing explicit generators for H n D n, S n 1 by using an explicit n-simplex which

### Comments on Quotient Spaces and Quotient Maps

22M:132 Fall 07 J. Simon Comments on Quotient Spaces and Quotient Maps There are many situations in topology where we build a topological space by starting with some (often simpler) space[s] and doing

### CLASSIFYING FINITE SUBGROUPS OF SO 3

CLASSIFYING FINITE SUBGROUPS OF SO 3 HANNAH MARK Abstract. The goal of this paper is to prove that all finite subgroups of SO 3 are isomorphic to either a cyclic group, a dihedral group, or the rotational

### GROUP ALGEBRAS. ANDREI YAFAEV

GROUP ALGEBRAS. ANDREI YAFAEV We will associate a certain algebra to a finite group and prove that it is semisimple. Then we will apply Wedderburn s theory to its study. Definition 0.1. Let G be a finite

### The Topology of Fiber Bundles Lecture Notes. Ralph L. Cohen Dept. of Mathematics Stanford University

The Topology of Fiber Bundles Lecture Notes Ralph L. Cohen Dept. of Mathematics Stanford University Contents Introduction v Chapter 1. Locally Trival Fibrations 1 1. Definitions and examples 1 1.1. Vector

### Proof. The map. G n i. where d is the degree of D.

7. Divisors Definition 7.1. We say that a scheme X is regular in codimension one if every local ring of dimension one is regular, that is, the quotient m/m 2 is one dimensional, where m is the unique maximal

### the points are called control points approximating curve

Chapter 4 Spline Curves A spline curve is a mathematical representation for which it is easy to build an interface that will allow a user to design and control the shape of complex curves and surfaces.

### SEMINAR NOTES: G-BUNDLES, STACKS AND BG (SEPT. 15, 2009)

SEMINAR NOTES: G-BUNDLES, STACKS AND (SEPT. 15, 2009) DENNIS GAITSGORY 1. G-bundles 1.1. Let G be an affine algebraic group over a ground field k. We assume that k is algebraically closed. Definition 1.2.

### Fiber sums of genus 2 Lefschetz fibrations

Proceedings of 9 th Gökova Geometry-Topology Conference, pp, 1 10 Fiber sums of genus 2 Lefschetz fibrations Denis Auroux Abstract. Using the recent results of Siebert and Tian about the holomorphicity

### BUNDLES, CLASSIFYING SPACES AND CHARACTERISTIC CLASSES

BUNDLES, CLASSIFYING SPACES AND CHARACTERISTIC CLASSES CHRIS KOTTKE Contents Introduction 1 1. Bundles 2 1.1. Pullback 2 1.2. Sections 3 1.3. Fiber bundles as fibrations 4 2. Vector bundles 4 2.1. Whitney

### Sets of Fibre Homotopy Classes and Twisted Order Parameter Spaces

Communications in Mathematical Physics Manuscript-Nr. (will be inserted by hand later) Sets of Fibre Homotopy Classes and Twisted Order Parameter Spaces Stefan Bechtluft-Sachs, Marco Hien Naturwissenschaftliche

### Classification of Bundles

CHAPTER 2 Classification of Bundles In this chapter we prove Steenrod s classification theorem of principal G - bundles, and the corresponding classification theorem of vector bundles. This theorem states

### 1 Sets and Set Notation.

LINEAR ALGEBRA MATH 27.6 SPRING 23 (COHEN) LECTURE NOTES Sets and Set Notation. Definition (Naive Definition of a Set). A set is any collection of objects, called the elements of that set. We will most

### DATA ANALYSIS II. Matrix Algorithms

DATA ANALYSIS II Matrix Algorithms Similarity Matrix Given a dataset D = {x i }, i=1,..,n consisting of n points in R d, let A denote the n n symmetric similarity matrix between the points, given as where

### Table of Contents. Introduction... 1 Chapter 1. Vector Bundles... 4. Chapter 2. K Theory... 38. Chapter 3. Characteristic Classes...

Table of Contents Introduction.............................. 1 Chapter 1. Vector Bundles.................... 4 1.1. Basic Definitions and Constructions............ 6 Sections 7. Direct Sums 9. Inner Products

### NOTES ON CATEGORIES AND FUNCTORS

NOTES ON CATEGORIES AND FUNCTORS These notes collect basic definitions and facts about categories and functors that have been mentioned in the Homological Algebra course. For further reading about category

### Metrics on SO(3) and Inverse Kinematics

Mathematical Foundations of Computer Graphics and Vision Metrics on SO(3) and Inverse Kinematics Luca Ballan Institute of Visual Computing Optimization on Manifolds Descent approach d is a ascent direction

### MATH 304 Linear Algebra Lecture 4: Matrix multiplication. Diagonal matrices. Inverse matrix.

MATH 304 Linear Algebra Lecture 4: Matrix multiplication. Diagonal matrices. Inverse matrix. Matrices Definition. An m-by-n matrix is a rectangular array of numbers that has m rows and n columns: a 11

### Orthogonal Projections

Orthogonal Projections and Reflections (with exercises) by D. Klain Version.. Corrections and comments are welcome! Orthogonal Projections Let X,..., X k be a family of linearly independent (column) vectors

### Nonlinear Dimensionality Reduction

Nonlinear Dimensionality Reduction Piyush Rai CS5350/6350: Machine Learning October 25, 2011 Recap: Linear Dimensionality Reduction Linear Dimensionality Reduction: Based on a linear projection of the

### GROUP ACTIONS ON SETS WITH APPLICATIONS TO FINITE GROUPS

GROUP ACTIONS ON SETS WITH APPLICATIONS TO FINITE GROUPS NOTES OF LECTURES GIVEN AT THE UNIVERSITY OF MYSORE ON 29 JULY, 01 AUG, 02 AUG, 2012 K. N. RAGHAVAN Abstract. The notion of the action of a group

### 9 MATRICES AND TRANSFORMATIONS

9 MATRICES AND TRANSFORMATIONS Chapter 9 Matrices and Transformations Objectives After studying this chapter you should be able to handle matrix (and vector) algebra with confidence, and understand the

### Lecture 1-1,2. Definition. Sets A and B have the same cardinality if there is an invertible function f : A B.

Topology Summary This is a summary of the results discussed in lectures. These notes will be gradually growing as the time passes by. Most of the time proofs will not be given. You are supposed to be able

### Classification of Fiber Bundles over the Riemann Sphere

Classification of Fiber Bundles over the Riemann Sphere João Pedro Correia Matias Dissertação para obtenção do Grau de Mestre em Matemática e Aplicações Júri Presidente: Professor Doutor Miguel Abreu Orientador:

### INTRODUCTION TO ALGEBRAIC GEOMETRY, CLASS 24

INTRODUCTION TO ALGEBRAIC GEOMETRY, CLASS 24 RAVI VAKIL Contents 1. Degree of a line bundle / invertible sheaf 1 1.1. Last time 1 1.2. New material 2 2. The sheaf of differentials of a nonsingular curve

### Examples and Exercises

Examples and Exercises Guerino Mazzola January 6, 00 Example of A Rigorous Proof Claim: Let a, b, c be sets. Then we have c (a b) = (c a) (c b). Proof. By definition of equality of sets, we have to prove

Algebraic Geometry Keerthi Madapusi Contents Chapter 1. Schemes 5 1. Spec of a Ring 5 2. Schemes 11 3. The Affine Communication Lemma 13 4. A Criterion for Affineness 15 5. Irreducibility and Connectedness

### Structure of the Root Spaces for Simple Lie Algebras

Structure of the Root Spaces for Simple Lie Algebras I. Introduction A Cartan subalgebra, H, of a Lie algebra, G, is a subalgebra, H G, such that a. H is nilpotent, i.e., there is some n such that (H)

### Lecture 18 - Clifford Algebras and Spin groups

Lecture 18 - Clifford Algebras and Spin groups April 5, 2013 Reference: Lawson and Michelsohn, Spin Geometry. 1 Universal Property If V is a vector space over R or C, let q be any quadratic form, meaning

### Matrix Algebra 2.3 CHARACTERIZATIONS OF INVERTIBLE MATRICES Pearson Education, Inc.

2 Matrix Algebra 2.3 CHARACTERIZATIONS OF INVERTIBLE MATRICES Theorem 8: Let A be a square matrix. Then the following statements are equivalent. That is, for a given A, the statements are either all true

### COBORDISM IN ALGEBRA AND TOPOLOGY

COBORDISM IN ALGEBRA AND TOPOLOGY ANDREW RANICKI (Edinburgh) http://www.maths.ed.ac.uk/ aar Dedicated to Robert Switzer and Desmond Sheiham Göttingen, 13th May, 2005 1 Cobordism There is a cobordism equivalence

### 9.4. The Scalar Product. Introduction. Prerequisites. Learning Style. Learning Outcomes

The Scalar Product 9.4 Introduction There are two kinds of multiplication involving vectors. The first is known as the scalar product or dot product. This is so-called because when the scalar product of

### Singular fibers of stable maps and signatures of 4 manifolds

359 399 359 arxiv version: fonts, pagination and layout may vary from GT published version Singular fibers of stable maps and signatures of 4 manifolds OSAMU SAEKI TAKAHIRO YAMAMOTO We show that for a

### Lehigh University Geometry and Topology Conference. May 22, 2015

Lehigh University Geometry and Topology Conference May 22, 2015 University of Virginia Harvard University University of Rochester 1.1 Algebraic topologists have been studying spectra for over 50 years

### University of Lille I PC first year list of exercises n 7. Review

University of Lille I PC first year list of exercises n 7 Review Exercise Solve the following systems in 4 different ways (by substitution, by the Gauss method, by inverting the matrix of coefficients

### Introduction to Characteristic Classes

UNIVERSITY OF COPENHAGEN Faculty of Science Department of Mathematical Sciences Mauricio Esteban Gómez López Introduction to Characteristic Classes Supervisors: Jesper Michael Møller, Ryszard Nest 1 Abstract

### The cover SU(2) SO(3) and related topics

The cover SU(2) SO(3) and related topics Iordan Ganev December 2011 Abstract The subgroup U of unit quaternions is isomorphic to SU(2) and is a double cover of SO(3). This allows a simple computation of

### NOTES ON LINEAR TRANSFORMATIONS

NOTES ON LINEAR TRANSFORMATIONS Definition 1. Let V and W be vector spaces. A function T : V W is a linear transformation from V to W if the following two properties hold. i T v + v = T v + T v for all

### CHAPTER 1 BASIC TOPOLOGY

CHAPTER 1 BASIC TOPOLOGY Topology, sometimes referred to as the mathematics of continuity, or rubber sheet geometry, or the theory of abstract topological spaces, is all of these, but, above all, it is

### LINEAR ALGEBRA W W L CHEN

LINEAR ALGEBRA W W L CHEN c W W L Chen, 1997, 2008 This chapter is available free to all individuals, on understanding that it is not to be used for financial gain, and may be downloaded and/or photocopied,

### Surface bundles over S 1, the Thurston norm, and the Whitehead link

Surface bundles over S 1, the Thurston norm, and the Whitehead link Michael Landry August 16, 2014 The Thurston norm is a powerful tool for studying the ways a 3-manifold can fiber over the circle. In

### BASIC FACTS ABOUT WEAKLY SYMMETRIC SPACES

BASIC FACTS ABOUT WEAKLY SYMMETRIC SPACES GIZEM KARAALI 1. Symmetric Spaces Symmetric spaces in the sense of E. Cartan supply major examples in Riemannian geometry. The study of their structure is connected

### Section 1.7 22 Continued

Section 1.5 23 A homogeneous equation is always consistent. TRUE - The trivial solution is always a solution. The equation Ax = 0 gives an explicit descriptions of its solution set. FALSE - The equation

### Rotation Matrices and Homogeneous Transformations

Rotation Matrices and Homogeneous Transformations A coordinate frame in an n-dimensional space is defined by n mutually orthogonal unit vectors. In particular, for a two-dimensional (2D) space, i.e., n

GROUP ACTIONS KEITH CONRAD 1. Introduction The symmetric groups S n, alternating groups A n, and (for n 3) dihedral groups D n behave, by their very definition, as permutations on certain sets. The groups

### Parametric Domain-theoretic models of Linear Abadi & Plotkin Logic

Parametric Domain-theoretic models of Linear Abadi & Plotkin Logic Lars Birkedal Rasmus Ejlers Møgelberg Rasmus Lerchedahl Petersen IT University Technical Report Series TR-00-7 ISSN 600 600 February 00

### Course 221: Analysis Academic year , First Semester

Course 221: Analysis Academic year 2007-08, First Semester David R. Wilkins Copyright c David R. Wilkins 1989 2007 Contents 1 Basic Theorems of Real Analysis 1 1.1 The Least Upper Bound Principle................

### JUST THE MATHS UNIT NUMBER 8.5. VECTORS 5 (Vector equations of straight lines) A.J.Hobson

JUST THE MATHS UNIT NUMBER 8.5 VECTORS 5 (Vector equations of straight lines) by A.J.Hobson 8.5.1 Introduction 8.5. The straight line passing through a given point and parallel to a given vector 8.5.3

### Magic Hexagon Puzzles

Magic Hexagon Puzzles Arthur Holshouser 3600 Bullard St Charlotte NC USA Harold Reiter Department of Mathematics University of North Carolina Charlotte Charlotte NC 28223 USA hbreiter@unccedu 1 Abstract

### (Q, ), (R, ), (C, ), where the star means without 0, (Q +, ), (R +, ), where the plus-sign means just positive numbers, and (U, ),

2 Examples of Groups 21 Some infinite abelian groups It is easy to see that the following are infinite abelian groups: Z, +), Q, +), R, +), C, +), where R is the set of real numbers and C is the set of

### December 4, 2013 MATH 171 BASIC LINEAR ALGEBRA B. KITCHENS

December 4, 2013 MATH 171 BASIC LINEAR ALGEBRA B KITCHENS The equation 1 Lines in two-dimensional space (1) 2x y = 3 describes a line in two-dimensional space The coefficients of x and y in the equation

### ( ) which must be a vector

MATH 37 Linear Transformations from Rn to Rm Dr. Neal, WKU Let T : R n R m be a function which maps vectors from R n to R m. Then T is called a linear transformation if the following two properties are

### Turing Degrees and Definability of the Jump. Theodore A. Slaman. University of California, Berkeley. CJuly, 2005

Turing Degrees and Definability of the Jump Theodore A. Slaman University of California, Berkeley CJuly, 2005 Outline Lecture 1 Forcing in arithmetic Coding and decoding theorems Automorphisms of countable

### A QUICK GUIDE TO THE FORMULAS OF MULTIVARIABLE CALCULUS

A QUIK GUIDE TO THE FOMULAS OF MULTIVAIABLE ALULUS ontents 1. Analytic Geometry 2 1.1. Definition of a Vector 2 1.2. Scalar Product 2 1.3. Properties of the Scalar Product 2 1.4. Length and Unit Vectors

### Sec 4.1 Vector Spaces and Subspaces

Sec 4. Vector Spaces and Subspaces Motivation Let S be the set of all solutions to the differential equation y + y =. Let T be the set of all 2 3 matrices with real entries. These two sets share many common

### Section 1.1. Introduction to R n

The Calculus of Functions of Several Variables Section. Introduction to R n Calculus is the study of functional relationships and how related quantities change with each other. In your first exposure to

### Mathematics for Economics (Part I) Note 5: Convex Sets and Concave Functions

Natalia Lazzati Mathematics for Economics (Part I) Note 5: Convex Sets and Concave Functions Note 5 is based on Madden (1986, Ch. 1, 2, 4 and 7) and Simon and Blume (1994, Ch. 13 and 21). Concave functions

BILINEAR FORMS KEITH CONRAD The geometry of R n is controlled algebraically by the dot product. We will abstract the dot product on R n to a bilinear form on a vector space and study algebraic and geometric

### x1 x 2 x 3 y 1 y 2 y 3 x 1 y 2 x 2 y 1 0.

Cross product 1 Chapter 7 Cross product We are getting ready to study integration in several variables. Until now we have been doing only differential calculus. One outcome of this study will be our ability

### Manifold Learning Examples PCA, LLE and ISOMAP

Manifold Learning Examples PCA, LLE and ISOMAP Dan Ventura October 14, 28 Abstract We try to give a helpful concrete example that demonstrates how to use PCA, LLE and Isomap, attempts to provide some intuition

### Lecture 4 Cohomological operations on theories of rational type.

Lecture 4 Cohomological operations on theories of rational type. 4.1 Main Theorem The Main Result which permits to describe operations from a theory of rational type elsewhere is the following: Theorem

### MATH 304 Linear Algebra Lecture 24: Scalar product.

MATH 304 Linear Algebra Lecture 24: Scalar product. Vectors: geometric approach B A B A A vector is represented by a directed segment. Directed segment is drawn as an arrow. Different arrows represent

### Row Ideals and Fibers of Morphisms

Michigan Math. J. 57 (2008) Row Ideals and Fibers of Morphisms David Eisenbud & Bernd Ulrich Affectionately dedicated to Mel Hochster, who has been an inspiration to us for many years, on the occasion

### 1 Symmetries of regular polyhedra

1230, notes 5 1 Symmetries of regular polyhedra Symmetry groups Recall: Group axioms: Suppose that (G, ) is a group and a, b, c are elements of G. Then (i) a b G (ii) (a b) c = a (b c) (iii) There is an

### ON TORI TRIANGULATIONS ASSOCIATED WITH TWO-DIMENSIONAL CONTINUED FRACTIONS OF CUBIC IRRATIONALITIES.

ON TORI TRIANGULATIONS ASSOCIATED WITH TWO-DIMENSIONAL CONTINUED FRACTIONS OF CUBIC IRRATIONALITIES. O. N. KARPENKOV Introduction. A series of properties for ordinary continued fractions possesses multidimensional

### You know from calculus that functions play a fundamental role in mathematics.

CHPTER 12 Functions You know from calculus that functions play a fundamental role in mathematics. You likely view a function as a kind of formula that describes a relationship between two (or more) quantities.

### Linear Codes. Chapter 3. 3.1 Basics

Chapter 3 Linear Codes In order to define codes that we can encode and decode efficiently, we add more structure to the codespace. We shall be mainly interested in linear codes. A linear code of length

### Revision of ring theory

CHAPTER 1 Revision of ring theory 1.1. Basic definitions and examples In this chapter we will revise and extend some of the results on rings that you have studied on previous courses. A ring is an algebraic

### Linear Algebra Notes for Marsden and Tromba Vector Calculus

Linear Algebra Notes for Marsden and Tromba Vector Calculus n-dimensional Euclidean Space and Matrices Definition of n space As was learned in Math b, a point in Euclidean three space can be thought of

### Curves and Surfaces. Goals. How do we draw surfaces? How do we specify a surface? How do we approximate a surface?

Curves and Surfaces Parametric Representations Cubic Polynomial Forms Hermite Curves Bezier Curves and Surfaces [Angel 10.1-10.6] Goals How do we draw surfaces? Approximate with polygons Draw polygons

### The determinant of a skew-symmetric matrix is a square. This can be seen in small cases by direct calculation: 0 a. 12 a. a 13 a 24 a 14 a 23 a 14

4 Symplectic groups In this and the next two sections, we begin the study of the groups preserving reflexive sesquilinear forms or quadratic forms. We begin with the symplectic groups, associated with

### Group Theory and the Rubik s Cube. Janet Chen

Group Theory and the Rubik s Cube Janet Chen A Note to the Reader These notes are based on a 2-week course that I taught for high school students at the Texas State Honors Summer Math Camp. All of the

### geometric transforms

geometric transforms 1 linear algebra review 2 matrices matrix and vector notation use column for vectors m 11 =[ ] M = [ m ij ] m 21 m 12 m 22 =[ ] v v 1 v = [ ] T v 1 v 2 2 3 matrix operations addition