Microscopie à champs proche: et application



Similar documents
STM and AFM Tutorial. Katie Mitchell January 20, 2010

7/3/2014. Introduction to Atomic Force Microscope. Introduction to Scanning Force Microscope. Invention of Atomic Force Microscope (AFM)

Lecture 4 Scanning Probe Microscopy (SPM)

Lecture 6 Scanning Tunneling Microscopy (STM) General components of STM; Tunneling current; Feedback system; Tip --- the probe.

Microscopie à force atomique: Le mode noncontact

1 Introduction. 1.1 Historical Perspective

INTRODUCTION TO SCANNING TUNNELING MICROSCOPY

- particle with kinetic energy E strikes a barrier with height U 0 > E and width L. - classically the particle cannot overcome the barrier

SCANNING PROBE MICROSCOPY NANOS-E3 SCHOOL 29/09/2015 An introduction to surface microscopy probes

Scanning Tunneling Microscopy: Fundamentals and Applications

Scanning Probe Microscopy

Scanning Near-Field Optical Microscopy for Measuring Materials Properties at the Nanoscale

Basic principles and mechanisms of NSOM; Different scanning modes and systems of NSOM; General applications and advantages of NSOM.

Spin-flip excitation spectroscopy with STM excitation of allowed transition adds an inelastic contribution (group of Andreas Heinrich, IBM Almaden)

Atomic Force Microscopy. Long Phan Nanotechnology Summer Series May 15, 2013

ATOMIC FORCE MICROSCOPY

From apertureless near-field optical microscopy to infrared near-field night vision

SPM 150 Aarhus with KolibriSensor

The influence of graphene curvature on hydrogen adsorption. Sarah Goler

Scanning probe microscopy AFM, STM. Near field Scanning Optical Microscopy(NSOM) Scanning probe fabrication

STM, LEED and Mass spectrometry

Tecniche a scansione di sonda per nanoscopia e nanomanipolazione 2: AFM e derivati

5. Scanning Near-Field Optical Microscopy 5.1. Resolution of conventional optical microscopy

Surface Analysis with STM and AFM

Usage of Carbon Nanotubes in Scanning Probe Microscopes as Probe. Keywords: Carbon Nanotube, Scanning Probe Microscope

Nanoelectronics 09. Atsufumi Hirohata Department of Electronics. Quick Review over the Last Lecture

It has long been a goal to achieve higher spatial resolution in optical imaging and

NEAR FIELD OPTICAL MICROSCOPY AND SPECTROSCOPY WITH STM AND AFM PROBES

Laboratorio Regionale LiCryL CNR-INFM

Piezoelectric Scanners

What is Nanophysics: Survey of Course Topics. Branislav K. Nikolić

(Nano)materials characterization

Tecniche a scansione di sonda per nanoscopia e nanomanipolazione: STM, AFM e derivati

Nanoceanal Spectroscopy of Vibrariums and Electariums

Nano Optics: Overview of Research Activities. Sergey I. Bozhevolnyi SENSE, University of Southern Denmark, Odense, DENMARK

The Application of Density Functional Theory in Materials Science

Modern Construction Materials Prof. Ravindra Gettu Department of Civil Engineering Indian Institute of Technology, Madras

Atomic Force Microscopy. July, 2011 R. C. Decker and S. Qazi

Matter, Materials, Crystal Structure and Bonding. Chris J. Pickard

Molecular Dynamics Simulations

Single Defect Center Scanning Near-Field Optical Microscopy on Graphene

Surface-state engineering for interconnects on H-passivated Si(100)

Sensors & Instruments for station. returned samples. Chun Chia Tan

CREOL, College of Optics & Photonics, University of Central Florida

Nano-Microscopy: Lecture 1. Pavel Zinin HIGP, University of Hawaii, Honolulu, USA

CHAPTER 6 Chemical Bonding

Agilent 5500 AFM. Data Sheet. Features and Benefits

Type of Chemical Bonds

Multi-mode Atomic Force Microscope (with High Voltage Piezo Force Microscope and +/ Oe Variable Field module.)

POLAR COVALENT BONDS Ionic compounds form repeating. Covalent compounds form distinct. Consider adding to NaCl(s) vs. H 2 O(s):

Indiana's Academic Standards 2010 ICP Indiana's Academic Standards 2016 ICP. map) that describe the relationship acceleration, velocity and distance.

Bonding in Elements and Compounds. Covalent

Non-Covalent Bonds (Weak Bond)

FOR TEACHERS ONLY. The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION PHYSICAL SETTING/CHEMISTRY

Scanning Near Field Optical Microscopy: Principle, Instrumentation and Applications

CHAPTER 10: INTERMOLECULAR FORCES: THE UNIQUENESS OF WATER Problems: 10.2, 10.6, , , ,

Near-field scanning optical microscopy (SNOM)

Microscopy: Principles and Advances

X-Rays and Magnetism From Fundamentals to Nanoscale Dynamics

What is a weak hydrogen bond?

Atomic Force Microscope and Magnetic Force Microscope Background Information

Scanning Probe Investigations Of Magnetic Thin Films And Nanostructures

Modification of Graphene Films by Laser-Generated High Energy Particles

A METHOD OF PRECISE CALIBRATION FOR PIEZOELECTRICAL ACTUATORS

Chapter 10 Liquids & Solids

Electronic transport properties of nano-scale Si films: an ab initio study

Adsorption and Catalysis

Microscopy. MICROSCOPY Light Electron Tunnelling Atomic Force RESOLVE: => INCREASE CONTRAST BIODIVERSITY I BIOL1051 MAJOR FUNCTIONS OF MICROSCOPES

Keysight Technologies How to Choose your MAC Lever. Technical Overview

Calibration of AFM with virtual standards; robust, versatile and accurate. Richard Koops VSL Dutch Metrology Institute Delft

Chapter 2. Atomic Structure and Interatomic Bonding

Force Spectroscopy with the Atomic Force Microscope

Preface Light Microscopy X-ray Diffraction Methods

Which substance contains positive ions immersed in a sea of mobile electrons? A) O2(s) B) Cu(s) C) CuO(s) D) SiO2(s)

Chem 112 Intermolecular Forces Chang From the book (10, 12, 14, 16, 18, 20,84,92,94,102,104, 108, 112, 114, 118 and 134)

Subject Area(s) Biology. Associated Unit Engineering Nature: DNA Visualization and Manipulation. Associated Lesson Imaging the DNA Structure

New magnetism of 3d monolayers grown with oxygen surfactant: Experiment vs. ab initio calculations

Use the BET (after Brunauer, Emmett and Teller) equation is used to give specific surface area from the adsorption

Hydrogen Bonds in Water-Methanol Mixture

Rubén Pérez SPM Theory & Nanomechanics Group Departamento de Física Teórica de la Materia Condensada

10.7 Kinetic Molecular Theory Kinetic Molecular Theory. Kinetic Molecular Theory. Kinetic Molecular Theory. Kinetic Molecular Theory

Intermolecular Forces

Nano-Spectroscopy. Solutions AFM-Raman, TERS, NSOM Chemical imaging at the nanoscale

Microscopic Techniques

Outline. Self-assembled monolayer (SAM) formation and growth. Metal nanoparticles (NP) anchoring on SAM

Defects Introduction. Bonding + Structure + Defects. Properties

Electron spectroscopy Lecture Kai M. Siegbahn ( ) Nobel Price 1981 High resolution Electron Spectroscopy

Atomic Force Microscope Physics Assignment

What is molecular dynamics (MD) simulation and how does it work?

MISCIBILITY AND INTERACTIONS IN CHITOSAN AND POLYACRYLAMIDE MIXTURES

Lecture 3: Optical Properties of Bulk and Nano. 5 nm

Section Activity #1: Fill out the following table for biology s most common elements assuming that each atom is neutrally charged.

High flexibility of DNA on short length scales probed by atomic force microscopy

Compact mobilized and low-cost scanning tunneling microscope for educational use

School of Mathematics and Physics Performance Management Matrix Rolling 3-year targets 1. Experienced Lecturer/Senior Lecturer/Reader

Transcription:

Microscopie à champs proche: Théorie et application STM, effet tunnel et applications AFM, interactions et applications im2np, Giens 2010

Optical microscopy: resolution limit resolution limit: d min = λ 2* NA λ lentille avec ouverture numerique NA

Scanning probe microscopy: resolution limit resolution limit: atomic length scale problems: - mechanical stability - tip-sample interaction current (STM), force (AFM), - control tip sample distance to a few Å topography

Implementation PtIr wire for Scanning Tunneling Microscopy (STM) microfabricated silicon beam for Atomic Force Microscopy (AFM) Bohr-radius a 0 = 5,29 * 10-11 m tip height: 10-5 m table tennis ball r ~ 5 * 10-2 m Mont Cervin height: 4477 m/m 10 9 length = 450 µm / width = 45 µm thickness = 1.5 µm E = 1.69 10 11 N/m 2 tip height = 12 µm / radius: 10 nm

What is imaged in STM?

Scanning tunneling microscope (STM) typical values: current 10 pa...10 na voltage mv...several V distance 0.5 nm exponential dependence on distance s: x xyz piezo scanner y topography information z controller I exp(-αs), α 2 Å -1 tip U atomic resolution sample + desired value G. Binnig and H. Rohrer, Helv. Phys. Acta 55, 726 (1982) Nobel Prize 1986

Tunnelling barrier Le PASSE-MURAILLE Sculpture de Jean MARAIS Julian Chen: Introduction to STM, Oxford University Press

Tunnelling barrier Julian Chen: Introduction to STM, Oxford University Press

Tunnelling process IT deρt ( E + ev ) ρs ( E) T( E, ev ) E E F F ev ρ s, ρ t T LDOS of sample and tip barrier transmission

Tunnelling spectroscopy IT deρt ( E + ev ) ρs ( E) T( E, ev ) E E F F ev ρ s, ρ t T LDOS of sample and tip barrier transmission

STM imaging of a surface state M.F. Crommie et al., Nature 363, 524 (1993)

Nanostructuration: : STM M. Abel, D. Catalin, S. Clair, M. Koudia, O. Ourdjini, R. Pawlak, M. Mossoyan, and L. Porte

BDBA on KCl: : Motivation dehydration - nh 2 O STM results: BDBA on Ag(111) Zwaneveld N. et al., JACS 190, 6678 (2008)

BDBA on Ag (100) spontaneous polarization tip induced polymerization 4.0nm 12nm 6.0nm 12nm

organometallic π - conjugated network iron-phthalocyanines on Ag + Fer + Fer 12nm 6.0nm

Properties for molecular electronics S=1 on each iron atom 2.0nm spin-polarized conductivity molecular magnet

What is imaged in AFM? L. Gross et al., Science 325, 1110 (2009)

Beam Deflection L. Howald et al., Appl. Phys. Lett. 63, 117 (1993)

Experimental setup for noncontact AFM excitation amplitude controller frequency demodulation f 0 distance controller Lock-In amplifier Kelvin controller topography bias voltage see poster by Jérémy BOULOC, PLL up to 100 MHz more details: U. Zerweck, Ch. Loppacher et al. Phys. Rev. B 71, 125424 (2005)

Forces R Nano- Tip α d S d L Van der Waals forces: (F.O. Goodman und N. Garcia, Phys. Rev. B 43, 4728 (91)) electrostatic forces: (S. Hudlet et al., Euro. Phys. J. 25, (98)) chemical forces: attractive: binding and adhesion forces repulsive: Pauli and nuclear repulsion Literature: J. Israelachvili: Intermolecular and Surface Forces, Academic Press (1985) D. Tabor: Gases, liquids and solids, Cambridge University Press (1979)

Separation of interactions I force oscillation amplitude 3-30 nm distance U sample = -U CPD

Separation of interactions II f VdW = f0 ka 12d L HR 2d L A 0-10 f [Hz] -20-30 -40-50 -60 U sample = -U CPD 1 2 3 4 5 6 distance [nm] M. Guggisberg, Ch. Loppacher et al., Phys. Rev. B 61, 11151 (2000)

Calculation of forces f 0 U 0 d S ds f chem = exp( 2 ) 2 exp( ) ka πaλ λf λ F F 2U = 0 d S d S F exp( 2 ) exp( ) chem λf λf λf 0 f chem [Hz] 10 20 30 0,0-0,2-0,4 F [nn] 40 0 1 2 3 4 1 2 3 4 distance [nm] M. Guggisberg, Ch. Loppacher et al., Phys. Rev. B 61, 11151 (2000)

Single molecular switch Cu-tetra(3,5 di-t-butylphenyl)porphyrine 25 nm Calculations: H. Tang and C. Joachim, CEMES/CNRS, Toulouse, France (MM2) Ch. Loppacher et al., Phys. Rev. Lett. 90, 066107 (2003)

Single molecular switch Cu-tetra(3,5 di-t-butylphenyl)porphyrine E = 83zJ = 0.6eV 25 nm Calculations: H. Tang and C. Joachim, CEMES/CNRS, Toulouse, France (MM2) Ch. Loppacher et al., Phys. Rev. Lett. 90, 066107 (2003)

Atom recognition surface Si(111) 7x7 avec des atomes de plomb et étain Y. Sugimoto et al., Nature 446 (2007) 64

Electrostatic forces: Kelvin Force Microscopy topography (10µm) 2 topography (500nm) 2 F el U ext φ 2 U mod surface potential 800 U CPD ~ 900mV U DC Oscillating force C ( ) π z U DC φ e U mod cos( 2 f mod t ) 1 C + π z U 2 mod cos( 4 f mod t ) 4 vibration at f mod and 2f mod number of points 600 400 200 0-0.4-0.2 0.0 0.2 0.4 0.6 0. 8 1.0 U cpd [V] U. Zerweck, Ch. Loppacher et al., Phys. Rev. B. 71: 125424 (2005)

Nanostructuration: : AFM F. Bocquet, L. Nony, and Ch. Loppacher electronic properties of single molecules and interfaces single charge, molecular dipole KBr Ag(111) «tunable» insulating and wide-gap surfaces quantitative understanding

BDBA on KCl: : Experiments R. Pawlak et al., J. Phys. Chem. C, in press ad hoc model: Flat-lying configuration impossible, tilt around long axis necessary (steric hindrance) lattice constant: a = 5.2 Å; b = 10.0 Å

BDBA on KCl: : Calculations BDBA unit cell (SIESTA code, GGA functional, PBE type) y 4 H-bonds/mol: 1eV (0.25 ev/ H-bond/mol.) Theoretical lattice constant: a = 4.99 Å; b = 10.14 Å calculations: V. Oison, M. Sassi, and J.-M. Debierre cf: Rodriguez-Cuamatzi P. et al., Acta Cryst. E60, o1315 (2004)

BDBA on KCl: : Calculations calculations: V. Oison, M. Sassi, and J.-M. Debierre cf: Rodriguez-Cuamatzi P. et al., Acta Cryst. E60, o1315 (2004)

BDBA on HOPG: Experiments (700x700)nm 2, f= -1Hz (25x25)nm 2, f=-12hz identical structure on HOPG (first ML) as on KCl

Measurement of local charges L. Gross et al., Science 324, 1428 (2009)

Measurement of local charges L. Gross et al., Science 324, 1428 (2009)

Imaging ionic surfaces: Model F. Bocquet et al., PRB 78, 035410 (2008)

Imaging ionic surfaces: Forces and simulations Forces L. Nony et al., PRB 74, 235437 (2006) KPFM simulation F. Bocquet et al., PRB 78, 035410 (2008)

Imaging ionic surfaces: Model II L. Nony et al., PRL 103, 036802 (2009) atomistic calculations by A. Foster, Tampere and Helsinki University, Finland

Imaging ionic surfaces: Model II topography LCPD LCPD, constant height L. Nony et al., PRL 103, 036802 (2009)

Influence of Molecular Organization on φ ZnPcCl8 on Ag(111) first phase: P1 intermediate : P2 end phase : P3 ZnPcCl8 Image 10 nm x 10 nm time or annealinig evolution with time: sequential formation of hydrogen bonds M. Koudia et al., J. Phys. Chem. B 110, 10058 (2006) M. Abel et al., ChemPhysChem 7, 82 (2006)

Influence of Molecular Organization on φ ZnPcCl 8 on Ag(111) P1 P2 Kelvin DFT electronic structure calculations using SIESTA P. Milde, Ch. Loppacher et al., Nanotechnology 19, 305501 (2008)

Influence of Molecular Orientation on φ 5,15-bis(2,6 -bis(3,3-dimethyl-1- butyloxy)phenyl)porphyrin M. Nikiforov, Ch. Loppacher et al., Nano Letters 8 110 (2008)

Influence of Molecular Orientation on φ M. Nikiforov, Ch. Loppacher et al., Nano Letters 8 110 (2008)

Optical properties of adsorbed molecules PTCDA on KCl < 1 monolayer > 1 monolayer sublimation > 1 monolayer optical properties change PTCDA/KCl R/R 700 600 500 λ(nm) 0.06 0.04 0.02 quadratic herringbone T. Dienel, Ch. Loppacher et al., Advanced Materials, 20, 959 (2008)

Optical properties of adsorbed molecules PTCDA on KCl < 1 monolayer > 1 monolayer dissipation [010] [100] PTCDA/KCl commensurate 2x2 overlayer! quadratic herringbone T. Dienel, Ch. Loppacher et al., Advanced Materials, 20, 959 (2008)

Conclusion what is imaged in STM? formation of covalent network separation and calculation of forces single charge manipulation image simulation

merci pour votre attention!