Subject Area(s) Biology. Associated Unit Engineering Nature: DNA Visualization and Manipulation. Associated Lesson Imaging the DNA Structure
|
|
|
- Darren Griffith
- 10 years ago
- Views:
Transcription
1 Subject Area(s) Biology Associated Unit Engineering Nature: DNA Visualization and Manipulation Associated Lesson Imaging the DNA Structure Activity Title Inside the DNA Header Image 1 ADA Description: Black & white image of a spherical gray object with small spikes o its surface Caption: Scanning electron image of a pollen particle Image file: SEM.jpg Source/Rights: Copyright BayBLab Grade Level 10 (9-12) Activity Dependency Time Required
2 40 minutes Group Size Expendable Cost per Group US$ Summary This activity is designed for students to discover the methods used by scientists to analyze or validate the molecular structure of DNA, proteins, and enzymes. This a computer based activity that consists of students having to research a particular molecular imaging technology such as x-ray, atomic force microscopy, transmission electron microscopy, etc, and creating a short presentation (PowerPoint) in which key points must be addressed by students. Engineering Connection Visualization of small structures such as molecular structures of complex proteins and genetic material (DNA) is based on engineering discoveries and breakthroughs in physics at small scales. Imaging technologies such as x-ray and scanning electron microscopy used in by scientists and engineers to image microscopic structures are also used by biomedical engineers and biologists to study biomolecules, cells, and tissue samples. Engineering Category = #1 Choose the category that best describes this activity s amount/depth of engineering content: 1. Relating science and/or math concept(s) to engineering 2. Engineering analysis or partial design 3. Engineering design process Keywords Imaging, microscopy, x-ray, STM, TEM, AFM, FRET, magnetic resonance force microscopy Educational Standards Biology: Texas Essential Knowledge and Skills ( Biology, Beginning with School Year ) (b) (3) Scientific inquiry. Scientific inquiry is the planned and deliberate investigation of the natural world. Scientific methods of investigation are experimental, descriptive, or comparative. The method chosen should be appropriate to the question being asked. (c) (2) Scientific processes. The student uses scientific methods and equipment during laboratory and field investigations. The student is expected to: (B) know that hypotheses are tentative and testable statements that must be capable of being supported or not supported by observational evidence. Hypotheses of durable explanatory power which have been tested over a wide variety of conditions are incorporated into theories; (C) know scientific theories are based on natural and physical phenomena and are capable of being tested by multiple independent researchers. Unlike hypotheses, scientific theories are wellestablished and highly-reliable explanations, but they may be subject to change as new areas of science and new technologies are developed; (D) distinguish between scientific hypotheses and scientific theories; (E) plan and implement descriptive, comparative, and experimental investigations, including asking questions, formulating testable hypotheses, and selecting equipment and technology;
3 (c) (10) Science concepts. The student knows that biological systems are composed of multiple levels. The student is expected to: (C) analyze the levels of organization in biological systems and relate the levels to each other and to the whole system. Pre-Requisite Knowledge Basic knowledge about genetics: DNA, the four nucleotide bases and the base pairing rules, DNA double helix structure. Learning Objectives After this activity, students should be able to: Enumerate some of the imaging technologies used for atomic scale microscopy Know the basic, underlying principles of the researched microscopy method Describe how the microscopy method helped scientists to discover the structure of biomolecules Materials List Each group needs: Computer with Internet connection To share with the entire class: N/A Introduction / Motivation Genetics and the study of biomolecules such as proteins and enzymes rely in part on theoretical/computational models and on atomic scale microscopy. In particular, the discovery of the DNA structure the double helix and its replication and transcription processes has led to new discoveries in molecular biology and medicine. Scientists have tried to predict the arrangement of molecules (nucleotide bases, phosphate and sugar groups) that make up the DNA using theoretical models based on the atomic and molecular interactions but no validation or comparison between the structure predicted by models and the real structure existed. In 1953, the double helix structure of the DNA based on x-ray analysis of DNA was published. It was a decade later that atomic force microscopy and other ultra-high resolution microscopy technologies were used to confirm this finding. Show students molecular images of DNA, RNA, proteins, and enzymes and ask them to guess how scientists have determined their complex shapes. How do they know that the DNA or the hemoglobin look the way they do? Is it possible to look at the crystalline structure of molecules? The answer is yes, but not by using conventional microscopy, but more complex technologies such as x-ray diffraction, transmission electron microscope (TEM), atomic force microscopy, fluorescence resonance energy transfer, magnetic resonance force microscopy, etc. What are these technologies, how do they work, what are the basic principles behind them? With this introduction in mind, the students are assigned their respective microscopy technology to perform the research activity. Vocabulary / Definitions Word Definition Crystalline structure A unique arrangement of atoms or molecules in a crystalline liquid or solid DNA Deoxyribonucleic acid a self-replicating material present in nearly all living organisms as the main constituent of chromosomes Any of a group of complex organic macromolecules that contain carbon, hydrogen, Protein oxygen, nitrogen, and usually sulfur and are composed of one or more chains of amino acids RNA Ribonucleic acid, a nucleic acid present in all living cells. Its principal role is to act as a messenger carrying instructions from DNA for controlling the synthesis of proteins
4 Procedure Background Students will build a presentation based on their findings for one of the microscopy technologies listed below. Each student shall research only one technology and shall incorporate the following in their presentation: the date when the method/technology was first invented the physical phenomena involved (how it works, for example: electron scattering, nanosized probe/detector, resonant frequency but students shouldn t go into many details, just the basic concepts the spatial resolution (the small object/size that can be observed) the use of the method in imaging DNA/proteins (look for images, if available) any engineering/technical challenges (design of special detectors, microscopic probes) cost of the device/apparatus where are these devices used (universities, research centers, private companies) images of the device images of DNA, proteins or other biological macromolecules obtained with the visualization method With the Students 1. After the introduction/motivation let the students choose their microscopy technology and let them work on the research activity. The list of microscopy technologies with a suggested resource for each of them includes: X-ray crystallography ( Transmission electron microscope (TEM) ( Scanning tunneling microscope (STM) ( Atomic force microscopy (AFM) ( FRET (Fluorescence resonance energy transfer) ( Magnetic resonance force microscopy ( Photo Activated Localization Microscopy (PALM) imaging ( 2. The assessment of each student s presentation should be based on the inclusion of each item listed in the Background subsection shown above. Attachments Safety Issues
5 Troubleshooting Tips Investigating Questions Assessment Post-Activity Assessment The presentation of each student should contain all of the following: the date when the method/technology was first invented, the physical phenomena involved (how it works, for example: electron scattering, nanosized probe/detector, resonant frequency---but don t go into many details, just the basic concepts), the spatial resolution (the small object/size that can be observed), the use of the method in imaging DNA/proteins (look for images, if available), any engineering/technical challenges (design of special detectors, microscopic probes), cost of the device/apparatus, where are these devices used (universities, research centers, private companies), images of the device, images of DNA, proteins or other biological macromolecules obtained with the visualization method. Activity Extensions Activity Scaling For lower grades,? For upper grades,? Additional Multimedia Support References Other Redirect URL Contributors
6 Mircea Ionescu, Myla Van Duyn Copyright University of Houston GK12 Program Supporting Program University of Houston GK12 Program under the National Science Foundation Grant (DGE ). Version: September 2010
DNA is found in all organisms from the smallest bacteria to humans. DNA has the same composition and structure in all organisms!
Biological Sciences Initiative HHMI DNA omponents and Structure Introduction Nucleic acids are molecules that are essential to, and characteristic of, life on Earth. There are two basic types of nucleic
Lecture Overview. Hydrogen Bonds. Special Properties of Water Molecules. Universal Solvent. ph Scale Illustrated. special properties of water
Lecture Overview special properties of water > water as a solvent > ph molecules of the cell > properties of carbon > carbohydrates > lipids > proteins > nucleic acids Hydrogen Bonds polarity of water
Drexel-SDP GK-12 ACTIVITY
Drexel-SDP GK-12 ACTIVITY Subject Area(s): Biology Associated Unit: None Associated Lesson: None Activity Title : Plant or Animal Cell? Grade Level: 7 and 8 (7-9) Activity Dependency: None Time Required:
A disaccharide is formed when a dehydration reaction joins two monosaccharides. This covalent bond is called a glycosidic linkage.
CH 5 Structure & Function of Large Molecules: Macromolecules Molecules of Life All living things are made up of four classes of large biological molecules: carbohydrates, lipids, proteins, and nucleic
Chapter 11: Molecular Structure of DNA and RNA
Chapter 11: Molecular Structure of DNA and RNA Student Learning Objectives Upon completion of this chapter you should be able to: 1. Understand the major experiments that led to the discovery of DNA as
Name Date Period. 2. When a molecule of double-stranded DNA undergoes replication, it results in
DNA, RNA, Protein Synthesis Keystone 1. During the process shown above, the two strands of one DNA molecule are unwound. Then, DNA polymerases add complementary nucleotides to each strand which results
PRACTICE TEST QUESTIONS
PART A: MULTIPLE CHOICE QUESTIONS PRACTICE TEST QUESTIONS DNA & PROTEIN SYNTHESIS B 1. One of the functions of DNA is to A. secrete vacuoles. B. make copies of itself. C. join amino acids to each other.
Replication Study Guide
Replication Study Guide This study guide is a written version of the material you have seen presented in the replication unit. Self-reproduction is a function of life that human-engineered systems have
Chemical Basis of Life Module A Anchor 2
Chemical Basis of Life Module A Anchor 2 Key Concepts: - Water is a polar molecule. Therefore, it is able to form multiple hydrogen bonds, which account for many of its special properties. - Water s polarity
Basic Concepts of DNA, Proteins, Genes and Genomes
Basic Concepts of DNA, Proteins, Genes and Genomes Kun-Mao Chao 1,2,3 1 Graduate Institute of Biomedical Electronics and Bioinformatics 2 Department of Computer Science and Information Engineering 3 Graduate
Name: Date: Period: DNA Unit: DNA Webquest
Name: Date: Period: DNA Unit: DNA Webquest Part 1 History, DNA Structure, DNA Replication DNA History http://www.dnaftb.org/dnaftb/1/concept/index.html Read the text and answer the following questions.
The Molecules of Cells
The Molecules of Cells I. Introduction A. Most of the world s population cannot digest milk-based foods. 1. These people are lactose intolerant because they lack the enzyme lactase. 2. This illustrates
Carbon-organic Compounds
Elements in Cells The living substance of cells is made up of cytoplasm and the structures within it. About 96% of cytoplasm and its included structures are composed of the elements carbon, hydrogen, oxygen,
3120-1 - Page 1. Name:
Name: 1) Which series is arranged in correct order according to decreasing size of structures? A) DNA, nucleus, chromosome, nucleotide, nitrogenous base B) chromosome, nucleus, nitrogenous base, nucleotide,
DNA, RNA, Protein synthesis, and Mutations. Chapters 12-13.3
DNA, RNA, Protein synthesis, and Mutations Chapters 12-13.3 1A)Identify the components of DNA and explain its role in heredity. DNA s Role in heredity: Contains the genetic information of a cell that can
Phi: The Golden Ratio
Phi: The Golden Ratio Subject Areas Associated Unit Associated Lesson Activity Title Header Algebra, measurement, numbers, and operations Discovering Phi Grade Level 7(6-8) Activity Dependency Time Required
Chapter 3 Molecules of Cells
Bio 100 Molecules of cells 1 Chapter 3 Molecules of Cells Compounds containing carbon are called organic compounds Molecules such as methane that are only composed of carbon and hydrogen are called hydrocarbons
The molecules of life. The molecules that make up living things are really big They are called macromolecules
Food Labels All living things use materials and energy Our food comes from living things The food labels we see show us what our food is made of The stuff we are studying today can be found on food labels
Biochemistry of Cells
Biochemistry of Cells 1 Carbon-based Molecules Although a cell is mostly water, the rest of the cell consists mostly of carbon-based molecules Organic chemistry is the study of carbon compounds Carbon
Translation Study Guide
Translation Study Guide This study guide is a written version of the material you have seen presented in the replication unit. In translation, the cell uses the genetic information contained in mrna to
The Steps. 1. Transcription. 2. Transferal. 3. Translation
Protein Synthesis Protein synthesis is simply the "making of proteins." Although the term itself is easy to understand, the multiple steps that a cell in a plant or animal must go through are not. In order
How To Understand The Chemistry Of Organic Molecules
CHAPTER 3 THE CHEMISTRY OF ORGANIC MOLECULES 3.1 Organic Molecules The chemistry of carbon accounts for the diversity of organic molecules found in living things. Carbon has six electrons, four of which
Elements in Biological Molecules
Chapter 3: Biological Molecules 1. Carbohydrates 2. Lipids 3. Proteins 4. Nucleic Acids Elements in Biological Molecules Biological macromolecules are made almost entirely of just 6 elements: Carbon (C)
Unit I: Introduction To Scientific Processes
Unit I: Introduction To Scientific Processes This unit is an introduction to the scientific process. This unit consists of a laboratory exercise where students go through the QPOE2 process step by step
The Molecules of Life - Overview. The Molecules of Life. The Molecules of Life. The Molecules of Life
The Molecules of Life - Overview The Molecules of Life The Importance of Carbon Organic Polymers / Monomers Functions of Organic Molecules Origin of Organic Molecules The Molecules of Life Water is the
4. Which carbohydrate would you find as part of a molecule of RNA? a. Galactose b. Deoxyribose c. Ribose d. Glucose
1. How is a polymer formed from multiple monomers? a. From the growth of the chain of carbon atoms b. By the removal of an OH group and a hydrogen atom c. By the addition of an OH group and a hydrogen
Organic Compounds. Essential Questions: What is Organic? What are the 4 major Organic Compounds? How are they made? What are they used for?
Organic Compounds Essential Questions: What is Organic? What are the 4 major Organic Compounds? How are they made? What are they used for? Aristotle: Francesco Redi: What do we already know? Spontaneous
Genetic information (DNA) determines structure of proteins DNA RNA proteins cell structure 3.11 3.15 enzymes control cell chemistry ( metabolism )
Biology 1406 Exam 3 Notes Structure of DNA Ch. 10 Genetic information (DNA) determines structure of proteins DNA RNA proteins cell structure 3.11 3.15 enzymes control cell chemistry ( metabolism ) Proteins
Transcription and Translation of DNA
Transcription and Translation of DNA Genotype our genetic constitution ( makeup) is determined (controlled) by the sequence of bases in its genes Phenotype determined by the proteins synthesised when genes
ATOMS AND BONDS. Bonds
ATOMS AND BONDS Atoms of elements are the simplest units of organization in the natural world. Atoms consist of protons (positive charge), neutrons (neutral charge) and electrons (negative charge). The
BIOMOLECULES. reflect
reflect A child s building blocks are relatively simple structures. When they come together, however, they can form magnifi cent structures. The elaborate city scene to the right is made of small, simple
Molecular Genetics. RNA, Transcription, & Protein Synthesis
Molecular Genetics RNA, Transcription, & Protein Synthesis Section 1 RNA AND TRANSCRIPTION Objectives Describe the primary functions of RNA Identify how RNA differs from DNA Describe the structure and
12.1 The Role of DNA in Heredity
12.1 The Role of DNA in Heredity Only in the last 50 years have scientists understood the role of DNA in heredity. That understanding began with the discovery of DNA s structure. In 1952, Rosalind Franklin
BIOLOGICAL MOLECULES OF LIFE
BIOLOGICAL MOLECULES OF LIFE C A R B O H Y D R A T E S, L I P I D S, P R O T E I N S, A N D N U C L E I C A C I D S The Academic Support Center @ Daytona State College (Science 115, Page 1 of 29) Carbon
Name: Hour: Elements & Macromolecules in Organisms
Name: Hour: Elements & Macromolecules in Organisms Most common elements in living things are carbon, hydrogen, nitrogen, and oxygen. These four elements constitute about 95% of your body weight. All compounds
Calculate Gravitational Acceleration
Calculate Gravitational Acceleration Subject Areas Associated Unit Associated Lesson Activity Title Header Algebra, measurement, physics, science and technology Calculate Gravitational Acceleration Insert
Proteins and Nucleic Acids
Proteins and Nucleic Acids Chapter 5 Macromolecules: Proteins Proteins Most structurally & functionally diverse group of biomolecules. : o Involved in almost everything o Enzymes o Structure (keratin,
Section I Using Jmol as a Computer Visualization Tool
Section I Using Jmol as a Computer Visualization Tool Jmol is a free open source molecular visualization program used by students, teachers, professors, and scientists to explore protein structures. Section
Just the Facts: A Basic Introduction to the Science Underlying NCBI Resources
1 of 8 11/7/2004 11:00 AM National Center for Biotechnology Information About NCBI NCBI at a Glance A Science Primer Human Genome Resources Model Organisms Guide Outreach and Education Databases and Tools
Forensic DNA Testing Terminology
Forensic DNA Testing Terminology ABI 310 Genetic Analyzer a capillary electrophoresis instrument used by forensic DNA laboratories to separate short tandem repeat (STR) loci on the basis of their size.
2. The number of different kinds of nucleotides present in any DNA molecule is A) four B) six C) two D) three
Chem 121 Chapter 22. Nucleic Acids 1. Any given nucleotide in a nucleic acid contains A) two bases and a sugar. B) one sugar, two bases and one phosphate. C) two sugars and one phosphate. D) one sugar,
Microscopy: Principles and Advances
Microscopy: Principles and Advances Chandrashekhar V. Kulkarni University of Central Lancashire, Preston, United kingdom May, 2014 University of Ljubljana Academic Background 2005-2008: PhD-Chemical Biology
Nucleotides and Nucleic Acids
Nucleotides and Nucleic Acids Brief History 1 1869 - Miescher Isolated nuclein from soiled bandages 1902 - Garrod Studied rare genetic disorder: Alkaptonuria; concluded that specific gene is associated
Disaccharides consist of two monosaccharide monomers covalently linked by a glycosidic bond. They function in sugar transport.
1. The fundamental life processes of plants and animals depend on a variety of chemical reactions that occur in specialized areas of the organism s cells. As a basis for understanding this concept: 1.
Fastastic Frequencies
Fastastic Frequencies Subject Area(s) Associated Unit Associated Lesson Activity Title Header mathematics, physics Fantastic Frequencies Image 1 ADA Description: Students working with the Basic Stamp 2
Chapter 5: The Structure and Function of Large Biological Molecules
Name Period Concept 5.1 Macromolecules are polymers, built from monomers 1. The large molecules of all living things fall into just four main classes. Name them. 2. Circle the three classes that are called
RNA & Protein Synthesis
RNA & Protein Synthesis Genes send messages to cellular machinery RNA Plays a major role in process Process has three phases (Genetic) Transcription (Genetic) Translation Protein Synthesis RNA Synthesis
Ms. Campbell Protein Synthesis Practice Questions Regents L.E.
Name Student # Ms. Campbell Protein Synthesis Practice Questions Regents L.E. 1. A sequence of three nitrogenous bases in a messenger-rna molecule is known as a 1) codon 2) gene 3) polypeptide 4) nucleotide
DNA Replication & Protein Synthesis. This isn t a baaaaaaaddd chapter!!!
DNA Replication & Protein Synthesis This isn t a baaaaaaaddd chapter!!! The Discovery of DNA s Structure Watson and Crick s discovery of DNA s structure was based on almost fifty years of research by other
Answer: 2. Uracil. Answer: 2. hydrogen bonds. Adenine, Cytosine and Guanine are found in both RNA and DNA.
Answer: 2. Uracil Adenine, Cytosine and Guanine are found in both RNA and DNA. Thymine is found only in DNA; Uracil takes its (Thymine) place in RNA molecules. Answer: 2. hydrogen bonds The complementary
Lumens & Solar Energy Voltage
Drexel-SDP GK-12 ACTIVITY Lumens & Solar Energy Voltage Subject Area(s) Associated Unit Associated Lesson Earth & Space Activity Title Discover The Relationship Between Lumens and Solar Generated Voltage
How To Understand The Human Body
Introduction to Biology and Chemistry Outline I. Introduction to biology A. Definition of biology - Biology is the study of life. B. Characteristics of Life 1. Form and size are characteristic. e.g. A
Chapter 2. The Chemistry of Life Worksheets
Chapter 2 The Chemistry of Life Worksheets (Opening image courtesy of David Iberri, http://en.wikipedia.org/wiki/file:camkii.png, and under the Creative Commons license CC-BY-SA 3.0.) Lesson 2.1: Matter
Molecular Cell Biology
Harvey Lodish Arnold Berk Paul Matsudaira Chris A. Kaiser Monty Krieger Matthew P. Scott Lawrence Zipursky James Darnell Molecular Cell Biology Fifth Edition Chapter 2: Chemical Foundations Copyright 2004
Chapter 3: Biological Molecules. 1. Carbohydrates 2. Lipids 3. Proteins 4. Nucleic Acids
Chapter 3: Biological Molecules 1. Carbohydrates 2. Lipids 3. Proteins 4. Nucleic Acids Elements in Biological Molecules Biological macromolecules are made almost entirely of just 6 elements: Carbon (C)
Biological molecules:
Biological molecules: All are organic (based on carbon). Monomers vs. polymers: Monomers refer to the subunits that, when polymerized, make up a larger polymer. Monomers may function on their own in some
The Cell Teaching Notes and Answer Keys
The Cell Teaching Notes and Answer Keys Subject area: Science / Biology Topic focus: The Cell: components, types of cells, organelles, levels of organization Learning Aims: describe similarities and differences
Elements & Macromolecules in Organisms
Name: Date: Per: Table # Elements & Macromolecules in rganisms Most common elements in living things are carbon, hydrogen, nitrogen, and oxygen. These four elements constitute about 95% of your body weight.
Provincial Exam Questions. 9. Give one role of each of the following nucleic acids in the production of an enzyme.
Provincial Exam Questions Unit: Cell Biology: Protein Synthesis (B7 & B8) 2010 Jan 3. Describe the process of translation. (4 marks) 2009 Sample 8. What is the role of ribosomes in protein synthesis? A.
COURSE TITLE COURSE DESCRIPTION
COURSE TITLE COURSE DESCRIPTION CH-00X CHEMISTRY EXIT INTERVIEW All graduating students are required to meet with their department chairperson/program director to finalize requirements for degree completion.
DNA and Forensic Science
DNA and Forensic Science Micah A. Luftig * Stephen Richey ** I. INTRODUCTION This paper represents a discussion of the fundamental principles of DNA technology as it applies to forensic testing. A brief
DNA. Discovery of the DNA double helix
DNA Replication DNA Discovery of the DNA double helix A. 1950 s B. Rosalind Franklin - X-ray photo of DNA. C. Watson and Crick - described the DNA molecule from Franklin s X-ray. What is DNA? Question:
1. The diagram below represents a biological process
1. The diagram below represents a biological process 5. The chart below indicates the elements contained in four different molecules and the number of atoms of each element in those molecules. Which set
ASSIGNMENT DISCOVERY ONLINE CURRICULUM
Lesson title: Building a Model DNA Grade level: 6-8 Subject area: Life Science Duration: Two class periods ASSIGNMENT DISCOVERY ONLINE CURRICULUM Objectives: Students will: 1. Understand that chromosomes
Genetics Module B, Anchor 3
Genetics Module B, Anchor 3 Key Concepts: - An individual s characteristics are determines by factors that are passed from one parental generation to the next. - During gamete formation, the alleles for
Algorithms in Computational Biology (236522) spring 2007 Lecture #1
Algorithms in Computational Biology (236522) spring 2007 Lecture #1 Lecturer: Shlomo Moran, Taub 639, tel 4363 Office hours: Tuesday 11:00-12:00/by appointment TA: Ilan Gronau, Taub 700, tel 4894 Office
Chapter 5. The Structure and Function of Macromolecule s
Chapter 5 The Structure and Function of Macromolecule s Most Macromolecules are polymers: Polymer: (poly: many; mer: part) Large molecules consisting of many identical or similar subunits connected together.
13.4 Gene Regulation and Expression
13.4 Gene Regulation and Expression Lesson Objectives Describe gene regulation in prokaryotes. Explain how most eukaryotic genes are regulated. Relate gene regulation to development in multicellular organisms.
The Fibonacci Sequence
The Fibonacci Sequence Subject Area(s) Associated Unit Associated Lesson Activity Title Header Algebra, Problem Solving, Science & Technology Fibonacci s Robots Grade Level 7 (6-8) Activity Dependency
CHEMICAL SCIENCES REQUIREMENTS [61-71 UNITS]
Chemical Sciences Major Chemistry is often known as the central science because of the key position it occupies in modern science and engineering. Most phenomena in the biological and Earth sciences can
Lecture 26: Overview of deoxyribonucleic acid (DNA) and ribonucleic acid (RNA) structure
Lecture 26: Overview of deoxyribonucleic acid (DNA) and ribonucleic acid (RNA) structure Nucleic acids play an important role in the storage and expression of genetic information. They are divided into
The sequence of bases on the mrna is a code that determines the sequence of amino acids in the polypeptide being synthesized:
Module 3F Protein Synthesis So far in this unit, we have examined: How genes are transmitted from one generation to the next Where genes are located What genes are made of How genes are replicated How
Bob Jesberg. Boston, MA April 3, 2014
DNA, Replication and Transcription Bob Jesberg NSTA Conference Boston, MA April 3, 2014 1 Workshop Agenda Looking at DNA and Forensics The DNA, Replication i and Transcription i Set DNA Ladder The Double
20.309: Biological Instrumentation and Measurement. Heejin Choi Rumi Chunara Yuri Matsumoto
20.309: Biological Instrumentation and Measurement Instructors: Laboratory Instructor: Teaching Assistants: Scott Manalis and Peter So Steve Wasserman Jaewon Cha Heejin Choi Rumi Chunara Yuri Matsumoto
Structure and Function of DNA
Structure and Function of DNA DNA and RNA Structure DNA and RNA are nucleic acids. They consist of chemical units called nucleotides. The nucleotides are joined by a sugar-phosphate backbone. The four
a. Ribosomal RNA rrna a type ofrna that combines with proteins to form Ribosomes on which polypeptide chains of proteins are assembled
Biology 101 Chapter 14 Name: Fill-in-the-Blanks Which base follows the next in a strand of DNA is referred to. as the base (1) Sequence. The region of DNA that calls for the assembly of specific amino
Molecular Models Experiment #1
Molecular Models Experiment #1 Objective: To become familiar with the 3-dimensional structure of organic molecules, especially the tetrahedral structure of alkyl carbon atoms and the planar structure of
8.3 The Process of Photosynthesis
8.3 The Process of Photosynthesis Lesson Objectives Describe what happens during the light-dependent reactions. Describe what happens during the light-independent reactions. Identify factors that affect
Quick Hit Activity Using UIL Science Contests For Formative and Summative Assessments of Pre-AP and AP Biology Students
Quick Hit Activity Using UIL Science Contests For Formative and Summative Assessments of Pre-AP and AP Biology Students Activity Title: Quick Hit Goal of Activity: To perform formative and summative assessments
Keystone Review Practice Test Module A Cells and Cell Processes. 1. Which characteristic is shared by all prokaryotes and eukaryotes?
Keystone Review Practice Test Module A Cells and Cell Processes 1. Which characteristic is shared by all prokaryotes and eukaryotes? a. Ability to store hereditary information b. Use of organelles to control
K'NEX DNA Models. Developed by Dr. Gary Benson Department of Biomathematical Sciences Mount Sinai School of Medicine
KNEX DNA Models Introduction Page 1 of 11 All photos by Kevin Kelliher. To download an Acrobat pdf version of this website Click here. K'NEX DNA Models Developed by Dr. Gary Benson Department of Biomathematical
Thymine = orange Adenine = dark green Guanine = purple Cytosine = yellow Uracil = brown
1 DNA Coloring - Transcription & Translation Transcription RNA, Ribonucleic Acid is very similar to DNA. RNA normally exists as a single strand (and not the double stranded double helix of DNA). It contains
Introduction to the Cell: Plant and Animal Cells
Introduction to the Cell: Plant and Animal Cells Tissues, Organs, and Systems of Living Things Cells, Cell Division, and Animal Systems and Plant Systems Cell Specialization Human Systems All organisms
Name Class Date. Figure 13 1. 2. Which nucleotide in Figure 13 1 indicates the nucleic acid above is RNA? a. uracil c. cytosine b. guanine d.
13 Multiple Choice RNA and Protein Synthesis Chapter Test A Write the letter that best answers the question or completes the statement on the line provided. 1. Which of the following are found in both
1 Introduction. 1.1 Historical Perspective
j1 1 Introduction 1.1 Historical Perspective The invention of scanning probe microscopy is considered one of the major advances in materials science since 1950 [1, 2]. Scanning probe microscopy includes
Teacher Guide: Have Your DNA and Eat It Too ACTIVITY OVERVIEW. http://gslc.genetics.utah.edu
ACTIVITY OVERVIEW Abstract: Students build an edible model of DNA while learning basic DNA structure and the rules of base pairing. Module: The Basics and Beyond Prior Knowledge Needed: DNA contains heritable
Student name ID # 2. (4 pts) What is the terminal electron acceptor in respiration? In photosynthesis? O2, NADP+
1. Membrane transport. A. (4 pts) What ion couples primary and secondary active transport in animal cells? What ion serves the same function in plant cells? Na+, H+ 2. (4 pts) What is the terminal electron
MCAS Biology. Review Packet
MCAS Biology Review Packet 1 Name Class Date 1. Define organic. THE CHEMISTRY OF LIFE 2. All living things are made up of 6 essential elements: SPONCH. Name the six elements of life. S N P C O H 3. Elements
Carbohydrates Lipids Proteins Nucleic Acids
Carbohydrates Lipids Proteins Nucleic Acids Carbon The element of life! All living things contain the element carbon. Organic means it contains carbon The reason for this is because of carbon s ability
Lab 3 Organic Molecules of Biological Importance
Name Biology 3 ID Number Lab 3 Organic Molecules of Biological Importance Section 1 - Organic Molecules Section 2 - Functional Groups Section 3 - From Building Blocks to Macromolecules Section 4 - Carbohydrates
Biochemistry. Entrance Requirements. Requirements for Honours Programs. 148 Bishop s University 2015/2016
148 Bishop s University 2015/2016 Biochemistry The Biochemistry program at Bishop s is coordinated through an interdisciplinary committee of chemists, biochemists and biologists, providing students with
BIOLOGY 101 COURSE SYLLABUS FOR FALL 2015
BIOLOGY 101 COURSE SYLLABUS FOR FALL 2015 Course Description Instructor Biology 101 is the first of a two-semester introductory course sequence designed primarily for science majors. It covers some central
For additional information on the program, see the current university catalog.
For information call: Tel: (818) 77-81 Fax: (818) 77-08 E-mail: [email protected] Website: http://www.csun.edu/chemistry Or write: Department of Chemistry and Biochemistry California State University,
Academic Nucleic Acids and Protein Synthesis Test
Academic Nucleic Acids and Protein Synthesis Test Multiple Choice Identify the letter of the choice that best completes the statement or answers the question. 1. Each organism has a unique combination
Biochemistry 1 Course Specifications. First year of M.B.B.Ch. Program
Faculty of Medicine Quality Assurance Unit Al-Azhar University Assuit Faculty of Medicine Biochemistry 1 Course Specifications First year of M.B.B.Ch. Program A- Professional information: Title: Biochemistry1
Carbohydrates, proteins and lipids
Carbohydrates, proteins and lipids Chapter 3 MACROMOLECULES Macromolecules: polymers with molecular weights >1,000 Functional groups THE FOUR MACROMOLECULES IN LIFE Molecules in living organisms: proteins,
Chapter 2 Phosphorus in the Organic Life: Cells, Tissues, Organisms
Chapter 2 Phosphorus in the Organic Life: Cells, Tissues, Organisms As already mentioned (see Chap. 1 ), in the living cell phosphorus plays a decisive role in three different essential structures: In
The DNA Discovery Kit The Discovery Approach & Teacher Notes
...where molecules become real TM The DNA Discovery Kit & Teacher Notes www.3dmoleculardesigns.com All rights reserved on DNA Discovery Kit. US Patent 6,471,520 B1 Photos by Sean Ryan The DNA Discovery
1.5 page 3 DNA Replication S. Preston 1
AS Unit 1: Basic Biochemistry and Cell Organisation Name: Date: Topic 1.5 Nucleic Acids and their functions Page 3 l. DNA Replication 1. Go through PowerPoint 2. Read notes p2 and then watch the animation
SCIENCE. Introducing updated Cambridge International AS & A Level syllabuses for. Biology 9700 Chemistry 9701 Physics 9702
Introducing updated Cambridge International AS & A Level syllabuses for SCIENCE Biology 9700 Chemistry 9701 Physics 9702 The revised Cambridge International AS & A Level Biology, Chemistry and Physics
