Atomic Force Microscopy. July, 2011 R. C. Decker and S. Qazi
|
|
|
- Charlotte Sherman
- 10 years ago
- Views:
Transcription
1 Atomic Force Microscopy July, 2011 R. C. Decker and S. Qazi
2 Learning through Visualization Visualization of physical phenomena can confirm hypothesis Observation provides opportunities for study without damaging the sample Objects under study may be too small for our hands to handle or manipulate Our students are motivated by seeing for themselves!
3 Human Visual Acuity At about 300 mm (12 ), a person with 20/20 vision is able (at best) to resolve objects separated by not more than about mm ( ) under normal lighting conditions To see smaller objects, we use magnification systems including single convex lenses (magnifying glasses) and more complex vision enhancement systems such as optical microscopes.
4 Limits in Visualization Optical Microscopy Resolution Limits σ= kλ/na Where σ = minimum feature size λ=wavelength of light used NA = Numeric Aperture (lens) k = Constant (about 0.5) Shorter wavelengths of light and higher numerical aperture lenses are difficult to produce! High Index of Refraction materials are difficult to produce.
5 Some Options for Visualization Observe the sample with shorter wavelengths of light or radiation Need to convert the imaging result into something that we can visualize X-Ray film Scanning Electron Microscope Probe the sample physically Need to be very, very careful Mechanical feedback Motion to vision conversion required
6 AFM A Probing Solution Atomic Force Microscopy An imaging method for visualization of nanoscale objects 1 nanometer = 10-9 M A member of the scanning probe microscope family A tool to measure both topography and force-related material properties
7 AFM Very Brief History 1985 Gerd Binnig and Heinrich Rohrer win Nobel Prize for invention of a scanning tunneling microscope invented in 1981 Uses tunneling current to probe conductive surfaces to plot topography by measuring distance-dependent current Binnig, Quate and Gerber invent AFM in 1985 Uses nanoscale probe to make contact for nonconducting samples
8 AFM Block Diagram oscope_block_diagram.png
9 AFM Probing Operation The properties of the surface affect the position of the mirror Variations in height cause more deflection Interaction between surface and probe can be measured to provide information on the surface Atomic Scale Forces can be detected
10 Some Dimensional Reality AFM field of view is typically in the um range in x- and y- axis AFMs probing by contact or intermittent contact (dynamic) mode commonly have a z-axis limit of 5 15 um Samples must be flat within the z-axis limit but can be quite large in x-and y-axis Areas to be probed need to be identified
11 Project Rationale Utilize visualization tools to facilitate learning at the nanoscale Develop facilities at each college Initial learning/techniques at CC level Further learning/courses at BS Level Provide outreach activities in region Portable/remote access tools Professional Development Activities
12 Project Activities Develop understanding of techniques and advantages/limitations of instruments Visits to other AFM Sites Attendance at vendor-sponsored seminars Completion of workshops at NSF-ATE Centers Development of specifications for AFM Curriculum-specific needs Broader Applications
13 Project Activities (2) Development of AFM Capabilities Instrument Bid/Purchase Interface with Vendors Technique Development Sample Analysis and Preparation Cantilever/Probe Selection and Use Classroom Presentation
14 Project Activities (3) Activities and Outreach MVCC Summer Institute SUNY-IT IEEE Student Chapter Presentation High School Nanotechnology/Science Classes SUNY IT/MVCC lab classes High School Science Saturday workshop Faculty/Industry Workshop Project Presentations Industry Speakers
15 Project Activities (4) Materials/Activities Development AFM Narrative for Presenters PowerPoint presentations Laboratory Exercises (basic techniques) Lecture/lab visits Presentations on theory and demonstrations
16 AFMs Acquired
17 AFM - Lessons Learned Instrument Selection Dynamic mode options offered flexibility Anti-vibration systems improve image quality Tip exchange flexibility/ ease is important Tips can be damaged and require replacement Operator training and experience.vs. time Cantilever/tip costs Different grades of same type are often available Practice approaches and training are important
18 AFM Lessons Learned (2) Samples for Visualization Prepared sample kits were of value in improving technique and troubleshooting problems Known sample properties were helpful in exercise development Partnerships and sharing of good samples from other programs and/or departments stimulated project growth
19 AFM Visualization Samples I d like to look at my own materials, please! Tools for creating visualization samples are helpful Sputter/deposition systems for thin metal films Spinners for polymers and other films Chemical/mechanical polishing tools for sample prep Samples must be flat, fixed, clean and probeable Sample heights must be within the range of the z-axis Sample features must be in a definable region Flat, planar substrates for mounting are important TV camera/microscope for positioning is helpful
20 AFM Visualization Samples (2) Fixturing of samples is important Simple means and adhesives may work for dry samples Imaging in liquids requires specific instrument features Contamination of samples may be a concern Atomic level forces can include attraction or repulsion due to weak forces Environmental controls may be required Cleaning and handling of samples is important
21 Suggestions for Development Identify Partners Other Colleges Programs within your college Vendor-sponsored workshops, webinars, and conferences Shared Curriculum Materials NACK Penn State Nano-Link University Programs Collaborative Workshops
22 Laboratory Exercises Online Access to AFM Provides a method to have more tools in your lab Computer access identical to in-person use with the exception of sample loading Requires coordination and technician at remote site Consider this in your project to share with others Creative Scheduling Labs on flexible or open schedules Requires technician for open hours
23 Curriculum Development If you have precise imaging needs, you may have plenty to do Course integration ET 289 Intro to SMT ETC 290 Intro to Nanotechnology (SUNY IT) ETC 390 Intro to MEMS But partnerships stimulate applications! PH 263 Engineering Physics 3 (MVCC) MT 209 Materials Science (MVCC) BI??? Life Sciences!
24 Challenges, Opportunities, and Solutions AFM Imaging can be a time-intensive Line by line scanning can require several minutes to acquire Multiple scans may be required Capture images outside of real time Take a quick first pass and then zoom in Professional Development is Important Vendor-sponsored training and webinars University and Community College Workshops Partnerships with other NSF Projects and Centers
25 Applications beyond Visualization As a probing tool, AFM can provide additional information on the samples it visualizes Adhesion Conductivity Magnetic Forces Weak Forces AFM can also modify the sample Manipulation of Nanoscale objects Nano-lithography
26 Questions?
27 Disclaimer This project is sponsored in part by the National Science Foundation under grant # ). Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect those of the National Science Foundation
ATOMIC FORCE MICROSCOPY
ATOMIC FORCE MICROSCOPY Introduction The atomic force microscope, or AFM, is a member of the family of instruments known as scanning probe microscopes. The AFM operates under a completely different principle
1 Introduction. 1.1 Historical Perspective
j1 1 Introduction 1.1 Historical Perspective The invention of scanning probe microscopy is considered one of the major advances in materials science since 1950 [1, 2]. Scanning probe microscopy includes
Lecture 4 Scanning Probe Microscopy (SPM)
Lecture 4 Scanning Probe Microscopy (SPM) General components of SPM; Tip --- the probe; Cantilever --- the indicator of the tip; Tip-sample interaction --- the feedback system; Scanner --- piezoelectric
Lecture 6 Scanning Tunneling Microscopy (STM) General components of STM; Tunneling current; Feedback system; Tip --- the probe.
Lecture 6 Scanning Tunneling Microscopy (STM) General components of STM; Tunneling current; Feedback system; Tip --- the probe. Brief Overview of STM Inventors of STM The Nobel Prize in Physics 1986 Nobel
Atomic Force Microscopy. Long Phan Nanotechnology Summer Series May 15, 2013
Atomic Force Microscopy Long Phan Nanotechnology Summer Series May 15, 2013 1 World s Smallest Movie 2 Outline What is AFM? How does AFM Work? 3 Modes: Contact mode Non contact mode Tapping mode Imaging
Near-field scanning optical microscopy (SNOM)
Adviser: dr. Maja Remškar Institut Jožef Stefan January 2010 1 2 3 4 5 6 Fluorescence Raman and surface enhanced Raman 7 Conventional optical microscopy-limited resolution Two broad classes of techniques
Microscope Lab Introduction to the Microscope Lab Activity
Microscope Lab Introduction to the Microscope Lab Activity Wendy Kim 3B 24 Sep 2010 http://www.mainsgate.com/spacebio/modules/gs_resource/ CellDivisionMetaphase.jpeg 1 Introduction Microscope is a tool
The Basics of Scanning Electron Microscopy
The Basics of Scanning Electron Microscopy The small scanning electron microscope is easy to use because almost every variable is pre-set: the acceleration voltage is always 15kV, it has only a single
Microscopy. MICROSCOPY Light Electron Tunnelling Atomic Force RESOLVE: => INCREASE CONTRAST BIODIVERSITY I BIOL1051 MAJOR FUNCTIONS OF MICROSCOPES
BIODIVERSITY I BIOL1051 Microscopy Professor Marc C. Lavoie [email protected] MAJOR FUNCTIONS OF MICROSCOPES MAGNIFY RESOLVE: => INCREASE CONTRAST Microscopy 1. Eyepieces 2. Diopter adjustment
Microscopy: Principles and Advances
Microscopy: Principles and Advances Chandrashekhar V. Kulkarni University of Central Lancashire, Preston, United kingdom May, 2014 University of Ljubljana Academic Background 2005-2008: PhD-Chemical Biology
IBM's Millipede. Conor Walsh Friction and Wear of Materials RPI Hartford 12/13/12
IBM's Millipede Conor Walsh Friction and Wear of Materials RPI Hartford 12/13/12 The Millipede data storage device was developed by IBM and first demonstrated as a prototype at the 2005 CeBIT computer
FRT - setting the standard
FRT - setting the standard Surface Analysis Metrology Instruments Process Control Chromatic white light sensor Weißlicht Specs: Linse blauer Fokus roter Fokus max height range 300 µm 600 µm 3 mm 10 mm
Lenses and Apertures of A TEM
Instructor: Dr. C.Wang EMA 6518 Course Presentation Lenses and Apertures of A TEM Group Member: Anup Kr. Keshri Srikanth Korla Sushma Amruthaluri Venkata Pasumarthi Xudong Chen Outline Electron Optics
Plastic Film Texture Measurement With 3D Profilometry
Plastic Film Texture Measurement With 3D Profilometry Prepared by Jorge Ramirez 6 Morgan, Ste156, Irvine CA 92618 P: 949.461.9292 F: 949.461.9232 nanovea.com Today's standard for tomorrow's materials.
Microscopic Techniques
Microscopic Techniques Outline 1. Optical microscopy Conventional light microscopy, Fluorescence microscopy, confocal/multiphoton microscopy and Stimulated emission depletion microscopy 2. Scanning probe
Preface Light Microscopy X-ray Diffraction Methods
Preface xi 1 Light Microscopy 1 1.1 Optical Principles 1 1.1.1 Image Formation 1 1.1.2 Resolution 3 1.1.3 Depth of Field 5 1.1.4 Aberrations 6 1.2 Instrumentation 8 1.2.1 Illumination System 9 1.2.2 Objective
Basic principles and mechanisms of NSOM; Different scanning modes and systems of NSOM; General applications and advantages of NSOM.
Lecture 16: Near-field Scanning Optical Microscopy (NSOM) Background of NSOM; Basic principles and mechanisms of NSOM; Basic components of a NSOM; Different scanning modes and systems of NSOM; General
Laser Based Micro and Nanoscale Manufacturing and Materials Processing
Laser Based Micro and Nanoscale Manufacturing and Materials Processing Faculty: Prof. Xianfan Xu Email: [email protected] Phone: (765) 494-5639 http://widget.ecn.purdue.edu/~xxu Research Areas: Development
Nanoscience Course Descriptions
Nanoscience Course Descriptions NANO*1000 Introduction to Nanoscience This course introduces students to the emerging field of nanoscience. Its representation in popular culture and journalism will be
Chapter 4. Microscopy, Staining, and Classification. Lecture prepared by Mindy Miller-Kittrell North Carolina State University
Chapter 4 Microscopy, Staining, and Classification 2012 Pearson Education Inc. Lecture prepared by Mindy Miller-Kittrell North Carolina State University Microscopy and Staining 2012 Pearson Education Inc.
Subject Area(s) Biology. Associated Unit Engineering Nature: DNA Visualization and Manipulation. Associated Lesson Imaging the DNA Structure
Subject Area(s) Biology Associated Unit Engineering Nature: DNA Visualization and Manipulation Associated Lesson Imaging the DNA Structure Activity Title Inside the DNA Header Image 1 ADA Description:
Usage of Carbon Nanotubes in Scanning Probe Microscopes as Probe. Keywords: Carbon Nanotube, Scanning Probe Microscope
International Journal of Arts and Sciences 3(1): 18-26 (2009) CD-ROM. ISSN: 1944-6934 InternationalJournal.org Usage of Carbon Nanotubes in Scanning Probe Microscopes as Probe Bedri Onur Kucukyildirim,
Physics 441/2: Transmission Electron Microscope
Physics 441/2: Transmission Electron Microscope Introduction In this experiment we will explore the use of transmission electron microscopy (TEM) to take us into the world of ultrasmall structures. This
Section 13.3 Telescopes and Microscopes
Glass correcting plate Secondary Finder scope ive Diagonal prism Equatorial drive Equatorial mount Section 13.3 Telescopes and Microscopes Tripod Not everything that we wish to see is visible to the naked
- particle with kinetic energy E strikes a barrier with height U 0 > E and width L. - classically the particle cannot overcome the barrier
Tunnel Effect: - particle with kinetic energy E strikes a barrier with height U 0 > E and width L - classically the particle cannot overcome the barrier - quantum mechanically the particle can penetrated
Nanometer-scale imaging and metrology, nano-fabrication with the Orion Helium Ion Microscope
[email protected] Nanometer-scale imaging and metrology, nano-fabrication with the Orion Helium Ion Microscope Bin Ming, András E. Vladár and Michael T. Postek National Institute of Standards and Technology
1051-232 Imaging Systems Laboratory II. Laboratory 4: Basic Lens Design in OSLO April 2 & 4, 2002
05-232 Imaging Systems Laboratory II Laboratory 4: Basic Lens Design in OSLO April 2 & 4, 2002 Abstract: For designing the optics of an imaging system, one of the main types of tools used today is optical
Revision problem. Chapter 18 problem 37 page 612. Suppose you point a pinhole camera at a 15m tall tree that is 75m away.
Revision problem Chapter 18 problem 37 page 612 Suppose you point a pinhole camera at a 15m tall tree that is 75m away. 1 Optical Instruments Thin lens equation Refractive power Cameras The human eye Combining
Scanning Probe Microscopy
Ernst Meyer Hans Josef Hug Roland Bennewitz Scanning Probe Microscopy The Lab on a Tip With 117 Figures Mß Springer Contents 1 Introduction to Scanning Probe Microscopy f f.1 Overview 2 f.2 Basic Concepts
Keysight Technologies How to Choose your MAC Lever. Technical Overview
Keysight Technologies How to Choose your MAC Lever Technical Overview Introduction Atomic force microscopy (AFM) is a sub-nanometer scale imaging and measurement tool that can be used to determine a sample
3D TOPOGRAPHY & IMAGE OVERLAY OF PRINTED CIRCUIT BOARD ASSEMBLY
3D TOPOGRAPHY & IMAGE OVERLAY OF PRINTED CIRCUIT BOARD ASSEMBLY Prepared by Duanjie Li, PhD & Andrea Novitsky 6 Morgan, Ste156, Irvine CA 92618 P: 949.461.9292 F: 949.461.9232 nanovea.com Today's standard
Forensic Science: The Basics. Microscopy
Forensic Science: The Basics Microscopy Chapter 6 Jay A. Siegel,Ph.D. Power point presentation by Greg Galardi, Peru State College, Peru Nebraska Presentation by Greg Galardi, Peru State College CRC Press,
7/3/2014. Introduction to Atomic Force Microscope. Introduction to Scanning Force Microscope. Invention of Atomic Force Microscope (AFM)
Introduction to Atomic Force Microscope Introduction to Scanning Force Microscope Not that kind of atomic Tien Ming Chuang ( 莊 天 明 ) Institute of Physics, Academia Sinica Tien Ming Chuang ( 莊 天 明 ) Institute
Geometric Optics Converging Lenses and Mirrors Physics Lab IV
Objective Geometric Optics Converging Lenses and Mirrors Physics Lab IV In this set of lab exercises, the basic properties geometric optics concerning converging lenses and mirrors will be explored. The
The Design and Characteristic Study of a 3-dimensional Piezoelectric Nano-positioner
SICE Annual Conference August 8-,, The Grand Hotel, Taipei, Taiwan The Design and Characteristic Study of a -dimensional Piezoelectric Nano-positioner Yu-Chi Wang Department of Mechanical Engineering National
2) A convex lens is known as a diverging lens and a concave lens is known as a converging lens. Answer: FALSE Diff: 1 Var: 1 Page Ref: Sec.
Physics for Scientists and Engineers, 4e (Giancoli) Chapter 33 Lenses and Optical Instruments 33.1 Conceptual Questions 1) State how to draw the three rays for finding the image position due to a thin
Atomic Force Microscope and Magnetic Force Microscope Background Information
Atomic Force Microscope and Magnetic Force Microscope Background Information Lego Building Instructions There are several places to find the building instructions for building the Lego models of atomic
waves rays Consider rays of light from an object being reflected by a plane mirror (the rays are diverging): mirror object
PHYS1000 Optics 1 Optics Light and its interaction with lenses and mirrors. We assume that we can ignore the wave properties of light. waves rays We represent the light as rays, and ignore diffraction.
CSCI 4974 / 6974 Hardware Reverse Engineering. Lecture 8: Microscopy and Imaging
CSCI 4974 / 6974 Hardware Reverse Engineering Lecture 8: Microscopy and Imaging Data Acquisition for RE Microscopy Imaging Registration and stitching Microscopy Optical Electron Scanning Transmission Scanning
Atomic Force Microscope Physics Assignment
Atomic Force Microscope Physics Assignment Group Members: İbrahim Mert DARICI Syed Arslan Afzal HASHMI Ali ZAREI Sudhakar Murthy MOLLI Materials Processing 2006 PHYSICS ASSIGNMENT 1 Content 1 Introduction...
THE COMPOUND MICROSCOPE
THE COMPOUND MICROSCOPE In microbiology, the microscope plays an important role in allowing us to see tiny objects that are normally invisible to the naked eye. It is essential for students to learn how
CREOL, College of Optics & Photonics, University of Central Florida
OSE6650 - Optical Properties of Nanostructured Materials Optical Properties of Nanostructured Materials Fall 2013 Class 3 slide 1 Challenge: excite and detect the near field Thus far: Nanostructured materials
Nanoelectronics 09. Atsufumi Hirohata Department of Electronics. Quick Review over the Last Lecture
Nanoelectronics 09 Atsufumi Hirohata Department of Electronics 12:00 Wednesday, 4/February/2015 (P/L 006) Quick Review over the Last Lecture ( Field effect transistor (FET) ): ( Drain ) current increases
First let us consider microscopes. Human eyes are sensitive to radiation having wavelengths between
Optical Differences Between Telescopes and Microscopes Robert R. Pavlis, Girard, Kansas USA icroscopes and telescopes are optical instruments that are designed to permit observation of objects and details
STM and AFM Tutorial. Katie Mitchell January 20, 2010
STM and AFM Tutorial Katie Mitchell January 20, 2010 Overview Scanning Probe Microscopes Scanning Tunneling Microscopy (STM) Atomic Force Microscopy (AFM) Contact AFM Non-contact AFM RHK UHV350 AFM/STM
WOOD WEAR TESTING USING TRIBOMETER
WOOD WEAR TESTING USING TRIBOMETER Prepared by Duanjie Li, PhD 6 Morgan, Ste156, Irvine CA 92618 P: 949.461.9292 F: 949.461.9232 nanovea.com Today's standard for tomorrow's materials. 2015 NANOVEA INTRO
Microscopie à force atomique: Le mode noncontact
Microscopie à force atomique: Le mode noncontact Clemens Barth [email protected] CRMCN-CNRS, Campus de Lumny, Case 913, 13288 Marseille Cedex09, France La Londe les Maures (France) -- 20-21/03/2007
Calibration of AFM with virtual standards; robust, versatile and accurate. Richard Koops VSL Dutch Metrology Institute Delft
Calibration of AFM with virtual standards; robust, versatile and accurate Richard Koops VSL Dutch Metrology Institute Delft 19-11-2015 VSL Dutch Metrology Institute VSL is the national metrology institute
Measuring the Point Spread Function of a Fluorescence Microscope
Frederick National Laboratory Measuring the Point Spread Function of a Fluorescence Microscope Stephen J Lockett, PhD Principal Scientist, Optical Microscopy and Analysis Laboratory Frederick National
h e l p s y o u C O N T R O L
contamination analysis for compound semiconductors ANALYTICAL SERVICES B u r i e d d e f e c t s, E v a n s A n a l y t i c a l g r o u p h e l p s y o u C O N T R O L C O N T A M I N A T I O N Contamination
What is Nanophysics: Survey of Course Topics. Branislav K. Nikolić
What is Nanophysics: Survey of Course Topics Branislav K. Nikolić Department of Physics and Astronomy, University of Delaware, Newark, DE 19716, U.S.A. http://wiki.physics.udel.edu/phys824 Definition of
MICROSCOPY. To demonstrate skill in the proper utilization of a light microscope.
MICROSCOPY I. OBJECTIVES To demonstrate skill in the proper utilization of a light microscope. To demonstrate skill in the use of ocular and stage micrometers for measurements of cell size. To recognize
1. You stand two feet away from a plane mirror. How far is it from you to your image? a. 2.0 ft c. 4.0 ft b. 3.0 ft d. 5.0 ft
Lenses and Mirrors 1. You stand two feet away from a plane mirror. How far is it from you to your image? a. 2.0 ft c. 4.0 ft b. 3.0 ft d. 5.0 ft 2. Which of the following best describes the image from
Atomic Force Microscope
Atomic Force Microscope (Veeco Nanoman) User Manual Basic Operation 4 th Edition Aug 2012 NR System Startup If the system is currently ON To start the NanoScope software, double-click the NanoScope startup
DOE Solar Energy Technologies Program Peer Review. Denver, Colorado April 17-19, 2007
DOE Solar Energy Technologies Program Peer Review Evaluation of Nanocrystalline Silicon Thin Film by Near-Field Scanning Optical Microscopy AAT-2-31605-05 Magnus Wagener and George Rozgonyi North Carolina
Application Report: Running µshape TM on a VF-20 Interferometer
: Running µshape TM on a VF-20 Interferometer General This report describes how a fiber interferometer from Arden Photonics Ltd was used together with the µshape TM Generic software package. The VF-20
Application Note #503 Comparing 3D Optical Microscopy Techniques for Metrology Applications
Screw thread image generated by WLI Steep PSS angles WLI color imaging Application Note #503 Comparing 3D Optical Microscopy Techniques for Metrology Applications 3D optical microscopy is a mainstay metrology
nanovea.com MECHANICAL TESTERS Indentation Scratch Wear
MECHANICAL TESTERS Indentation Scratch Wear nanovea.com MECHANICAL TESTER INTRO Nanovea Mechanical Testers provide unmatched multi-function Nano and Micro/Macro modules on a single platform. Both the Nano
Mass production, R&D Failure analysis. Fault site pin-pointing (EM, OBIRCH, FIB, etc. ) Bottleneck Physical science analysis (SEM, TEM, Auger, etc.
Failure Analysis System for Submicron Semiconductor Devices 68 Failure Analysis System for Submicron Semiconductor Devices Munetoshi Fukui Yasuhiro Mitsui, Ph. D. Yasuhiko Nara Fumiko Yano, Ph. D. Takashi
1. Photon Beam Damage and Charging at Solid Surfaces John H. Thomas III
1. Photon Beam Damage and Charging at Solid Surfaces John H. Thomas III 1. Introduction............................. 2. Electrostatic Charging of Samples in Photoemission Experiments............................
P R E A M B L E. Facilitated workshop problems for class discussion (1.5 hours)
INSURANCE SCAM OPTICS - LABORATORY INVESTIGATION P R E A M B L E The original form of the problem is an Experimental Group Research Project, undertaken by students organised into small groups working as
Nano-Spectroscopy. Solutions AFM-Raman, TERS, NSOM Chemical imaging at the nanoscale
Nano-Spectroscopy Solutions AFM-Raman, TERS, NSOM Chemical imaging at the nanoscale Since its introduction in the early 80 s, Scanning Probe Microscopy (SPM) has quickly made nanoscale imaging an affordable
To measure an object length, note the number of divisions spanned by the object then multiply by the conversion factor for the magnification used.
STAGE MICROMETERS Introduction Whenever there is a need to make measurements with an eyepiece graticule, there is also a need to ensure that the microscope is calibrated. The use of a stage micrometer
Surface Analysis with STM and AFM
Sergei N. Magonov, Myung-Hwan Whangbo Surface Analysis with STM and AFM Experimental and Theoretical Aspects of Image Analysis VCH Weinheim New York Basel Cambridge Tokyo Preface V 1 Introduction 1 1.1
Bio 321 Lightmicroscopy Electronmicrosopy Image Processing
Bio 321 Lightmicroscopy Electronmicrosopy Image Processing Urs Ziegler Center for Microscopy and Image Analysis Light microscopy (Confocal Laser Scanning Microscopy) Light microscopy (Confocal Laser Scanning
PCB Component Placement Inspection
Executive Summary PCB Component Placement Inspection Optimet s ConoProbe Mark10 HD with a 50 mm focal length lens was used to inspect PCB component placement. The PCB board inspected contained both individual
CSI Oil Analysis Options
Product Data Sheet L-OAOB-101105 October 2005 Machinery Health Management CSI Oil Analysis Options n CSI Oil Laboratory provides accurate and comprehensive industrial oil analysis results you can import
Sensors & Instruments for station. returned samples. Chun Chia Tan
Sensors & Instruments for station based materials characterization of returned samples Chun Chia Tan 04/01/2009 Outline Introduction to materials characterization General overview of the equipment used
Scanning Electron Microscopy Services for Pharmaceutical Manufacturers
Scanning Electron Microscopy Services for Pharmaceutical Manufacturers Author: Gary Brake, Marketing Manager Date: August 1, 2013 Analytical Testing Laboratory www.atl.semtechsolutions.com Scanning Electron
Nanoscale Resolution Options for Optical Localization Techniques. C. Boit TU Berlin Chair of Semiconductor Devices
berlin Nanoscale Resolution Options for Optical Localization Techniques C. Boit TU Berlin Chair of Semiconductor Devices EUFANET Workshop on Optical Localization Techniques Toulouse, Jan 26, 2009 Jan 26,
5. Scanning Near-Field Optical Microscopy 5.1. Resolution of conventional optical microscopy
5. Scanning Near-Field Optical Microscopy 5.1. Resolution of conventional optical microscopy Resolution of optical microscope is limited by diffraction. Light going through an aperture makes diffraction
Electron Microscopy 3. SEM. Image formation, detection, resolution, signal to noise ratio, interaction volume, contrasts
Electron Microscopy 3. SEM Image formation, detection, resolution, signal to noise ratio, interaction volume, contrasts 3-1 SEM is easy! Just focus and shoot "Photo"!!! Please comment this picture... Any
A METHOD OF PRECISE CALIBRATION FOR PIEZOELECTRICAL ACTUATORS
Uludağ Üniversitesi Mühendislik-Mimarlık Fakültesi Dergisi, Cilt 9, Sayı, 24 A METHOD OF PRECISE CALIBRATION FOR PIEZOELECTRICAL ACTUATORS Timur CANEL * Yüksel BEKTÖRE ** Abstract: Piezoelectrical actuators
EXPERIMENT #1: MICROSCOPY
EXPERIMENT #1: MICROSCOPY Brightfield Compound Light Microscope The light microscope is an important tool in the study of microorganisms. The compound light microscope uses visible light to directly illuminate
www.keithley.com 1 st Edition Nanotechnology Measurement Handbook A Guide to Electrical Measurements for Nanoscience Applications
www.keithley.com 1 st Edition Nanotechnology Measurement Handbook A Guide to Electrical Measurements for Nanoscience Applications To get a free electronic version of this book, visit Keithley s Knowledge
Fast Z-stacking 3D Microscopy Extended Depth of Field Autofocus Z Depth Measurement 3D Surface Analysis
Cam CANIMPEX CPX-SOLUTIONS 3D Digital Microscope Camera FAST PRECISE AFFORDABLE 3D CAMERA FOR MICROSCOPY Fast Z-stacking 3D Microscopy Extended Depth of Field Autofocus Z Depth Measurement 3D Surface Analysis
Thin Lenses Drawing Ray Diagrams
Drawing Ray Diagrams Fig. 1a Fig. 1b In this activity we explore how light refracts as it passes through a thin lens. Eyeglasses have been in use since the 13 th century. In 1610 Galileo used two lenses
Sun to Fiber: a thin film optical funnel for energy conversion and storage
Sun to Fiber: a thin film optical funnel for energy conversion and storage Matthew Garrett, Juan J. Díaz León, Kailas Vodrahalli, Taesung Kim, Ernest Demaray, Nobuhiko Kobayashi Department of Electrical
MEASUREMENT OF END FACE GEOMETRY ON FIBER OPTIC TERMINI...2
MEASUREMENT OF END FACE GEOMETRY ON FIBER OPTIC TERMINI...2 IMPORTANCE OF END FACE GEOMETRY...2 FIBER OPTIC CONNECTOR END FACE GEOMETRY MEASUREMENT TECHNIQUES...2 INTERFEROMETRIC MICROSCOPE TYPES...3 MEASUREMENT
It has long been a goal to achieve higher spatial resolution in optical imaging and
Nano-optical Imaging using Scattering Scanning Near-field Optical Microscopy Fehmi Yasin, Advisor: Dr. Markus Raschke, Post-doc: Dr. Gregory Andreev, Graduate Student: Benjamin Pollard Department of Physics,
Product Range Overview
Product Range Overview Stereo Optical Inspection Microscopes Non-Contact Measurement Systems Laboratory Microscopes Metallurgical Microscopes FM 557119 Vision Engineering Ltd has been certificated for
Atomic Force Microscopy Observation and Characterization of a CD Stamper, Lycopodium Spores, and Step-Height Standard Diffraction Grating
Atomic Force Microscopy Observation and Characterization of a CD Stamper, Lycopodium Spores, and Step-Height Standard Diffraction Grating Michael McMearty and Frit Miot Special Thanks to Brendan Cross
PORTABLE MICROSCOPES PORTABLE MICROSCOPES PORTABLE MICROSCOPES PORTABLE MICROSCOPES PORTABLE MICROSCOPES PORTABLE MICROSCOPES
British Made Portable Microscopes with Image Erection PCB Through - Hole Scope Depthscope Brinell Hardness Impression Microscope Cathode Ray Tube Inspector Portable Video Scope Metallurgical Microscope
CONFOCAL LASER SCANNING MICROSCOPY TUTORIAL
CONFOCAL LASER SCANNING MICROSCOPY TUTORIAL Robert Bagnell 2006 This tutorial covers the following CLSM topics: 1) What is the optical principal behind CLSM? 2) What is the spatial resolution in X, Y,
Micro-CT for SEM Non-destructive Measurement and Volume Visualization of Specimens Internal Microstructure in SEM Micro-CT Innovation with Integrity
Micro-CT for SEM Non-destructive Measurement and Volume Visualization of Specimens Internal Microstructure in SEM Innovation with Integrity Micro-CT 3D Microscopy Using Micro-CT for SEM Micro-CT for SEM
UNIT I: INTRFERENCE & DIFFRACTION Div. B Div. D Div. F INTRFERENCE
107002: EngineeringPhysics Teaching Scheme: Lectures: 4 Hrs/week Practicals-2 Hrs./week T.W.-25 marks Examination Scheme: Paper-50 marks (2 hrs) Online -50marks Prerequisite: Basics till 12 th Standard
Please see the Global Visions module description. Sequence
Overview In Satellite Eyes, students will explore the ways in which satellite images provide details of the Earth s surface. By using lenses, satellites are capable of taking digital images of the Earth
RAY OPTICS II 7.1 INTRODUCTION
7 RAY OPTICS II 7.1 INTRODUCTION This chapter presents a discussion of more complicated issues in ray optics that builds on and extends the ideas presented in the last chapter (which you must read first!)
UNIVERSITY OF SOUTHAMPTON. Scanning Near-Field Optical Microscope Characterisation of Microstructured Optical Fibre Devices.
UNIVERSITY OF SOUTHAMPTON Scanning Near-Field Optical Microscope Characterisation of Microstructured Optical Fibre Devices. Christopher Wyndham John Hillman Submitted for the degree of Doctor of Philosophy
Firearms & Tool Marks Comparison Microscope. Discovery. Leeds Forensic Systems. Your Forensic Imaging Source
Firearms & Tool Marks Comparison Microscope Leeds Forensic Systems Your Forensic Imaging Source Leeds Discovery The Leeds Discovery Firearms & Tool Marks Comparison Microscope is an innovative microscope
Physics 1230: Light and Color
Physics 1230: Light and Color The Eye: Vision variants and Correction http://www.colorado.edu/physics/phys1230 What does 20/20 vision mean? Visual acuity is usually measured with a Snellen chart Snellen
Light and its effects
Light and its effects Light and the speed of light Shadows Shadow films Pinhole camera (1) Pinhole camera (2) Reflection of light Image in a plane mirror An image in a plane mirror is: (i) the same size
Motion and Positioning
Motion and Positioning The Broadest and Deepest Portfolio WWW.PI.ws Technology The Broadest and Deepest Portfolio Core Technologies n Piezo components, actuators and motors n Magnetic drives n Guiding
Characterization of surfaces by AFM topographical, mechanical and chemical properties
Characterization of surfaces by AFM topographical, mechanical and chemical properties Jouko Peltonen Department of physical chemistry Åbo Akademi University Atomic Force Microscopy (AFM) Contact mode AFM
Science In Action 8 Unit C - Light and Optical Systems. 1.1 The Challenge of light
1.1 The Challenge of light 1. Pythagoras' thoughts about light were proven wrong because it was impossible to see A. the light beams B. dark objects C. in the dark D. shiny objects 2. Sir Isaac Newton
ALD Atomic Layer Deposition
Research - Services ALD Atomic Layer Deposition Atomic Layer Deposition is a deposition process for assembling of thin films on the nanometer scale. The self-limiting deposition of atomic monolayers occurs
