FUNDAMENTALS OF ENGINEERING (FE) EXAMINATION REVIEW



Similar documents
Lecture Notes ELE A6

Power measurement in balanced 3 phase circuits and power factor improvement. 1 Power in Single Phase Circuits. Experiment no 1

Three phase circuits

Chapter 12: Three Phase Circuits

BALANCED THREE-PHASE CIRCUITS

Basic Electrical Technology Dr. L. Umanand Department of Electrical Engineering Indian Institute of Science, Bangalore. Lecture phase System 4

UNIVERSITY OF NORTH CAROLINA AT CHARLOTTE. Department of Electrical and Computer Engineering

Chapter 24. Three-Phase Voltage Generation

EDEXCEL NATIONAL CERTIFICATE/DIPLOMA UNIT 5 - ELECTRICAL AND ELECTRONIC PRINCIPLES NQF LEVEL 3 OUTCOME 4 - ALTERNATING CURRENT

Three Phase Circuits. Three Phase Circuits

Phasors. Phasors. by Prof. Dr. Osman SEVAİOĞLU Electrical and Electronics Engineering Department. ^ V cos (wt + θ) ^ V sin (wt + θ)

Diodes have an arrow showing the direction of the flow.

BALANCED THREE-PHASE AC CIRCUIT

Chapter 11 Balanced Three-Phase Circuits

Circuits with inductors and alternating currents. Chapter 20 #45, 46, 47, 49

ES250: Electrical Science. HW7: Energy Storage Elements

W03 Analysis of DC Circuits. Yrd. Doç. Dr. Aytaç Gören

(3 )Three Phase Alternating Voltage and Current

Chapter 11. Inductors ISU EE. C.Y. Lee

Topic Suggested Teaching Suggested Resources

How To Understand And Understand The Theory Of Electricity

First Year (Electrical & Electronics Engineering)

PHASOR DIAGRAMS HANDS-ON RELAY SCHOOL WSU PULLMAN, WA. RON ALEXANDER - BPA

Three-phase AC circuits

AC Power. by Prof. Dr. Osman SEVAİOĞLU Electrical and Electronics Engineering Department

Frequency Response of FIR Filters

3-Phase AC Calculations Revisited

Network Theory Question Bank

ANALYTICAL METHODS FOR ENGINEERS

Equipment: Power Supply, DAI, Variable resistance (8311), Variable inductance (8321)

ε: Voltage output of Signal Generator (also called the Source voltage or Applied

ECE 431. Experiment #1. Three-Phase ac Measurements. PERFORMED: 26 January 2005 WRITTEN: 28 January Jason Wells

Ver 3537 E1.1 Analysis of Circuits (2014) E1.1 Circuit Analysis. Problem Sheet 1 (Lectures 1 & 2)

SYNCHRONOUS MACHINES

Let s examine the response of the circuit shown on Figure 1. The form of the source voltage Vs is shown on Figure 2. R. Figure 1.

Chapter 9: Controller design

2.161 Signal Processing: Continuous and Discrete Fall 2008

Understanding Power Factor and How it Affects Your Electric Bill. Presented by Scott Peele PE

Motor Efficiency and Power Factor ME 416/516

Introduction to Complex Numbers in Physics/Engineering

Positive Feedback and Oscillators

Section 3. Sensor to ADC Design Example

SCHWEITZER ENGINEERING LABORATORIES, COMERCIAL LTDA.

Unit/Standard Number. High School Graduation Years 2010, 2011 and 2012

DOE FUNDAMENTALS HANDBOOK ELECTRICAL SCIENCE Volume 3 of 4

Low Pass Filter Rise Time vs Bandwidth

ELECTRICAL ENGINEERING

Lecture 7 Circuit analysis via Laplace transform

Physics 6C, Summer 2006 Homework 2 Solutions

Lecturer: James Grimbleby URL: j.b.grimbleby reading.ac.uk

1. True or False? A voltage level in the range 0 to 2 volts is interpreted as a binary 1.

Chapter 12 Driven RLC Circuits

DEFINITION A complex number is a matrix of the form. x y. , y x

VOLTAGE REGULATOR AND PARALLEL OPERATION

THREE-PHASE POWER SYSTEMS ECE 454/554: Power Systems Laboratory

Alternating-Current Circuits

EE 1202 Experiment #4 Capacitors, Inductors, and Transient Circuits

Elementary Functions

BSEE Degree Plan Bachelor of Science in Electrical Engineering:

REPORT ON CANDIDATES WORK IN THE CARIBBEAN ADVANCED PROFICIENCY EXAMINATION MAY/JUNE 2008 ELECTRICAL AND ELECTRONIC TECHNOLOGY (TRINIDAD AND TOBAGO)

Chapter 3 AUTOMATIC VOLTAGE CONTROL

AC Generators. Basic Generator

2. A conductor of length 2m moves at 4m/s at 30 to a uniform magnetic field of 0.1T. Which one of the following gives the e.m.f. generated?

CIRCUITS LABORATORY EXPERIMENT 3. AC Circuit Analysis

BASIC ELECTRONICS AC CIRCUIT ANALYSIS. December 2011

30. Bode Plots. Introduction

First Order Circuits. EENG223 Circuit Theory I

Sophomore Physics Laboratory (PH005/105)

Basic Op Amp Circuits

Measurement of Power in single and 3-Phase Circuits. by : N.K.Bhati

RLC Resonant Circuits

COMPLEX NUMBERS AND PHASORS

Capacitors in Circuits

3.4 - BJT DIFFERENTIAL AMPLIFIERS

A few words about imaginary numbers (and electronics) Mark Cohen

Module 5. Three-phase AC Circuits. Version 2 EE IIT, Kharagpur

Chapter 29 Alternating-Current Circuits

SERIES-PARALLEL DC CIRCUITS

Laboratory 4: Feedback and Compensation

Understanding Poles and Zeros

Chapter 35 Alternating Current Circuits

Content Map For Career & Technology

L and C connected together. To be able: To analyse some basic circuits.

13 ELECTRIC MOTORS Basic Relations

Chapter 8 - Power Density Spectrum

Induced voltages and Inductance Faraday s Law

1 Introduction. 2 Two Phases. J.L. Kirtley Jr.

Modelling, Simulation and Performance Analysis of A Variable Frequency Drive in Speed Control Of Induction Motor

TRANSFORMER: THREE PHASE

Impedance Matching. Using transformers Using matching networks

Chapter 1. Fundamental Electrical Concepts

PHY114 S11 Term Exam 3

Chapter 10. RC Circuits ISU EE. C.Y. Lee

Chapter 11 Current Programmed Control

Impedance Matching and Matching Networks. Valentin Todorow, December, 2009

Gates, Circuits, and Boolean Algebra

Radial Distribution Test Feeders

EE 221 Circuits II. Chapter 13 Magnetically Coupled Circuits

ECE 3510 Final given: Spring 11

Transcription:

FE: Electric Circuits C.A. Gross EE1-1 FUNDAMENTALS OF ENGINEERING (FE) EXAMINATION REIEW ELECTRICAL ENGINEERING Charles A. Gross, Professor Emeritus Electrical and Comp Engineering Auburn University Broun 212 334.844.1812 gross@eng.auburn.edu www.railway-technology.com FE: Electric Circuits C.A. Gross EE1-2 1

EE Review Problems 1. dc Circuits 2. Complex Numbers 3. ac Circuits 4. 3-phase Circuits 1 st Order Transients Control Signal Processing Electronics Digital Systems We will discuss these. We may discuss these as time permits FE: Electric Circuits C.A. Gross EE1-3 1. dc Circuits: Find all voltages, currents, and powers. FE: Electric Circuits C.A. Gross EE1-4 2

Solution The 8 and 7 resistors are in series: R18715 R1 and 1 are in parallel: 1 R2 1 1 1 R1 1R1 6 1 R1 FE: Electric Circuits C.A. Gross EE1-5 Solution 4 and R2 are in series: 4 R21 Rab L : ab 1 Ia 1 A R 1 ab 4 4Ia 4 ( L) 1 1 4 6 KL FE: Electric Circuits C.A. Gross EE1-6 3

Solution 1 6 Ic 6A L 1 1 KCL: I I I 1 6 4A b a c 8 8Ib 32 ( L) 7 7Ib 28 ( L) FE: Electric Circuits C.A. Gross EE1-7 Absorbed Powers... 2 R I W 2 4 a 4 1 4 2 R I W 2 1 c 1 6 36 2 R I W 2 7 b 7 4 112 2 R I W 2 8 b 8 4 128 Total Absorbed Power 1W Power Delivered by Source I 1 1 1W s a In General: P ABS = P DE (Tellegen's Theorem) FE: Electric Circuits C.A. Gross EE1-8 4

2. Complex Numbers 2 Consider x 2x5 x 21 2 4 1 1 12 1 2 2 2 ( 2) 4(1)(5) 2 16 The numbers "1 2 1" are called complex numbers 9 Summer 28 The I (j) operator Math Department... Define i 1 x 12i ECE Department Define j 1 x 1 j2 We choose ECE notation! Terminology Rectangular Form... Z X jy a complex number X e Z real part of Z Y Im Z imaginary part of Z 1 Summer 28 5

Polar Form Math Department... Z i Re a complex number R Z modulus of Z Z Z arg argument of radians ECE Department... Z Z a complex number Z Z magnitude of Z Z Z ang angle of degrees 11 The Argand Diagram It is useful to plot complex numbers in a 2-D cartesian space, creating the so-called Argand Diagram (Jean Argand (1768-1822)). imaginary axis (Y) 2 Z X jy 1 j2 1 real axis (X) 12 Summer 28 6

Conversions Retangular Polar Z X Y tan 2 2 Y X 1 Y Z Polar Retangular... X Zcos Y Zsin X 13 Summer 28 Example: Z 3 j4 X e Z 3 Y Im Z 4 4 5 14 Rect Polar... Z Summer 28 2 2 3 4 5 4 tan.9273 rad 53.1 3 1 3 7

Conjugate Z X jy Z Z* conjugate of Z X jy Z Example... (3 j4)* 3 j4 553.1 15 Summer 28 Addition (think rectangular) Aa jb A 3 j4553.1 Bc jd B 5 j12 1367.4 A B( a jb) ( c jd) ( ac) j( bd) A B (3 j4) (5 j12) (3 5) j(4 12) 8 j8 16 Summer 28 8

Multiplication (think polar) Aa jb A 3 j4553.1 Bc jd B 5 j12 1367.4 AB( A ) ( B ) AB( ) AB (5 53.1 ) (13 67.4 ) (5) (13) (53.1 67.4 ) 6514.3 17 Summer 28 Division (think polar) Aa jb A 3 j4553.1 Bc jd B 5 j12 1367.4 A A A ( ) B B B A 553.1 5 B 1363.4 13 53.1 67.4.384612.5 18 Summer 28 9

Multiplication (rectangular) ( ) ac bd j ad bc A B a jb c jd AB(3 j4) (5 j12) (15 48) j( 36 2) 63 j16 6514.3 19 Summer 28 EL EC 38 1 Addition (polar) 553.1 Complex number addition is the same as "vector addition"! 11.31 45 2 Summer 28 13 67.4 EL EC 38 1 1

3. ac Circuits v(t) - i(t) 8.663 mf 26.53 mh Find "everything" in the given circuit. vt ( ) 141.4cos(377 t) FE: Electric Circuits C.A. Gross EE1-21 Frequency, period vt ( ) 141.4cos(377 t) (radian) frequency 377 rad / s (cyclic) frequency f 6 Hz 2 1 1 Period 16.67 ms f 6 FE: Electric Circuits C.A. Gross EE1-22 11

The ac Circuit To solve the problem, we convert the circuit into an "ac circuit": RLC,, elements Z(impedance) vi, sources, I(phasors) R : Z R j8 j R L: ZL j L j(.377)(26.53) j1 C: 1 1 ZC j j4 jc.377(.663) FE: Electric Circuits C.A. Gross EE1-23 The Phasor vt () cos( t ) MAX To convert to a phasor... For example.. MAX 2 vt ( ) 141.4cos(377 t) MAX 1 2 o FE: Electric Circuits C.A. Gross EE1-24 12

The "ac circuit" 1 I R C L( ac): I Z 1 8 j1 j4 136.9 o L o it ( ) 14.14 cos(377t 36.9 ) FE: Electric Circuits C.A. Gross EE1-25 Solving for voltages o o Z I (8)(136.9 ) 836.9 R R o v ( t) 113.1cos(377t 36.9 ) R o o Z I ( j4)(136.9 ) 4126.9 C C o v ( t) 56.57 cos(377t 126.9 ) C o o Z I ( j1)(136.9 ) 153.1 L L o v ( t) 141.4 cos(377t 53.1 ) L FE: Electric Circuits C.A. Gross EE1-26 13

Absorbed powers S I* P jq o o S I* 836.9 (136.9 )* 8 j R R o o S I* 4126.9 (136.9 )* j4 C C o o S I* 153.1 (136.9 )* j1 L L S S S S 8 j6 P TOT R C L TOT 8 watts; Q 6 vars; S S 1A TOT TOT TOT FE: Electric Circuits C.A. Gross EE1-27 Delivered power o o S I* 1 (136.9 )* 8 j6 S S S S 8 j6 P Q S S S P Q TOT TOT TOT 8 watts 6 vars In General: P ABS = P DE Q ABS = Q DE (Tellegen's Theorem) FE: Electric Circuits C.A. Gross EE1-28 14

The Power Triangle S 8 j6 S = 1 A = 36.9 Q = 6 var 1 o P = 8 W I 136.9 o P power factor pf cos( ).8 lagging S FE: Electric Circuits C.A. Gross EE1-29 Leading, Lagging Concepts Leading Case I Lagging Case I Q < Q > FE: Electric Circuits C.A. Gross EE1-3 15

A Lagging pf Example 7.2 k R jx R 13.68 jx j43.2 FE: Electric Circuits C.A. Gross EE1-31 Currents I R I I R I L R jx 7.2 69.44 A R 13.68 7.2 IL j166.7 A jx j43.2 I I I R I 69.44 j166.7 I 18.667.38 L A FE: Electric Circuits C.A. Gross EE1-32 16

Powers pf cos cos 67.36.3845 I R I R jx S * 5 R IR kw j I L 13 ka 12 k var S I * j12 kvar S I* S S S L L S R L S 5 j12 1367.38 5 kw FE: Electric Circuits C.A. Gross EE1-33 Add Capacitance I I R I L jx C IC j125 I C I 69.44 R 7.2 I C j125 A jx j57.6 I I I I R L C I 69.44 j166.7 j125 8131 A IL j166.7 FE: Electric Circuits C.A. Gross EE1-34 17

Powers pf cos cos 31.8575 9 kvar 12 kvar S * 9kvar C IC j S I* S S S SS 5 j12 j9 S 583.131 ka S R L C S 583.1 ka 5 kw FE: Electric Circuits C.A. Gross EE1-35 Observations By adding capacitance to a lagging pf (inductive) load, we have significantly reduced the source current., without changing P! Before After Note that: I 18.6 A; pf.3845 I 81 A; pf.8575 low pf, high current; high pf, low current; If we consider the source in the example to represent an Electric Utility, this reduction in current is of major practical importance, since the utility losses are proportional to the square of the current. FE: Electric Circuits C.A. Gross EE1-36 18

Observations That is, by adding capacitance the utility losses have been reduced by almost a factor of 5! Since this results in significant savings to the utility, it has an incentive to induce its customers to operate at high pf. This leads to the Power Factor Correction problem, which is a classic in electric power engineering and is extremely likely to be on the FE exam. We will be using the same numerical data as we did in the previous example. Pretty clever, eh what? FE: Electric Circuits C.A. Gross EE1-37 The Power Factor Correction problem Utility Load pf correcting capacitance An Electric Utility supplies 7.2 k to a customer whose load is 7.2 k 13 ka @ pf =.3845 lagging. The utility offers the customer a reduced rate if he will correct ( improve or raise ) his pf to.8575. Determine the requisite capacitance. FE: Electric Circuits C.A. Gross EE1-38 19

PF Correction: the solution 1. Draw the load power triangle. 13 ka @ pf =.3845 lagging. S S pf.3845 cos 67.38 LOAD LOAD S 1367.38 5 j12 12 kvar Because the pf is lagging, the load is inductive, and Q is positive. Therefore we must add negative Q to reduce the total, which means we must add capacitance. 67.38 5 kw FE: Electric Circuits C.A. Gross EE1-39 PF Correction: the solution 2. We need to modify the source complex power so that the pf rises to.8575 lagging. pf.8575 cos 31 Closing the switch (inserting the capacitors) S 5 j12 jq 5 j 12 Q S C C Let QX 12 QC Therefore 5 31 SS jqx SS ka Q X Tan Then Tan 31.6 5 FE: Electric Circuits C.A. Gross EE1-4 2

PF Correction: the solution Q X.6 Q 3 kvar X 5 Q C 12 Q 9 kvar The new source power triangle Install 9 kvar of 7.2 k Capacitors X 9 kvar 3 kvar 12 kvar 5 kw FE: Electric Circuits C.A. Gross EE1-41 4. Three-phase ac Circuits Although essentially all types of EE s use ac circuit analysis to some degree, the overwhelming majority of applications are in the high energy ( power ) field. It happens that if power levels are above about 1 kw, it is more practical and efficient to arrange ac circuits in a polyphase configuration. Although any number of phases are possible, 3-phase is almost exclusively used in high power applications, since it is the simplest case that achieves most of the advantage of polyphase. It is virtually certain that some 3-phase problems will appear on the FE and PE examinations, which is why 3-phase merits our attention. 21

A single-phase ac circuit a n Generator Line Load a is the phase conductor n is the neutral conductor For a given load, the phase a conductor must have a crosssectional area A, large enough to carry the requisite current. Since the neutral carries the return current, we need a total of 2A worth of conductors. Tripling the capacity I a I b I c I n If I I I I then I 3I a b c n We need a total of A A A 3A = 6A conductors. 22

But what if the currents are not in phase? Suppose I I I I12 I I12 Then a b c I I I I I I12 I12 n a b c 1.5.866.5.866 In I j j j In I 1..5.5) j(..866.866 I( j) Now we only need a total of A A A = 3A conductors! A 5% savings! The 3-Phase Situation FE: Electric Circuits C.A. Gross EE1-46 23

"Balanced" voltage means equal in magnitude, 12 o separated in phase v ( t) cos( t) 2 cos( t) an max v t t t bn( ) max cos( 12 ) 2 cos( 12 ) v t t t cn ( ) max cos( 12 ) 2 cos( 12 ) an bn cn 12 12 FE: Electric Circuits C.A. Gross EE1-47 The Line oltages By KL ab an bn 1 3 ab 12 1 j j 33 2 2 bc ca 39 315 ab bc ca L 3 FE: Electric Circuits C.A. Gross EE1-48 24

An Example When a power engineer says the primary distribution voltage is 12 k he/she means 12.47 k ab bc ca L ab bc ca 12.473 12.479 12.4715 k k k L an bn cn 7.2 k 3 an bn cn 7.2 k 7.212 7.212 k k FE: Electric Circuits C.A. Gross EE1-49 bc An Important Insight. All balanced three-phase problems can be solved by focusing on a-phase, solving the single-phase (a-n) problem, and using 3-phase symmetry to deal with b-n and c-n values! This involves judicious use of the factors 3, 3, and 12! To demonstrate FE: Electric Circuits C.A. Gross EE1-5 bc 25

Recall the pf Correction Problem An Electric Utility supplies 7.2 k to a single-phase customer whose load is 7.2 k 13 ka @ pf =.3845 lagging. 7.2 k 14 j43.2 I IR IL 18167 A 13 ka 12 kvar 5 kw FE: Electric Circuits C.A. Gross EE1-51 bc The pf Correction Problem in the 3-phase case An Electric Utility supplies 12.47 k to a 3-phase customer whose load is 12.47 k 39 ka @ pf =.3845 lagging. an I a 7.2 k 18167 A 14 j43.2 39 ka 3 times bigger! 36 kvar 15 kw FE: Electric Circuits C.A. Gross EE1-52 26

If we want all the s, I s, and S s an bn cn I I I a b c 7.2 k 7.212 7.212 18167 181187 18153 k k A A A ab bc ca 12.473 12.479 12.4715 k k k S 5 j12 ka a S 5 j12 ka b S 5 j12 ka c FE: Electric Circuits C.A. Gross EE1- PF Correction: the 3ph solution Install 27 kvar of Capacitance. The circuitry in the 3- phase case is a bit more complicated. There are two possibilities. 15 kw 27 kvar 9 kvar 36 kvar FE: Electric Circuits C.A. Gross EE1-54 27

The wye connection. S O U R C E a b c n L O A D Install three 9 kvar 7.2 k wye-connected Capacitors. FE: Electric Circuits C.A. Gross EE1-55 The delta connection. S O U R C E a b c n L O A D Install three 9 kvar 12.47 k delta-connected Capacitors. FE: Electric Circuits C.A. Gross EE1-56 28

wye-delta connections Z 3 ZY wye case 27 Qan 9 kvar 3 I a Z C Qan 9 125 A 7.2 an Y an an ZY 57.6 I 1 Z Y a 46.5 F I Z C delta case 27 Qan 9 kvar 3 ab ab Qab 9 72.17 A 12.47 ab 12.47 Z 172.8 72.17 1 15.35 F Z FE: Electric Circuits C.A. Gross EE1-57 1 st Order Transients.. Network A contains dc sources, resistors, one switch it v t Network B contains one energy storage element (L or C) The problem.(1) solve for v and/or i @ t < ; (2) switch is switched @ t = ; (3) solve for v and/or i for t > FE: Electric Circuits C.A. Gross EE1-58 29

The inductive case di L vl L dt L's are SHORTS to dc i L (t) cannot change in zero time i ( ) i () i ( ) L L L FE: Electric Circuits C.A. Gross EE1-59 An Example di L vl L dt i ( ) i () i ( ) L L L FE: Electric Circuits C.A. Gross EE1-6 3

Solution... t : v ( t) v () constant C t : v ( t) v ( ) constant C C C t : vc( t) vc( ) vc() vc( ) e R C ab Our job is to determine v (); v ( ); and R C C C ab t / FE: Electric Circuits C.A. Gross EE1-61 Solution... For a capacitor: dv C ic C dt C's are OPENS to dc v C (t) cannot change in zero time Therefore, if the circuit is switched at t = : v ( ) v () v ( ) C C C FE: Electric Circuits C.A. Gross EE1-62 31

Solution: T < ; switch and "C" OPEN a vc 12 - A v C - 12 12 48 12 6 12 b FE: Electric Circuits C.A. Gross EE1-63 Solution: T > ; switch CLOSED vc 12 - A 12 612 12 8 a v C - b i C R ab.2 F 612 4 612 RabC 4(.2).8 s FE: Electric Circuits C.A. Gross EE1-64 32

Solution... v C () 48 v ( ) 8 C 1.25t 1.25 t : v ( t) 8 48 8 e C v () t 832e C t FE: Electric Circuits C.A. Gross EE1-65 3. 1 st Order Transients: RL.4 H b. The switch is closed at t =. Find and plot i L (t). FE: Electric Circuits C.A. Gross EE1-66 33

Solution... t : i ( t) i () L L t / t : i ( t) i ( ) i () i ( ) e L R ab L L L L Our job is to determine i (); i ( ); and L/ R L L ab FE: Electric Circuits C.A. Gross EE1-67 Solution... For an inductor: di L vl L dt L's are SHORTS to dc i L (t) cannot change in zero time i ( ) i () i ( ) L L L FE: Electric Circuits C.A. Gross EE1-68 34

Solution: T < ; switch OPEN; L SHORT a i L 12 - A il 12 6.667 12 6 A v C - b FE: Electric Circuits C.A. Gross EE1-69 Solution: T > ; switch CLOSED a i L R ab 612 4 612 12 - A il 12 2 A 6 v L - b.4 H L R ab.1 s.4 4 FE: Electric Circuits C.A. Gross EE1-7 35

Solution... t : i ( t) 6.667 L t / t : i ( t) 2 6.667 2 e L i ( t) 2 13.33e L 1t FE: Electric Circuits C.A. Gross EE1-71 5. Control Given the following feedback control system: R(s) - G(s) H(s) Gs 1 () () ( s 1)( s 4) Hs K C(s) FE: Electric Circuits C.A. Gross EE1-72 36

a. Write the closed loop transfer function in rational form 1 C G ( s1)( s4) R 1 GH K 1 ( s 1)( s 4) C 1 1 R s s K s s K 2 ( 1)( 4) 3 ( 4) FE: Electric Circuits C.A. Gross EE1-73 b. Write the characteristic equation 2 s s K 3 ( 4) c. What is the system order? 2 d. For K =, where are the poles located? 2 s 3s4 s1 s4 s = 1; s = - 4 e. For K =, is the system stable? NO FE: Electric Circuits C.A. Gross EE1-74 37

f. Complete the table 2 s s K 3 ( 4) Roots of the CE are poles of the CLTF K poles damping 4., 1. unstable 4 3.,. over 5 2.62,.382 over 6.25 1.5, 1.5 critical 1.25 1.5 j2, 1.5 j2 under FE: Electric Circuits C.A. Gross EE1-75 f. Sketch the root locus -4 j 1 g. Find the range on K for system stability. If K = 4: 2 s 3s s s3 Poles at s = ; s = - 3 Therefore for K>4, poles are in LH s-plane and system is stable. K 4 FE: Electric Circuits C.A. Gross EE1-76 38

h. Find K for critical damping CE s s K 2 : 3 ( 4) 3 9 4( K 4) Solving the CE: s 2 Critical damping occurs when the poles are real and equal 9 4( K 4) K 49/4; K 42.256.25 FE: Electric Circuits C.A. Gross EE1-77 6. Signal Processing a. periodic time-domain functions have continuous discrete frequency spectra. (circle the correct adjective) b. aperiodic time-domain functions have continuous discrete frequency spectra. (circle the correct adjective) FE: Electric Circuits C.A. Gross EE1-78 39

c. Matching d. Laplace Transform Fourier Series Inverse FT t b. yt ( ) x( ) ht ( ) d st d. X( s) x( t) e dt d a e Fourier Transform c Convolution integral b N a. x( t) Dn exp( jn t) nn jt c. X( j) x( t) e dt 1 jt e. x( t) X( j) e d 2 FE: Electric Circuits C.A. Gross EE1-79 c. Matching d. Z-Transform d Inverse ZT a Inverse DFT e d. X( z) x[ n] z k b. y[ k] x[ n] h[ n k] n n n DFT c Discrete Convolution b a. X( j) x[ n] e N 1 n n c. X x[ n] e k N 1 1 e. xn [ ] Xk e N k jn j2 kn/ N j2 kn/ N FE: Electric Circuits C.A. Gross EE1-8 4

7. Electronics et () v v e et ( ) 169.7 sin( t) T a. Darken the conducting diodes at time T FE: Electric Circuits C.A. Gross EE1-81 b. Given the "OP Amp" circuit Ideal OpAmp... infinite input resistance zero input voltage infinite gain zero output resistance FE: Electric Circuits C.A. Gross EE1-82 41

Find the output voltage. v 5 525 1 v 5 i R 1 k R i f KCL v 5 k v R i : R f Ri i v R v i f FE: Electric Circuits C.A. Gross EE1-83 c. Find the output voltage. 5 4k 2k 1k KCL : v v v v R R R R 1 2 3 1 2 3 f 5 1k - v o LOAD - FE: Electric Circuits C.A. Gross EE1-84 42

Solution: "SUMMER" 5 5 4k 2k 1k 1k - v o 5 5 v 4 2 1 1 v LOAD 1 1 1 5 5 1 2 4 v 7.5 - FE: Electric Circuits C.A. Gross EE1-85 8. Digital Systems Logic Gates FE: Electric Circuits C.A. Gross EE1-86 43

a. Complete the Truth Table A C AND Half Adder (HA) B S XOR A B C S A B = CS = 1 1 1 = 1 1 1 1 = 1 1 1 1 1 1 = 1 FE: Electric Circuits C.A. Gross EE1-87 b. Complete the indicated row in the TT C 1 A 1 B 1 C 2 S 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 A C A1 1 1 HA S 1 B OR C 2 1 1 C HA 1C 1 Full Adder (FA) S 1 FE: Electric Circuits C.A. Gross EE1-88 44

c. Indicate the inputs and outputs to perform the given sum in a 4-bit adder 1 1 1 1 1 1 1 A 3 B 3 C 2 A 2 B 2 C 1 A 1 B 1 C A B FA FA FA HA 11 111 11 C 3 S 3 S 2 S 1 S 1 1 FE: Electric Circuits C.A. Gross EE1-89 d. Design a D/A Converter to accomodate 3-bit digital inputs (5 volt logic) Resolution: 3-bits (2 3 = 8 levels; 1 scale) Example... Convert "11" to analog Digital Analog (). 1 1.25 1 2.5 11 3.75 1 5. 11 6.25 11 7.5 111 8.75 Binary Word: ABC (A msb; C lsb) FE: Electric Circuits C.A. Gross EE1-9 45

d. Finished Design ABC = 11 5 C B 4k 2k 1k 1 1 1 v 5 5 1 2 4 7.5 5 A 1k - v o LOAD - FE: Electric Circuits C.A. Gross EE1-91 Good Luck on the Exam! If I can help with any ECE material, come see me (7:3-11:; 1:15-2:3) Charles A. Gross, Professor Emeritus Electrical and Comp Engineering Auburn University Broun 212 334.844.1812 gross@eng.auburn.edu Good Evening... FE: Electric Circuits C.A. Gross EE1-92 46