# Chapter 12 Driven RLC Circuits

Size: px
Start display at page:

Transcription

1 hapter Driven ircuits. A Sources A ircuits with a Source and One ircuit Element Purely esistive oad Purely Inductive oad Purely apacitive oad The Series ircuit Impedance esonance Power in an A circuit Width of the Peak Transformer Parallel ircuit Summary Problem-Solving Tips Solved Problems Series ircuit Series ircuit esonance High-Pass Filter ircuit Filter onceptual Questions Additional Problems eactance of a apacitor and an Inductor Driven ircuit Near esonance ircuit Black Box Parallel ircuit Parallel ircuit Power Dissipation FM Antenna Driven ircuit

2 Driven ircuits. A Sources In hapter we learned that changing magnetic flux could induce an emf according to Faraday s law of induction. In particular, if a coil rotates in the presence of a magnetic field, the induced emf varies sinusoidally with time and leads to an alternating current (A), and provides a source of A power. The symbol for an A voltage source is An example of an A source is V (t) = V sin(ωt), (..) where the maximum value V is called the amplitude. The voltage varies between V and V since a sine function varies between + and. A graph of voltage as a function of time is shown in Figure... The phase of the voltage source is φ V = ωt, (the phase constant is zero in Eq. (..)). Figure.. Sinusoidal voltage source The sine function is periodic in time. This means that the value of the voltage at time t will be exactly the same at a later time t = t + T where T is the period. The frequency, f, defined as f = / T, has the unit of inverse seconds ( s - ), or hertz ( Hz ). The angular frequency is defined to be ω = π f. When a voltage source is connected to a circuit, energy is provided to compensate the energy dissipation in the resistor, and the oscillation will no longer damp out. The oscillations of charge, current and potential difference are called driven or forced oscillations. After an initial transient time, an A current will flow in the circuit as a response to the driving voltage source. The current in the circuit is also sinusoidal, -

3 I( t) = I sin( ωt φ), (..) and will oscillate with the same angular frequency ω as the voltage source, has amplitude I, phase φ I = ωt φ, and phase constant φ that depends on the driving angular frequency. Note that the phase constant is equal to the phase difference between the voltage source and the current Δφ φ V φ I = ωt (ωt φ) = φ. (..3). A ircuits with a Source and One ircuit Element Before examining the driven circuit, let s first consider cases where only one circuit element (a resistor, an inductor or a capacitor) is connected to a sinusoidal voltage source... Purely esistive oad onsider a purely resistive circuit with a resistor connected to an A generator with A source voltage given by V (t) = V sin(ωt), as shown in Figure... (As we shall see, a purely resistive circuit corresponds to infinite capacitance = and zero inductance =.) Figure.. A purely resistive circuit We would like to find the current through the resistor, I (t) = I sin(ωt φ ). (..) Applying Kirchhoff s loop rule yields V (t) I (t) =, (..) where V (t) = I (t) is the instantaneous voltage drop across the resistor. The instantaneous current in the resistor is given by -3

4 I (t) = V (t) = V sin(ωt) = I sin(ωt). (..3) omparing Eq. (..3) with Eq. (..), we find that the amplitude is I = V = V (..4) where V = V, and =. (..5) The quantity is called the resistive reactance, to be consistent with nomenclature that will introduce shortly for capacitive and inductive elements, but it is just the resistance. The key point to recognize is that the amplitude of the current is independent of the driving angular frequency. Because φ =, I ( t ) and V ( t ) are in phase with each other, i.e. they reach their maximum or minimum values at the same time, the phase constant is zero, φ =. (..6) The time dependence of the current and the voltage across the resistor is depicted in Figure..(a). (a) (b) Figure.. (a) Time dependence of I ( t ) and V ( t ) across the resistor. (b) Phasor diagram for the resistive circuit. The behavior of I ( t ) and V ( t ) can also be represented with a phasor diagram, as shown in Figure..(b). A phasor is a rotating vector having the following properties; (i) length: the length corresponds to the amplitude. (ii) angular speed: the vector rotates counterclockwise with an angular speed ω. -4

5 (iii) projection: the projection of the vector along the vertical axis corresponds to the value of the alternating quantity at time t. We shall denote a phasor with an arrow above it. The phasor V has a constant magnitude of V. Its projection along the vertical direction is V sin(ωt), which is equal to V ( t ), the voltage drop across the resistor at time t. A similar interpretation applies to I for the current passing through the resistor. From the phasor diagram, we readily see that both the current and the voltage are in phase with each other. The average value of current over one period can be obtained as: I (t) = T T I (t)dt = T T I sin(ωt) dt = I T T sin πt T dt =. (..7) This average vanishes because sin(ωt) = T T sin(ωt) dt =. (..8) Similarly, one may find the following relations useful when averaging over one period, cos(ωt) = T sin(ωt)cos(ωt) = T sin (ωt) = T cos (ωt) = T T cos(ωt) dt =, T sin(ωt)cos(ωt) dt =, T T sin (ωt) dt = T πt sin T T dt =, cos (ωt) dt = T πt cos T T dt =. (..9) From the above, we see that the average of the square of the current is non-vanishing: π t I t I t dt I t dt I dt I T T T T T T T ( ) = ( ) = sin ω = sin =. (..) It is convenient to define the root-mean-square (rms) current as I Irms = I ( t) = (..) -5

6 In a similar manner, the rms voltage can be defined as V Vrms = V ( t) =. (..) The rms voltage supplied to the domestic wall outlets in the United States is V = V at a frequency f = 6 Hz. rms The power dissipated in the resistor is P t = I t V t = I t. (..3) ( ) ( ) ( ) ( ) The average power over one period is then Vrms P ( t) = I ( t) = I = Irms = IrmsVrms =. (..4).. Purely Inductive oad onsider now a purely inductive circuit with an inductor connected to an A generator with A source voltage given by V (t) = V sin(ωt), as shown in Figure..3. As we shall see below, a purely inductive circuit corresponds to infinite capacitance = and zero resistance =. Figure..3 A purely inductive circuit We would like to find the current in the circuit, I (t) = I sin(ωt φ ). (..5) Applying the modified Kirchhoff s rule for inductors, the circuit equation yields di V ( t) V ( t) = V ( t) =. (..6) dt -6

7 where we define V (t) = di / dt. earranging yields di dt = V (t) = V sin(ωt), (..7) where V = V. Integrating Eq. (..7), we find the current is I (t) = di = V sin(ωt) dt = I sin(ωt π / ). = V ω cos(ωt) = V ω sin(ωt π / ), (..8) where we have used the trigonometric identity cos(ωt) = sin(ωt π / ). omparing Eq. (..8) with Eq. (..5), we find that the amplitude is I = V ω = V, (..9) where the inductive reactance,, is given by = ω. (..) The inductive reactance has SI units of ohms ( Ω ), just like resistance. However, unlike resistance, depends linearly on the angular frequency ω. Thus, the inductance reactance to current flow increases with frequency. This is due to the fact that at higher frequencies the current changes more rapidly than it does at lower frequencies. On the other hand, the inductive reactance vanishes as ω approaches zero. The phase constant, φ, can also be determined by comparing Eq. (..8) to Eq. (..5), and is given by φ = + π. (..) The current and voltage plots and the corresponding phasor diagram are shown in Figure

8 (a) (b) Figure..4 (a) Time dependence of I ( t ) and V ( t ) across the inductor. (b) Phasor diagram for the inductive circuit. As can be seen from the figures, the current I ( t ) is out of phase with V ( t ) by φ = π / ; it reaches its maximum value one quarter of a cycle later than V ( t ). The current lags voltage by π / in a purely inductive circuit The word lag means that the plot of I ( t ) is shifted to the right of the plot of V ( t ) in Figure..4 (a), whereas in the phasor diagram the phasor I (t) is behind the phasor for V (t) as they rotate counterclockwise in Figure..4(b)...3 Purely apacitive oad onsider now a purely capacitive circuit with a capacitor connected to an A generator with A source voltage given by V (t) = V sin(ωt). In the purely capacitive case, both resistance and inductance are zero. The circuit diagram is shown in Figure..5. Figure..5 A purely capacitive circuit We would like to find the current in the circuit, -8

9 Again, Kirchhoff s loop rule yields The charge on the capacitor is therefore where V = V. The current is I (t) = I sin(ωt φ ). (..) Q( t) V ( t) V ( t) = V ( t) =. (..3) Q(t) = V (t) = V (t) = V sin(ωt), (..4) I (t) = + dq dt = ωv cos(ωt) = ωv sin(ωt + π / ), (..5) = I sin(ωt + π / ), where we have used the trigonometric identity cosωt = sin(ωt + π / ). The maximum value of the current can be determined by comparing Eq. (..5) to Eq. (..), I V = ωv =, (..6) where the capacitance reactance,, is =. (..7) ω The capacitive reactance also has SI units of ohms and represents the effective resistance for a purely capacitive circuit. Note that is inversely proportional to both and ω, and diverges as ω approaches zero. The phase constant can be determined by comparing Eq. (..5) to Eq. (..), and is φ = π. (..8) The current and voltage plots and the corresponding phasor diagram are shown in the Figure..6 below. -9

10 (a) (b) Figure..6 (a) Time dependence of I ( t ) and V ( t ) across the capacitor. (b) Phasor diagram for the capacitive circuit. Notice that at t =, the voltage across the capacitor is zero while the current in the circuit is at a maximum. In fact, I ( t ) reaches its maximum one quarter of a cycle earlier than V ( ) t. The current leads the voltage by π/ in a capacitive circuit The word lead means that the plot of I (t) is shifted to the left of the plot of V (t) in Figure..6 (a), whereas in the phasor diagram the phasor I (t) is ahead the phasor for V (t) as they rotate counterclockwise in Figure..6(b)..3 The Series ircuit onsider now the driven series circuit with V (t) = V sin(ωt + φ) shown in Figure.3.. Figure.3. Driven series ircuit -

11 We would like to find the current in the circuit, I(t) = I sin(ωt). (.3.) Notice that we have added a phase constant φ to our previous expressions for V (t) and I(t) when we were analyzing single element driven circuits. Applying Kirchhoff s modified loop rule, we obtain V (t) V (t) V (t) V (t) =. (.3.) We can rewrite Eq. (.3.) using V (t) = I, V (t) = di / dt, and V (t) = Q / as di dt + I + Q = V sin(ωt + φ). (.3.3) Differentiate Eq. (.3.3), using I = + dq / dt, and divide through by, yields what is called a second order damped linear driven differential equation, d I dt + di dt + I = ωv cos(ωt + φ). (.3.4) We shall find the amplitude, I, of the current, and phase constant φ which is the phase shift between the voltage source and the current by examining the phasors associates with the three circuit elements, and. The instantaneous voltages across each of the three circuit elements,, and has a different amplitude and phase compared to the current, as can be seen from the phasor diagrams shown in Figure.3.. (a) (b) (c) Figure.3. Phasor diagrams for the relationships between current and voltage in (a) the resistor, (b) the inductor, and (c) the capacitor, of a series circuit. -

12 Using the phasor representation, Eq. (.3.) can be written as V = V + V + V (.3.5) as shown in Figure.3.3(a). Again we see that current phasor I leads the capacitive voltage phasor V by π / but lags the inductive voltage phasor V by π /. The three voltage phasors rotate counterclockwise as time increases, with their relative positions fixed. Figure.3.3 (a) Phasor diagram for the series circuit. (b) voltage relationship The relationship between different voltage amplitudes is depicted in Figure.3.3(b). From Figure.3.3, we see that the amplitude satisfies V = V = V + V + V = V + (V V ) = (I ) + (I I ) (.3.6) = I + ( ). Therefore the amplitude of the current is I = V + ( ). (.3.7) Using Eqs. (..5), (..), and (..7) for the reactances, Eq. (.3.7) becomes I = V + (ω ω ), series circuit. (.3.8) From Figure.3.3(b), we can determine that the phase constant satisfies -

13 tanφ = = ω ω. (.3.9) Therefore the phase constant is φ = tan ω ω, series circuit. (.3.) It is crucial to note that the maximum amplitude of the A voltage source V is not equal to the sum of the maximum voltage amplitudes across the three circuit elements: V V + V + V (.3.) This is due to the fact that the voltages are not in phase with one another, and they reach their maxima at different times..3. Impedance We have already seen that the inductive reactance = ω, and the capacitive reactance = / ω play the role of an effective resistance in the purely inductive and capacitive circuits, respectively. In the series circuit, the effective resistance is the impedance, defined as Z = + ( ) (.3.) The relationship between Z,,, and can be represented by the diagram shown in Figure.3.4: Figure.3.4 Vector representation of the relationship between Z,,, and The impedance also has SI units of ohms. In terms of Z, the current (Eqs. (.3.) and (.3.7)) may be rewritten as. -3

14 I(t) = V sin(ωt) (.3.3) Z Notice that the impedance Z also depends on the angular frequency ω, as do. and Using Eq. (.3.9) for the phase constant φ and Eq. (.3.) for Z, we may readily recover the limits for simple circuit (with only one element). A summary is provided in Table. below: Simple ircuit = ω = φ = tan Z = + ( ) ω purely resistive purely inductive purely capacitive.3. esonance π / π / Table. Simple-circuit limits of the series circuit In a driven series circuit, the amplitude of the current (Eq. (.3.8)) has a maximum value, a resonance, which occurs at the resonant angular frequency ω. Because the amplitude I of the current is inversely proportionate to Z (Eq. (.3.3), the maximum of I occurs when Z is minimum. This occurs at an angular frequency ω such that =, Therefore, the resonant angular frequency is ω = ω. (.3.4) ω =. (.3.5) At resonance, the impedance becomes Z =, and the amplitude of the current is and the phase constant is zero, (Eq. (.3.)), I V =, (.3.6) -4

15 φ =. (.3.7) A qualitative plot of the amplitude of the current as a function of driving angular frequency for two driven circuits, with different values of resistance, > is illustrated in Figure.3.5. The amplitude is larger for smaller a smaller value of resistance. Figure.3.5 The amplitude of the current as a function of ω in the driven circuit, for two different values of the resistance..4 Power in an A circuit In the series circuit, the instantaneous power delivered by the A generator is given by P(t) = I(t)V (t) = V Z sin(ωt) V sin(ωt + φ) = V sin(ωt)sin(ωt + φ) Z = V Z (sin (ωt)cosφ + sin(ωt)cos(ωt)sinφ) where we have used the trigonometric identity The time average of the power is (.4.) sin(ωt + φ) = sin(ωt)cosφ + cos(ωt)sinφ. (.4.) P(ω) = T T V Z sin (ωt)cosφ dt + T T V sin(ωt)cos(ωt)sinφ dt = Z V cosφ.(.4.3) Z -5

16 where we have used the integral results in Eq. (..9). In terms of the rms quantities, V rms = V / and I rms = V rms / Z, the time-averaged power can be written as P(ω) = V Z cosφ = V rms Z cosφ = I V cosφ (.4.4) rms rms The quantity cosφ is called the power factor. From Figure.3.4, one can readily show that cosφ =. (.4.5) Z Thus, we may rewrite P(ω) as where P(ω) = I rms (ω), (.4.6) I rms (ω) = V + (ω ω ), (.4.7) In Figure.4., we plot the time-averaged power as a function of the driving angular frequency ω for two driven circuits, with different values of resistance, >. Figure.4. Average power as a function of frequency in a driven series circuit. We see that P(ω) attains the maximum value when cosφ =, or Z =, which is the resonance condition. At resonance, we have P(ω ) = I rms V rms = V rms. (.4.8) -6

17 .4. Width of the Peak The peak has a line width. One way to characterize the width is to define Δω = ω+ ω, where ω ± are the values of the driving angular frequency such that the power is equal to half its maximum power at resonance. This is called full width at half maximum, as illustrated in Figure.4.. The width Δ ω increases with resistance. To find Figure.4. Width of the peak Δ ω, it is instructive to first rewrite the average power P(ω) as P(ω) = V + (ω / ω) = V ω ω + (ω ω ), (.4.9) with P(ω ) = V /. The condition for finding ω ± is P((ω )) = P(ω ) V ± 4 = V ω ± ω ± + (ω ± ω ). (.4.) Eq. (.4.) reduces to ω ( ω ω ) =. (.4.) Taking square roots yields two solutions, which we analyze separately. ase : Taking the positive root leads to ω + ω ω = + (.4.) + -7

18 We can solve this quadratic equation, and the solution with positive root is ω + = + + ω 4. (.4.3) ase : Taking the negative root of Eq. (.4.) yields ω ω ω =. (.4.4) The solution to this quadratic equation with positive root is ω = + + ω 4. (.4.5) The width at half maximum is then the difference Once the width Δω = ω+ ω =. (.4.6) Δ ω is known, the quality factor Q qual is defined as Q qual = ω Δω = ω. (.4.7) omparing the above equation with Eq. (..7), we see that both expressions agree with each other in the limit where the resistance is small, and ω = ω ( / ) ω..5 Transformer A transformer is a device used to increase or decrease the A voltage in a circuit. A typical device consists of two coils of wire, a primary and a secondary, wound around an iron core, as illustrated in Figure.5.. The primary coil, with N turns, is connected to alternating voltage source V ( t ). The secondary coil has N turns and is connected to a load with resistance. The way transformers operate is based on the principle that an alternating current in the primary coil will induce an alternating emf on the secondary coil due to their mutual inductance. -8

19 Figure.5. A transformer In the primary circuit, neglecting the small resistance in the coil, Faraday s law of induction implies dφ B V = N, (.5.) dt where Φ B is the magnetic flux through one turn of the primary coil. The iron core, which extends from the primary to the secondary coils, serves to increase the magnetic field produced by the current in the primary coil and ensures that nearly all the magnetic flux through the primary coil also passes through each turn of the secondary coil. Thus, the voltage (or induced emf) across the secondary coil is dφ =. (.5.) B V N dt In the case of an ideal transformer, power loss due to Joule heating can be ignored, so that the power supplied by the primary coil is completely transferred to the secondary coil, I V = I V. (.5.3) In addition, no magnetic flux leaks out from the iron core, and the flux Φ B through each turn is the same in both the primary and the secondary coils. ombining the two expressions, we are lead to the transformer equation, V V N =. (.5.4) N By combining the two equations above, the transformation of currents in the two coils may be obtained as I = V V I = N N I. (.5.5) -9

20 Thus, we see that the ratio of the output voltage to the input voltage is determined by the turn ratio N / N. If N > N, then V > V, which means that the output voltage in the second coil is greater than the input voltage in the primary coil. A transformer with N > N is called a step-up transformer. On the other hand, if N < N, then V < V, and the output voltage is smaller than the input. A transformer with N < N is called a stepdown transformer..6 Parallel ircuit onsider the parallel circuit illustrated in Figure.6.. The A voltage source is V (t) = V sin(ωt). Figure.6. Parallel circuit. Unlike the series circuit, the instantaneous voltages across all three circuit elements,, and are the same, and each voltage is in phase with the current through the resistor. However, the currents through each element will be different. In analyzing this circuit, we make use of the results discussed in Sections..4. The current in the resistor is I (t) = V (t) = V sin(ωt) = I sin(ωt). (.6.) where I / = V. The voltage across the inductor is V (t) = V (t) = V sin(ωt) = di dt. (.6.) Integrating Eq. (.6.) yields t V I (t) = sin(ωt ')dt ' = V ω cos(ωt) = V sin(ωt π / ) = I sin(ωt π / ),(.6.3) -

21 where I / = V and = ω is the inductive reactance. Similarly, the voltage across the capacitor is V (t) = V sin(ωt) = Q(t) /, which implies I (t) = dq dt = ωv cos(ωt) = V sin(ωt + π / ) = I sin(ωt + π / ), (.6.4) where I / = V and = / ω is the capacitive reactance. Using Kirchhoff s junction rule, the total current in the circuit is simply the sum of all three currents. I(t) = I (t) + I (t) + I (t) = I sin(ωt) + I sin(ωt π / ) + I sin(ωt + π / ). (.6.5) The currents can be represented with the phasor diagram shown in Figure.6.. Figure.6. Phasor diagram for the parallel circuit From the phasor diagram, the phasors satisfy the vector addition condition, I = I + I + I. (.6.6) The amplitude of the current, I, can be obtained as I = I = I + I + I = = V + ω ω I + (I I ) = V +. (.6.7) -

22 Therefore the amplitude of the current is I = V +, parallel circuit. (.6.8) From the phasor diagram shown in Figure.6., we see that the tangent of the phase constant can be obtained as V V I I = = = = ω. (.6.9) I ω tanφ V Therefore the phase constant is φ = tan ω ω, parallel circuit. (.6.) Because I ( t ), I ( t ) and I ( t ) are not in phase with one another, I is not equal to the sum of the amplitudes of the three currents, I I + I + I. (.6.) With I / = V Z, the (inverse) impedance of the circuit is given by Z = + ω ω = + (.6.) The relationship between Z,, and is shown in Figure.6.3. Figure.6.3 elationship between Z,, and in a parallel circuit. -

23 The resonance condition for the parallel circuit is given by φ =, which implies =. (.6.3) We can solve Eq. (.6.3) for the resonant angular frequency and find that ω =. (.6.4) as in the series circuit. From Eq. (.6.), we readily see that / Z is minimum (or Z is maximum) at resonance. The current in the inductor exactly cancels out the current in the capacitor, so that the current in the circuit reaches a minimum, and is equal to the current in the resistor, V I = (.6.5) As in the series circuit, power is dissipated only through the resistor. The timeaveraged power is P(t) = I (t)v (t) = I (t) = V sin (ωt) = V = V Z Thus, the power factor in this case is Z. (.6.6) P( t) Z power factor = = = = cosφ. (.6.7) V / Z + ω ω -3

24 .7 Summary In an A circuit with a sinusoidal voltage source V (t) = V sin(ωt), the current is given by I( t) = I sin( ωt φ), where I is the amplitude and φ is the phase constant (phase difference between the voltage source and the current). For simple circuit with only one element (a resistor, a capacitor or an inductor) connected to the voltage source, the results are as follows: ircuit Elements esistance /eactance = ω = ω urrent Amplitude I I I V Phase constant φ = V = V = π / current lags voltage by 9 π / current leads voltage by 9 where is the inductive reactance and is the capacitive reactance. For circuits which have more than one circuit element connected in series, the results are ircuit Elements Impedance Z urrent Amplitude Phase constant φ ( ) I I I = = = V + V + V + ( ) π < φ < π < φ < φ > if > φ < if < where Z is the impedance Z of the circuit. For a series circuit, we have ( ) Z = +. The phase constant (phase difference between the voltage and the current) in an A circuit is φ = tan. -4

25 In the parallel circuit, the impedance is given by = + ω = + Z ω, and the phase constant is φ ω. = tan = tan ω The rms (root mean square) voltage and current in an A circuit are given by V rms V I =, Irms =. The average power of an A circuit is P( t) = I V cosφ, rms rms where cosφ is known as the power factor. The resonant angular frequency ω is ω =. At resonance, the current in the series circuit reaches the maximum, but the current in the parallel circuit is at a minimum. The transformer equation is V V N =, N where V is the voltage source in the primary coil with N turns, and V is the output voltage in the secondary coil with N turns. A transformer with N > N is called a step-up transformer, and a transformer with N < N is called a step-down transformer. -5

26 .8 Problem-Solving Tips In this chapter, we have seen how phasors provide a powerful tool for analyzing the A circuits. Below are some important tips:. Keep in mind the phase relationships for simple circuits () For a resistor, the voltage and the phase are always in phase. () For an inductor, the current lags the voltage by 9. (3) For a capacitor, the current leads the voltage by 9.. When circuit elements are connected in series, the instantaneous current is the same for all elements, and the instantaneous voltages across the elements are out of phase. On the other hand, when circuit elements are connected in parallel, the instantaneous voltage is the same for all elements, and the instantaneous currents across the elements are out of phase. 3. For series connection, draw a phasor diagram for the voltages. The amplitudes of the voltage drop across all the circuit elements involved should be represented with phasors. In Figure.8. the phasor diagram for a series circuit is shown for both the inductive case > and the capacitive case <. (a) (b) Figure.8. Phasor diagram for the series circuit for (a) > and (b) <. From Figure.8.(a), we see that V > V in the inductive case and V leads I by a phase constant φ. For the capacitive case shown in Figure.8.(b), V > V and I leads V by a phase constant φ. -6

27 4. When V = V, or φ =, the circuit is at resonance. The corresponding resonant angular frequency is ω = / maximum., and the power delivered to the resistor is a 5. For parallel connection, draw a phasor diagram for the currents. The amplitudes of the currents across all the circuit elements involved should be represented with phasors. In Figure.8. the phasor diagram for a parallel circuit is shown for both the inductive case > and the capacitive case <. (a) (b) Figure.8. Phasor diagram for the parallel circuit for (a) > and (b) <. From Figure.8.(a), we see that I > I in the inductive case and V leads I by a phase constant φ. For the capacitive case shown in Figure.8.(b), I > I and I leads V by a phase constant φ..9 Solved Problems.9. Series ircuit A series circuit with = 6 mh, = µ F, and = 4.Ω is connected to a sinusoidal voltage V (t) = (4. V)sin(ωt), with ω = rad/s. (a) What is the impedance of the circuit? (b) et the current at any instant in the circuit be I(t) = I sin(ωt φ). Find I. (c) What is the phase constant φ? -7

28 Solution: (a) The impedance of a series circuit is given by where ( ) Z = +, (.9.) = ω and = / ω are the inductive and capacitive reactances, respectively. The voltage source is V ( t) = V sin( ωt), where V is the maximum output voltage and ω is the angular frequency, with V = 4 V and ω = rad/s. Thus, the impedance Z is Z = (4. Ω) + ( rad/s)(.6 H) ( rad/s)( 6 F) = 43.9Ω. (.9.) (b) With V = 4.V, the amplitude of the current is given by I V Z 4. V.9A. (.9.3) 43.9Ω = = = (c) The phase constant (the phase difference between the voltage source and the current) is given by φ = tan ω = tan ω ( rad/s)(.6 H) ( rad/s)( 6 F) = tan 4. Ω.9. Series ircuit = 4.. (.9.4) Suppose an A generator with V (t) = (5V)sin(t) is connected to a series circuit with = 4. Ω, = 8. mh, and = 5. µ F, as shown in Figure

29 (a) alculate V, V and V circuit element. Figure.9. series circuit, the maximum values of the voltage drop across each (b) alculate the maximum potential difference across the inductor and the capacitor between points b and d shown in Figure.9.. Solutions: (a) The inductive reactance, capacitive reactance and the impedance of the circuit are given by = ω = = Ω, (.9.5) ( rad/s)(5. 6 F) The inductance is = ω = ( rad/s)(8. 3 H) = 8. Ω. (.9.6) Z = + ( ) = (4. Ω) + (8. Ω Ω) = 96 Ω. (.9.7) The corresponding maximum current amplitude is I V Z 5 V.765A. (.9.8) 96 Ω = = = The maximum voltage across the resistance is the product of maximum current and the resistance, V = I = (.765 A)(4. Ω) = 3.6 V. (.9.9) Similarly, the maximum voltage across the inductor is -9

30 The maximum voltage across the capacitor is V = I = (.765 A)(8. Ω) = 6. V. (.9.) V = I = (.765 A)( Ω) = 53 V. (.9.) Note that the maximum input voltage V is related to V, V and V by V = V + ( V V ). (.9.) (b) From b to d, the maximum voltage would be the difference between V and V, V = V + V = V V = 6. V 53 V = 47 V. (.9.3) bd.9.3 esonance A sinusoidal voltage V (t) = ( V)sin(ωt) is applied to a series circuit with =. mh, = nf, and =. Ω. Find the following quantities: (a) the resonant frequency, (b) the amplitude of the current at resonance, (c) the quality factor Q qual of the circuit, and (d) the amplitude of the voltage across the inductor at the resonant frequency. Solution: (a) The resonant frequency for the circuit is given by f = ω π = π = π (. 3 H)( 9 F) = 533Hz. (.9.4) (b) At resonance, the current is I V V.A. (.9.5). Ω = = = -3

31 (c) The quality factor Q qual of the circuit is given by Q qual = ω = π(533 s )(. 3 H) = 5.8. (.9.6) (. Ω) (d) At resonance, the amplitude of the voltage across the inductor is V = I = I ω = (. A)π(533 s )(. 3 H) = V. (.9.7).9.4 High-Pass Filter A high-pass filter (circuit that filters out low-frequency A currents) can be represented by the circuit in Figure.9., where is the internal resistance of the inductor. Figure.9. filter (a) Find V / V, the ratio of the maximum output voltage V to the maximum input voltage V. (b) Suppose r = 5. Ω, = Ω, and = 5 mh. Find the frequency at which V / V = /. Solution: (a) The impedance for the input circuit is impedance for the output circuit is Z ( r) = + + where = ω. The Z = +. The maximum current is given by I V V = = Z ( + r) +. (.9.8) Similarly, the maximum output voltage is related to the output impedance by -3

32 This implies V = I Z = I +. (.9.9) V + = V ( + r) +. (.9.) (b) For V / V = /, we have + ( + r) 4 ( + r) = =. (.9.) Because = ω = π f, the frequency that yields this ratio is f = π = π(.5 H) (. Ω + 5. Ω) 4(. Ω) 3 = 5.5Hz. (.9.).9.5 ircuit Figure.9.3 onsider the circuit shown in Figure.9.3. The sinusoidal voltage source is V (t) = V sin(ωt). If both switches S and S are closed initially, find the following quantities, ignoring the transient effect and assuming that,, V, and ω are known. (a) The current I( t) as a function of time. (b) The average power delivered to the circuit. (c) The current as a function of time a long time after only S is opened. -3

33 (d) The capacitance if both S and S are opened for a long time, with the current and voltage in phase. (e) The impedance of the circuit when both S and S are opened. (f) The maximum energy stored in the capacitor during oscillations. (g) The maximum energy stored in the inductor during oscillations. (h) The phase difference between the current and the voltage if the frequency of V ( t ) is doubled. (i) The frequency at which the inductive reactance reactance Solutions:. is equal to half the capacitive (a) When both switches S and S are closed, the current only goes through the generator and the resistor, so the total impedance of the circuit is and the current is (b) The average power is given by I (t) = V sin(ωt). (.9.3) P(t) = I (t)v (t) = V sin (ωt) = V. (.9.4) (c) If only S is opened, after a long time the current will pass through the generator, the resistor and the inductor. For this circuit, the impedance becomes Z = = + + ω, (.9.5) and the phase constant φ is ω φ = tan. (.9.6) Thus, the current as a function of time is I(t) = I sin(ωt φ) = V + ω sin[ωt tan (ω / )]. (.9.7) -33

34 Note that in the limit of vanishing resistance =, φ = π /, and we recover the expected result for a purely inductive circuit. (d) If both switches are opened, then this would be a driven circuit, with the phase constant φ given by φ = tan ω = tan ω. (.9.8) If the current and the voltage are in phase, then φ =, implying tanφ =. et the corresponding angular frequency be ω ; we then obtain Therefore the capacitance is ω = ω. (.9.9) = ω. (.9.3) (e) From (d), when both switches are opened, the circuit is at resonance with =. Thus, the impedance of the circuit becomes Z = + ( ) =. (.9.3) (f) The electric energy stored in the capacitor is It attains maximum when the current is at its maximum I, ( ) U E = V = I. (.9.3) V V,max = = = ω U I, (.9.33) where we have used ω = /. (g) The maximum energy stored in the inductor is given by U V = =. (.9.34),max I -34

35 (h) If the frequency of the voltage source is doubled, i.e., ω = ω = /, then the phase constant becomes ω / ω φ = tan = ( / ) ( / ) 3 tan = tan. (.9.35) (i) If the inductive reactance is one-half the capacitive reactance, = ω = ω. (.9.36) This occurs when eh angular frequency is ω ω = =. (.9.37).9.6 Filter The circuit shown in Figure.9.4 represents a filter. Figure.9.4 et the inductance be = 4 mh, and the input voltage V in = (.V)sin(ωt), where ω = rad/s. (a) What is the value of such that the output voltage lags behind the input voltage by 3.? (b) Find the ratio of the amplitude of the output and the input voltages. What type of filter is this circuit, high-pass or low-pass? (c) If the positions of the resistor and the inductor were switched, would the circuit be a high-pass or a low-pass filter? -35

36 Solutions: (a) Because the output voltage V out is measured across the resistor, it is in phase with the current. Therefore the phase difference φ between V out and V in is equal to the phase constant and satisfies Thus, we have (b) The ratio is given by tanφ = V V = I I = ω. (.9.38) = ω tanφ = (rad/s)(.4h) = 39Ω. (.9.39) tan 3. V V = = = cosφ = cos 3. =.866. out Vin Vin + (.9.4) The circuit is a low-pass filter, since the ratio Vout / Vin decreases with increasing ω. (c) In this case, the circuit diagram is Figure.9.5 high-pass filter The ratio of the output voltage to the input voltage would be = = = = + V in Vin + + ω ω Vout V ω /. The circuit is a high-pass filter, since the ratio Vout / Vin approaches one in the limit as ω >> /. -36

37 . onceptual Questions. onsider a purely capacitive circuit (a capacitor connected to an A source). (a) How does the capacitive reactance change if the driving frequency is doubled? halved? (b) Are there any times when the capacitor is supplying power to the A source?. If the applied voltage leads the current in a series circuit, is the frequency above or below resonance? 3. onsider the phasor diagram shown in Figure.. for a series circuit. Figure.. (a) Is the driving frequency above or below the resonant frequency? (b) Draw the phasor V associated with the amplitude of the applied voltage. (c) Give an estimate of the phase constant φ between the applied A voltage and the current. 4. How does the power factor in a circuit change with resistance, inductance, and capacitance? 5. an a battery be used as the primary voltage source in a transformer? 6. If the power factor in a circuit is cosφ = /, can you tell whether the current leading or lagging the voltage? Explain. -37

38 . Additional Problems.. eactance of a apacitor and an Inductor (a) A =.5 µ F capacitor is connected, as shown in Figure..(a), to an A generator V (t) = V sin(ωt) with V = 3 V. What is the amplitude I of the resulting alternating current if the angular frequency ω is (i) rad/s, and (ii) rad/s? (a) (b) Figure.. (a) A purely capacitive circuit, and (b) a purely inductive circuit. (b) A 45-mH inductor is connected, as shown in Figure..(b), to an A generator V (t) = V sin(ωt) with V = 3 V. The inductor has a reactance = 3 Ω. (i) What is the applied angular frequency ω and, (ii) the applied frequency f, in order that = 3 Ω? (iii) What is the amplitude I of the resulting alternating current? (c) At what frequency f would our.5-µf capacitor and our 45-mH inductor have the same reactance? What would this reactance be? How would this frequency compare to the natural resonant frequency of free oscillations if the components were connected as an oscillator with zero resistance?.. Driven ircuit Near esonance The circuit shown in Figure.. contains an inductor, a capacitor, and a resistor in series with an A generator, which provides a source of sinusoidally varying emf V (t) = V sin(ωt). This emf drives current I( t) = I sin( ωt φ) through the circuit at angular frequency ω. -38

39 Figure.. (a) At what angular frequency ω will the circuit resonate with maximum response, as measured by the amplitude I of the current in the circuit? What is the value of the maximum current amplitude I max? (b) What is the value of the phase constant φ (the phase difference between V ( t ) and I( t ) ) at this resonant angular frequency? (c) Suppose the angular frequency ω is increased from the resonance value until the amplitude I of the current decreases from I max to I / max. What is new value of the phase difference φ between the emf and the current? Does the current lead or lag the emf?..3 ircuit 3 A series circuit with = 4. Ω and =.4 µ F is connected to an A voltage source V (t) = ( V)sin(ωt), with ω = rad/s. (a) What is the rms current in the circuit? (b) What is the phase difference between the voltage and the current? (c) Find the power dissipated in the circuit. (d) Find the voltage drop both across the resistor and the capacitor. -39

40 ..4 Black Box An A voltage source is connected to a black box which contains a circuit, as shown in Figure..3. Figure..3 A black box connected to an A voltage source. The elements in the circuit and their arrangement, however, are unknown. Measurements outside the black box provide the following information: V (t) = (8 V)sin(ωt), and I(t) = (.6 A)sin(ωt + 45 ). (a) Does the current lead or lag the voltage? (b) Is the circuit in the black box largely capacitive or inductive? (c) Is the circuit in the black box at resonance? (d) What is the power factor? (e) Does the box contain a resistor? A capacitor? An inductor? (f) ompute the average power delivered to the black box by the A source...5 Parallel ircuit onsider the parallel circuit shown in Figure..4. Figure..4 Parallel circuit -4

41 The A voltage source is V (t) = V sin(ωt). (a) Find the current across the resistor. (b) Find the current across the inductor. (c) What is the magnitude of the total current? (d) Find the impedance of the circuit. (e) What is the phase difference between the current and the voltage?..6 Parallel ircuit onsider the parallel circuit shown in Figure..5. Figure..5 Parallel circuit The A voltage source is V (t) = V sin(ωt). (a) Find the current across the resistor. (b) Find the current across the capacitor. (c) What is the magnitude of the total current? (d) Find the impedance of the circuit. (e) What is the phase difference between the current and the voltage?..7 Power Dissipation A series circuit with =. Ω, = 4 mh, and =. µ F is connected to an A voltage source V (t) = V sin(ωt) that has amplitude V = V. -4

42 (a) What is the resonant angular frequency ω? (b) Find the rms current at resonance. (c) et the driving angular frequency be ω = 4 rad/s. ompute,, Z, and φ...8 FM Antenna 6 An FM antenna circuit (shown in Figure..6) has an inductance = H, a capacitance = F, and a resistance = Ω. A radio signal induces a sinusoidally alternating emf in the antenna with amplitude 5 V. Figure..6 (a) For what angular frequency ω (radians/sec) of the incoming waves will the circuit be in tune -- that is, for what ω will the current in the circuit be a maximum. (b) What is the quality factor Q qual of the resonance? (c) Assuming that the incoming wave is in tune, what will be the amplitude of the current in the circuit at this in tune angular frequency. (d) What is the amplitude of the potential difference across the capacitor at this in tune angular frequency?..9 Driven ircuit Suppose you want a series circuit to tune to your favorite FM radio station that broadcasts at a frequency of 89.7 MHz. You would like to avoid the station that broadcasts at 89.5MHz. In order to achieve this, for a given input voltage signal from your antenna, you want the width of your resonance to be narrow enough at 89.7 MHz such that the current flowing in your circuit will be times less at 89.5MHz than at -4

43 89.7 MHz. You cannot avoid having a resistance of =. Ω considerations also dictate that you use the minimum possible., and practical (a) In terms of your circuit parameters,, and, what is the amplitude of your current in your circuit as a function of the angular frequency of the input signal? (b) What is the angular frequency of the input signal at the desired resonance? (c) What values of and must you use? (d) What is the quality factor for this resonance? (e) Show that at resonance, the ratio of the amplitude of the voltage across the inductor with the driving signal amplitude is the quality of the resonance. (f) Show that at resonance the ratio of the amplitude of the voltage across the capacitor with the driving signal amplitude is the quality of the resonance. (g) What is the time-averaged power at resonance that the signal delivers to the circuit? (h) What is the phase constant for the input signal at 89.5MHz? (i) What is the time-averaged power for the input signal at 89.5MHz? (j) Is the circuit capacitive or inductive at 89.5MHz? -43

### Alternating-Current Circuits

hapter 1 Alternating-urrent ircuits 1.1 A Sources... 1-1. Simple A circuits... 1-3 1..1 Purely esistive load... 1-3 1.. Purely Inductive oad... 1-5 1..3 Purely apacitive oad... 1-7 1.3 The Series ircuit...

### Chapter 35 Alternating Current Circuits

hapter 35 Alternating urrent ircuits ac-ircuits Phasor Diagrams Resistors, apacitors and nductors in ac-ircuits R ac-ircuits ac-ircuit power. Resonance Transformers ac ircuits Alternating currents and

### 45. The peak value of an alternating current in a 1500-W device is 5.4 A. What is the rms voltage across?

PHYS Practice Problems hapters 8- hapter 8. 45. The peak value of an alternating current in a 5-W device is 5.4 A. What is the rms voltage across? The power and current can be used to find the peak voltage,

### Physics 102: Lecture 13 RLC circuits & Resonance

Physics 102: Lecture 13 L circuits & esonance L Physics 102: Lecture 13, Slide 1 I = I max sin(2pft) V = I max sin(2pft) V in phase with I eview: A ircuit L V = I max X sin(2pft p/2) V lags I IE I V t

### EDEXCEL NATIONAL CERTIFICATE/DIPLOMA UNIT 5 - ELECTRICAL AND ELECTRONIC PRINCIPLES NQF LEVEL 3 OUTCOME 4 - ALTERNATING CURRENT

EDEXCEL NATIONAL CERTIFICATE/DIPLOMA UNIT 5 - ELECTRICAL AND ELECTRONIC PRINCIPLES NQF LEVEL 3 OUTCOME 4 - ALTERNATING CURRENT 4 Understand single-phase alternating current (ac) theory Single phase AC

### Circuits with inductors and alternating currents. Chapter 20 #45, 46, 47, 49

Circuits with inductors and alternating currents Chapter 20 #45, 46, 47, 49 RL circuits Ch. 20 (last section) Symbol for inductor looks like a spring. An inductor is a circuit element that has a large

### ε: Voltage output of Signal Generator (also called the Source voltage or Applied

Experiment #10: LR & RC Circuits Frequency Response EQUIPMENT NEEDED Science Workshop Interface Power Amplifier (2) Voltage Sensor graph paper (optional) (3) Patch Cords Decade resistor, capacitor, and

### Chapter 29 Alternating-Current Circuits

hapter 9 Alternating-urrent ircuits onceptual Problems A coil in an ac generator rotates at 6 Hz. How much time elapses between successive emf values of the coil? Determine the oncept Successive s are

### Homework #11 203-1-1721 Physics 2 for Students of Mechanical Engineering

Homework #11 203-1-1721 Physics 2 for Students of Mechanical Engineering 2. A circular coil has a 10.3 cm radius and consists of 34 closely wound turns of wire. An externally produced magnetic field of

### BASIC ELECTRONICS AC CIRCUIT ANALYSIS. December 2011

AM 5-202 BASIC ELECTRONICS AC CIRCUIT ANALYSIS December 2011 DISTRIBUTION RESTRICTION: Approved for Pubic Release. Distribution is unlimited. DEPARTMENT OF THE ARMY MILITARY AUXILIARY RADIO SYSTEM FORT

### 7.1 POWER IN AC CIRCUITS

C H A P T E R 7 AC POWER he aim of this chapter is to introduce the student to simple AC power calculations and to the generation and distribution of electric power. The chapter builds on the material

### L and C connected together. To be able: To analyse some basic circuits.

circuits: Sinusoidal Voltages and urrents Aims: To appreciate: Similarities between oscillation in circuit and mechanical pendulum. Role of energy loss mechanisms in damping. Why we study sinusoidal signals

### Frequency response: Resonance, Bandwidth, Q factor

Frequency response: esonance, Bandwidth, Q factor esonance. Let s continue the exploration of the frequency response of circuits by investigating the series circuit shown on Figure. C + V - Figure The

10. A ircuits* Objective: To learn how to analyze current and voltage relationships in alternating current (a.c.) circuits. You will use the method of phasors, or the vector addition of rotating vectors

### Introduction to Complex Numbers in Physics/Engineering

Introduction to Complex Numbers in Physics/Engineering ference: Mary L. Boas, Mathematical Methods in the Physical Sciences Chapter 2 & 14 George Arfken, Mathematical Methods for Physicists Chapter 6 The

### Experiment #11: LRC Circuit (Power Amplifier, Voltage Sensor)

Experiment #11: LRC Circuit (Power Amplifier, Voltage Sensor) Concept: circuits Time: 30 m SW Interface: 750 Windows file: RLC.SWS EQUIPMENT NEEDED Science Workshop Interface Power Amplifier (2) Voltage

### Electrical Resonance

Electrical Resonance (R-L-C series circuit) APPARATUS 1. R-L-C Circuit board 2. Signal generator 3. Oscilloscope Tektronix TDS1002 with two sets of leads (see Introduction to the Oscilloscope ) INTRODUCTION

### Unit2: Resistor/Capacitor-Filters

Unit2: Resistor/Capacitor-Filters Physics335 Student October 3, 27 Physics 335-Section Professor J. Hobbs Partner: Physics335 Student2 Abstract Basic RC-filters were constructed and properties such as

### Solution Derivations for Capa #11

Solution Derivations for Capa #11 Caution: The symbol E is used interchangeably for energy and EMF. 1) DATA: V b = 5.0 V, = 155 Ω, L = 8.400 10 2 H. In the diagram above, what is the voltage across the

### ANALYTICAL METHODS FOR ENGINEERS

UNIT 1: Unit code: QCF Level: 4 Credit value: 15 ANALYTICAL METHODS FOR ENGINEERS A/601/1401 OUTCOME - TRIGONOMETRIC METHODS TUTORIAL 1 SINUSOIDAL FUNCTION Be able to analyse and model engineering situations

### Chapter 25 Alternating Currents

Physics Including Human Applications 554 Chapter 25 Alternating Currents GOALS When you have mastered the contents of this chapter, you will be able to achieve the following goals: Definitions Define each

### Lecturer: James Grimbleby URL: http://www.personal.rdg.ac.uk/~stsgrimb/ email: j.b.grimbleby reading.ac.uk

AC Circuit Analysis Module: SEEA5 Systems and Circuits Lecturer: UL: http://www.personal.rdg.ac.uk/~stsgrimb/ email:.b.grimbleby reading.ac.uk Number of Lectures: ecommended text book: David Irwin and

### Capacitors in Circuits

apacitors in ircuits apacitors store energy in the electric field E field created by the stored charge In circuit apacitor may be absorbing energy Thus causes circuit current to be reduced Effectively

### CHAPTER 30: Inductance, Electromagnetic Oscillations, and AC Circuits

HAPTE 3: Inductance, Electromagnetic Oscillations, and A ircuits esponses to Questions. (a) For the maximum value of the mutual inductance, place the coils close together, face to face, on the same axis.

### Eðlisfræði 2, vor 2007

[ Assignment View ] [ Print ] Eðlisfræði 2, vor 2007 30. Inductance Assignment is due at 2:00am on Wednesday, March 14, 2007 Credit for problems submitted late will decrease to 0% after the deadline has

### CIRCUITS LABORATORY EXPERIMENT 3. AC Circuit Analysis

CIRCUITS LABORATORY EXPERIMENT 3 AC Circuit Analysis 3.1 Introduction The steady-state behavior of circuits energized by sinusoidal sources is an important area of study for several reasons. First, the

### Chapter 7 Direct-Current Circuits

Chapter 7 Direct-Current Circuits 7. Introduction...7-7. Electromotive Force...7-3 7.3 Resistors in Series and in Parallel...7-5 7.4 Kirchhoff s Circuit Rules...7-7 7.5 Voltage-Current Measurements...7-9

### Magnetic Field of a Circular Coil Lab 12

HB 11-26-07 Magnetic Field of a Circular Coil Lab 12 1 Magnetic Field of a Circular Coil Lab 12 Equipment- coil apparatus, BK Precision 2120B oscilloscope, Fluke multimeter, Wavetek FG3C function generator,

### Inductors in AC Circuits

Inductors in AC Circuits Name Section Resistors, inductors, and capacitors all have the effect of modifying the size of the current in an AC circuit and the time at which the current reaches its maximum

### Chapter 4: Passive Analog Signal Processing

hapter 4: Passive Analog Signal Processing In this chapter we introduce filters and signal transmission theory. Filters are essential components of most analog circuits and are used to remove unwanted

### RLC Resonant Circuits

C esonant Circuits Andrew McHutchon April 20, 203 Capacitors and Inductors There is a lot of inconsistency when it comes to dealing with reactances of complex components. The format followed in this document

### Using the Impedance Method

Using the Impedance Method The impedance method allows us to completely eliminate the differential equation approach for the determination of the response of circuits. In fact the impedance method even

### ES250: Electrical Science. HW7: Energy Storage Elements

ES250: Electrical Science HW7: Energy Storage Elements Introduction This chapter introduces two more circuit elements, the capacitor and the inductor whose elements laws involve integration or differentiation;

### Chapter 10. RC Circuits ISU EE. C.Y. Lee

Chapter 10 RC Circuits Objectives Describe the relationship between current and voltage in an RC circuit Determine impedance and phase angle in a series RC circuit Analyze a series RC circuit Determine

### Alternating Current Circuits and Electromagnetic Waves

Arecibo, a large radio telescope in Puerto Rico, gathers electromagnetic radiation in the form of radio waves. These long wavelengths pass through obscuring dust clouds, allowing astronomers to create

### AC Generators. Basic Generator

AC Generators Basic Generator A basic generator consists of a magnetic field, an armature, slip rings, brushes and a resistive load. The magnetic field is usually an electromagnet. An armature is any number

### RC & RL Transient Response

EE 2006 University of Minnesota Duluth ab 8 1. Introduction R & R Transient Response The student will analyze series R and R circuits. A step input will excite these respective circuits, producing a transient

### RLC Series Resonance

RLC Series Resonance 11EM Object: The purpose of this laboratory activity is to study resonance in a resistor-inductor-capacitor (RLC) circuit by examining the current through the circuit as a function

### IF Transformer. V2 is 2Vp-p sinusoidal

V2 is 2Vp-p sinusoidal Purpose and Function These transformers are specially designed tuned circuit in RFI-tight groundable metal packages for narrow bandwith IF application. 1 Theory and Design C30 and

### Basic Op Amp Circuits

Basic Op Amp ircuits Manuel Toledo INEL 5205 Instrumentation August 3, 2008 Introduction The operational amplifier (op amp or OA for short) is perhaps the most important building block for the design of

### Chapter 11. Inductors ISU EE. C.Y. Lee

Chapter 11 Inductors Objectives Describe the basic structure and characteristics of an inductor Discuss various types of inductors Analyze series inductors Analyze parallel inductors Analyze inductive

### Direction of Induced Current

Direction of Induced Current Bar magnet moves through coil Current induced in coil A S N v Reverse pole Induced current changes sign B N S v v Coil moves past fixed bar magnet Current induced in coil as

### Lesson 3 DIRECT AND ALTERNATING CURRENTS. Task. The skills and knowledge taught in this lesson are common to all missile repairer tasks.

Lesson 3 DIRECT AND ALTERNATING CURRENTS Task. The skills and knowledge taught in this lesson are common to all missile repairer tasks. Objectives. When you have completed this lesson, you should be able

### PHASOR DIAGRAMS HANDS-ON RELAY SCHOOL WSU PULLMAN, WA. RON ALEXANDER - BPA

PHASOR DIAGRAMS HANDS-ON RELAY SCHOOL WSU PULLMAN, WA. RON ALEXANDER - BPA What are phasors??? In normal practice, the phasor represents the rms maximum value of the positive half cycle of the sinusoid

### Chapter 7. DC Circuits

Chapter 7 DC Circuits 7.1 Introduction... 7-3 Example 7.1.1: Junctions, branches and loops... 7-4 7.2 Electromotive Force... 7-5 7.3 Electrical Energy and Power... 7-9 7.4 Resistors in Series and in Parallel...

### Since any real component also has loss due to the resistive component, the average power dissipated is 2 2R

Quality factor, Q Reactive components such as capacitors and inductors are often described with a figure of merit called Q. While it can be defined in many ways, it s most fundamental description is: Q

### Critical thin-film processes such as deposition and etching take place in a vacuum

WHITEPAPER INTRODUCING POWER SUPPLIES AND PLASMA Critical thin-film processes such as deposition and etching take place in a vacuum SYSTEMS chamber in the presence of a plasma. A plasma is an electrically

### Diodes have an arrow showing the direction of the flow.

The Big Idea Modern circuitry depends on much more than just resistors and capacitors. The circuits in your computer, cell phone, Ipod depend on circuit elements called diodes, inductors, transistors,

### Three phase circuits

Three phase circuits THREE PHASE CIRCUITS THREE-PHASE ADVANTAGES 1. The horsepower rating of three-phase motors and the kva rating of three-phase transformers are 150% greater than single-phase motors

### 5. Measurement of a magnetic field

H 5. Measurement of a magnetic field 5.1 Introduction Magnetic fields play an important role in physics and engineering. In this experiment, three different methods are examined for the measurement of

### Application Note AN- 1095

Application Note AN- 1095 Design of the Inverter Output Filter for Motor Drives with IRAMS Power Modules Cesare Bocchiola Table of Contents Page Section 1: Introduction...2 Section 2 : Output Filter Design

### Basic Electrical Technology Dr. L. Umanand Department of Electrical Engineering Indian Institute of Science, Bangalore. Lecture - 33 3 phase System 4

Basic Electrical Technology Dr. L. Umanand Department of Electrical Engineering Indian Institute of Science, Bangalore Lecture - 33 3 phase System 4 Hello everybody. So, in the last class we have been

### DOE FUNDAMENTALS HANDBOOK ELECTRICAL SCIENCE Volume 3 of 4

DOE-HDBK-1011/3-92 JUNE 1992 DOE FUNDAMENTALS HANDBOOK ELECTRICAL SCIENCE Volume 3 of 4 U.S. Department of Energy Washington, D.C. 20585 FSC-6910 Distribution Statement A. Approved for public release;

### 104 Practice Exam 2-3/21/02

104 Practice Exam 2-3/21/02 1. Two electrons are located in a region of space where the magnetic field is zero. Electron A is at rest; and electron B is moving westward with a constant velocity. A non-zero

### Lecture 22: Class C Power Amplifiers

Whites, EE 322 Lecture 22 Page 1 of 13 Lecture 22: lass Power Amplifiers We discovered in Lecture 18 (Section 9.2) that the maximum efficiency of lass A amplifiers is 25% with a resistive load and 50%

### CHAPTER 28 ELECTRIC CIRCUITS

CHAPTER 8 ELECTRIC CIRCUITS 1. Sketch a circuit diagram for a circuit that includes a resistor R 1 connected to the positive terminal of a battery, a pair of parallel resistors R and R connected to the

### Problem Solving 8: RC and LR Circuits

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Physics Problem Solving 8: RC and LR Circuits Section Table and Group (e.g. L04 3C ) Names Hand in one copy per group at the end of the Friday Problem

### Homework Assignment 03

Question 1 (2 points each unless noted otherwise) Homework Assignment 03 1. A 9-V dc power supply generates 10 W in a resistor. What peak-to-peak amplitude should an ac source have to generate the same

### Slide 1 / 26. Inductance. 2011 by Bryan Pflueger

Slide 1 / 26 Inductance 2011 by Bryan Pflueger Slide 2 / 26 Mutual Inductance If two coils of wire are placed near each other and have a current passing through them, they will each induce an emf on one

### Measuring Impedance and Frequency Response of Guitar Pickups

Measuring Impedance and Frequency Response of Guitar Pickups Peter D. Hiscocks Syscomp Electronic Design Limited phiscock@ee.ryerson.ca www.syscompdesign.com April 30, 2011 Introduction The CircuitGear

### CHAPTER 31. E max = 15.1 V

CHAPTER 31 Note: Unless otherwise indicated, the symbols I, V, E, and P denote the rms values of I, V, and E and the average power. 1* A 00-turn coil has an area of 4 cm and rotates in a magnetic field

### 2. A conductor of length 2m moves at 4m/s at 30 to a uniform magnetic field of 0.1T. Which one of the following gives the e.m.f. generated?

Extra Questions - 2 1. A straight length of wire moves through a uniform magnetic field. The e.m.f. produced across the ends of the wire will be maximum if it moves: a) along the lines of magnetic flux

### Impedance Matching and Matching Networks. Valentin Todorow, December, 2009

Impedance Matching and Matching Networks Valentin Todorow, December, 2009 RF for Plasma Processing - Definition of RF What is RF? The IEEE Standard Dictionary of Electrical and Electronics Terms defines

### 1 Introduction. 2 The Symmetrical Component Transformation. J.L. Kirtley Jr.

Massachusetts Institute of Technology Department of Electrical Engineering and Computer Science 6.06 Introduction to Power Systems Class Notes Chapter 4 Introduction To Symmetrical Components J.L. Kirtley

### Frequency Response of Filters

School of Engineering Department of Electrical and Computer Engineering 332:224 Principles of Electrical Engineering II Laboratory Experiment 2 Frequency Response of Filters 1 Introduction Objectives To

### RUPHYS2272015 ( RUPHY227F2015 ) My Courses Course Settings University Physics with Modern Physics, 14e Young/Freedman

Signed in as Jolie Cizewski, Instructor Help Sign Out RUPHYS2272015 ( RUPHY227F2015 ) My Courses Course Settings University Physics with Modern Physics, 14e Young/Freedman Course Home Assignments Roster

### Positive Feedback and Oscillators

Physics 3330 Experiment #6 Fall 1999 Positive Feedback and Oscillators Purpose In this experiment we will study how spontaneous oscillations may be caused by positive feedback. You will construct an active

### 580.439 Course Notes: Linear circuit theory and differential equations

58.439 ourse Notes: Linear circuit theory and differential equations eading: Koch, h. ; any text on linear signal and system theory can be consulted for more details. These notes will review the basics

### APPLICATION NOTE AP050830

APPLICATION NOTE AP050830 Selection and use of Ultrasonic Ceramic Transducers Pro-Wave Electronics Corp. E-mail: sales@pro-wave.com.tw URL: http://www.prowave.com.tw The purpose of this application note

### Lecture - 4 Diode Rectifier Circuits

Basic Electronics (Module 1 Semiconductor Diodes) Dr. Chitralekha Mahanta Department of Electronics and Communication Engineering Indian Institute of Technology, Guwahati Lecture - 4 Diode Rectifier Circuits

### Your Comments. This was a very confusing prelecture. Do you think you could go over thoroughly how the LC circuits work qualitatively?

Your omments I am not feeling great about this mierm...some of this stuff is really confusing still and I don't know if I can shove everything into my brain in time, especially after spring break. an you

### Applications of Second-Order Differential Equations

Applications of Second-Order Differential Equations Second-order linear differential equations have a variety of applications in science and engineering. In this section we explore two of them: the vibration

### Mutual Inductance and Transformers F3 3. r L = ω o

utual Inductance and Transformers F3 1 utual Inductance & Transformers If a current, i 1, flows in a coil or circuit then it produces a magnetic field. Some of the magnetic flux may link a second coil

### Mechanical Vibrations

Mechanical Vibrations A mass m is suspended at the end of a spring, its weight stretches the spring by a length L to reach a static state (the equilibrium position of the system). Let u(t) denote the displacement,

### Modulation and Demodulation

16 Modulation and Demodulation 16.1 Radio Broadcasting, Transmission and Reception 16. Modulation 16.3 Types of Modulation 16.4 Amplitude Modulation 16.5 Modulation Factor 16.6 Analysis of Amplitude Modulated

### Effect of Frequency on Inductive Reactance

TUNED CIRCUITS Effect of Frequency on Inductive Reactance Resonance The ideal series-resonant circuit How the Parallel-LC Circuit Stores Energy Parallel resonance Resonant circuits as filter circuits Pulsed

### 12. Transformers, Impedance Matching and Maximum Power Transfer

1 1. Transformers, Impedance Matching and Maximum Power Transfer Introduction The transformer is a device that takes AC at one voltage and transforms it into another voltage either higher or lower than

### Using an Oscilloscope

Using an Oscilloscope The oscilloscope is used to measure a voltage that changes in time. It has two probes, like a voltmeter. You put these probes on either side of the thing that you want to measure

### Equivalent Circuits and Transfer Functions

R eq isc Equialent Circuits and Transfer Functions Samantha R Summerson 14 September, 009 1 Equialent Circuits eq ± Figure 1: Théenin equialent circuit. i sc R eq oc Figure : Mayer-Norton equialent circuit.

### Let s examine the response of the circuit shown on Figure 1. The form of the source voltage Vs is shown on Figure 2. R. Figure 1.

Examples of Transient and RL Circuits. The Series RLC Circuit Impulse response of Circuit. Let s examine the response of the circuit shown on Figure 1. The form of the source voltage Vs is shown on Figure.

### APPLICATION NOTE ULTRASONIC CERAMIC TRANSDUCERS

APPLICATION NOTE ULTRASONIC CERAMIC TRANSDUCERS Selection and use of Ultrasonic Ceramic Transducers The purpose of this application note is to aid the user in the selection and application of the Ultrasonic

### Chapter 3. Diodes and Applications. Introduction [5], [6]

Chapter 3 Diodes and Applications Introduction [5], [6] Diode is the most basic of semiconductor device. It should be noted that the term of diode refers to the basic p-n junction diode. All other diode

### Faraday s Law of Induction

Chapter 10 Faraday s Law of Induction 10.1 Faraday s Law of Induction...10-10.1.1 Magnetic Flux...10-3 10.1. Lenz s Law...10-5 10. Motional EMF...10-7 10.3 Induced Electric Field...10-10 10.4 Generators...10-1

### Step response of an RLC series circuit

School of Engineering Department of Electrical and Computer Engineering 332:224 Principles of Electrical Engineering II Laboratory Experiment 5 Step response of an RLC series circuit 1 Introduction Objectives

### LABORATORY 10 TIME AVERAGES, RMS VALUES AND THE BRIDGE RECTIFIER. Bridge Rectifier

LABORATORY 10 TIME AVERAGES, RMS VALUES AND THE BRIDGE RECTIFIER Full-wave Rectification: Bridge Rectifier For many electronic circuits, DC supply voltages are required but only AC voltages are available.

### Measurement of Capacitance

Measurement of Capacitance Pre-Lab Questions Page Name: Class: Roster Number: Instructor:. A capacitor is used to store. 2. What is the SI unit for capacitance? 3. A capacitor basically consists of two

### The D.C Power Supply

The D.C Power Supply Voltage Step Down Electrical Isolation Converts Bipolar signal to Unipolar Half or Full wave Smoothes the voltage variation Still has some ripples Reduce ripples Stabilize the output

### Experiment 8: Undriven & Driven RLC Circuits

Experiment 8: Undriven & Driven RLC Circuits Answer these questions on a separate sheet of paper and turn them in before the lab 1. RLC Circuits Consider the circuit at left, consisting of an AC function

### DC motors: dynamic model and control techniques

DC motors: dynamic model and control techniques Luca Zaccarian Contents 1 Magnetic considerations on rotating coils 1 1.1 Magnetic field and conductors.......................... 1 1.2 The magneto-motive

### Understanding Poles and Zeros

MASSACHUSETTS INSTITUTE OF TECHNOLOGY DEPARTMENT OF MECHANICAL ENGINEERING 2.14 Analysis and Design of Feedback Control Systems Understanding Poles and Zeros 1 System Poles and Zeros The transfer function

### DIODE CIRCUITS LABORATORY. Fig. 8.1a Fig 8.1b

DIODE CIRCUITS LABORATORY A solid state diode consists of a junction of either dissimilar semiconductors (pn junction diode) or a metal and a semiconductor (Schottky barrier diode). Regardless of the type,

### Lecture 24. Inductance and Switching Power Supplies (how your solar charger voltage converter works)

Lecture 24 Inductance and Switching Power Supplies (how your solar charger voltage converter works) Copyright 2014 by Mark Horowitz 1 Roadmap: How Does This Work? 2 Processor Board 3 More Detailed Roadmap

### The Time Constant of an RC Circuit

The Time Constant of an RC Circuit 1 Objectives 1. To determine the time constant of an RC Circuit, and 2. To determine the capacitance of an unknown capacitor. 2 Introduction What the heck is a capacitor?

### Outline. Systems and Signals 214 / 244 & Energy Systems 244 / 344. Ideal Inductor. Ideal Inductor (cont... )

Outline Systems and Signals 214 / 244 & Energy Systems 244 / 344 Inductance, Leakage Inductance, Mutual Inductance & Transformers 1 Inductor revision Ideal Inductor Non-Ideal Inductor Dr. P.J. Randewijk

### Line Reactors and AC Drives

Line Reactors and AC Drives Rockwell Automation Mequon Wisconsin Quite often, line and load reactors are installed on AC drives without a solid understanding of why or what the positive and negative consequences

### The purposes of this experiment are to test Faraday's Law qualitatively and to test Lenz's Law.

260 17-1 I. THEORY EXPERIMENT 17 QUALITATIVE STUDY OF INDUCED EMF Along the extended central axis of a bar magnet, the magnetic field vector B r, on the side nearer the North pole, points away from this

### Physics 6C, Summer 2006 Homework 2 Solutions

Physics 6C, Summer 006 Homework Solutions All problems are from the nd edition of Walker. Numerical values are different for each student. Chapter 3 Problems. Figure 3-30 below shows a circuit containing

### EE 1202 Experiment #4 Capacitors, Inductors, and Transient Circuits

EE 1202 Experiment #4 Capacitors, Inductors, and Transient Circuits 1. Introduction and Goal: Exploring transient behavior due to inductors and capacitors in DC circuits; gaining experience with lab instruments.