Name: Class: Date: EN: EARTHQUAKES

Similar documents
Unit 4 Lesson 6 Measuring Earthquake Waves. Copyright Houghton Mifflin Harcourt Publishing Company

Earthquakes. Earthquakes: Big Ideas. Earthquakes

EARTHQUAKES. Compressional Tensional Slip-strike

Seismic Waves Practice

Name Date Class. By studying the Vocabulary and Notes listed for each section below, you can gain a better understanding of this chapter.

Name: Date: Class: Finding Epicenters and Measuring Magnitudes Worksheet

FOURTH GRADE EARTHQUAKES 1 WEEK LESSON PLANS AND ACTIVITIES

Locating the Epicenter and Determining the Magnitude of an Earthquake

How do scientists measure earthquakes?

Lecture 12 Earthquake Magnitude

Chapter 5: Earthquakes

The Dynamic Crust 2) EVIDENCE FOR CRUSTAL MOVEMENT

Activity #1-HS What is a Seismometer? High School Level

Unit 6 Earthquakes and Volcanoes

Chapter 7 Earthquake Hazards Practice Exam and Study Guide

Glossary. continental crust: the sections of crust, the outermost layer of the earth, that include the continents

FOURTH GRADE PLATE TECTONICS 1 WEEK LESSON PLANS AND ACTIVITIES

The Severity of an Earthquake U.S. Department of the Interior/Geological Survey

Magnitude 7.2 GUERRERO, MEXICO

Geology for Engineers Earthquakes

Earthquakes and Plate Boundaries Deborah Jordan and Samuel Spiegel

Earthquakes.

THE 2004 SUMATRA EARTHQUAKE AND INDIAN OCEAN TSUNAMI: WHAT HAPPENED AND WHY

Evaluating an Illinois Earthquake

Presentations. Session 1. Slide 1. Earthquake Risk Reduction. 1- Concepts & Terminology

Seismographs. Lesson 7. Seismographs recording activity on Kilauea

Earthquakes. Seismograph stations operated by the British Geological Survey

Plotting Earthquakes LESSON

DYNAMIC CRUST: Unit 4 Exam Plate Tectonics and Earthquakes

Regents Questions: Plate Tectonics

Earthquake Preparedness Tips & Strategies

DISASTER RESISTANCE EARTHQUAKES AND STRUCTURES

Earthquakes Natural and Induced. Rick Aster Professor of Geophysics and Department Head Geosciences Department Colorado State University

Magnitude 8.8 OFFSHORE MAULE, CHILE

Name: Period: # Plate Tectonics. Journey to the center of the Earth

What causes Tides? If tidal forces were based only on mass, the Sun should have a tidegenerating

TECTONICS ASSESSMENT

FIFTH GRADE PLATE TECTONICS 1 WEEK LESSON PLANS AND ACTIVITIES

Geological Maps 3: Faulted Strata

Earthquakes: Risk & Insurance Issues

Interactive Plate Tectonics

Earth Egg Model Teacher Notes

EARTHQUAKE MAGNITUDE

Storms Assessment LESSON

ACTIVITY 6: Falling Objects

Questions & Answers Proposed for Exam #3

The earthquake source

Earthquake Hazards and Risks

Study the following diagrams of the States of Matter. Label the names of the Changes of State between the different states.

SIXTH GRADE PLATE TECTONICS 1 WEEK LESSON PLANS AND ACTIVITIES

Five reasons buildings fail in an earthquake and how to avoid them

Introduction to Seismology Spring 2008

Rapid Changes in Earth s Surface

Friday 20 January 2012 Morning

Tsunami Practice Questions and Answers Revised November 2008

Study Guide Questions Earth Structure and Plate Tectonics

Shake, Rattle, and Roll. Tina Moore, Denise Robinette, & Matt Utz

PLEASE DO NOT WRITE ON THE TEST. PLACE ALL MULTIPLE CHOICE ANSWERS ON THE SCANTRON. (THANK YOU FOR SAVING A TREE.)

Layers of the Earth s Interior

Physical Science Study Guide Unit 7 Wave properties and behaviors, electromagnetic spectrum, Doppler Effect

Earthquakes: Risk and Insurance Issues

Earth Science Landforms, Weathering, and Erosion Reading Comprehension. Landforms, Weathering, and Erosion

February 28 Earthquake: We got off easy

After a wave passes through a medium, how does the position of that medium compare to its original position?

Unit: Restless Earth Lesson: Earth s Interior

Earthquakes. Was anyone hur t? 358 Chuck Nacke/TimeLife Pictures/Getty Images

EARTHQUAKE PROBLEM: Do's and Don'ts for Protection

Tectonic plates push together at convergent boundaries.

1. The Kinetic Theory of Matter states that all matter is composed of atoms and molecules that are in a constant state of constant random motion

Name Partners Date. Energy Diagrams I

Geology 112 Earthquakes. Activity 1 Worksheet Introduction to the Course. What is a Fault? What is an Earthquake?

When Things Go Wrong

TIDES. 1. Tides are the regular rise and fall of sea level that occurs either once a day (every 24.8 hours) or twice a day (every 12.4 hours).

Plate Tectonics. Introduction. Boundaries between crustal plates

Suggested Activities Processes that Shape the Earth: Earth s Structure and Plate Tectonics

Earthquake Lab. A. Locate the Epicenter. Name: Lab Section:

EARTHQUAKE PREDICTION

Plate Tectonics Web-Quest

Thursday 23 May 2013 Morning

Exploring plate motion and deformation in California with GPS

Georgia Performance Standards Framework for Natural Disasters 6 th Grade

Name Class Date. true

Reading GPS Time Series Plots Worksheet

CHAPTER 6 THE TERRESTRIAL PLANETS

EARTHQUAKE. Definition of Hazard. History of Hazard as it Affects the City of Kent. Hazard Identification

Simulating Aftershocks for an On Site Inspection (OSI) Exercise

When the fluid velocity is zero, called the hydrostatic condition, the pressure variation is due only to the weight of the fluid.

Earthquake Magnitude

EARTH SCIENCE ACTIVITY #5 The Mercalli Scale

circular motion & gravitation physics 111N

Chapter. Earthquake Damage: Types, Process, Categories

The concepts developed in this standard include the following: Oceans cover about 70% of the surface of the Earth.

Plotting Earthquake Epicenters an activity for seismic discovery

SECOND GRADE PLATE TECTONICS 1 WEEK LESSON PLANS AND ACTIVITIES

ICOLD POSITION PAPER ON DAM SAFETY AND EARTHQUAKES

Tectonic plates have different boundaries.

v = fλ PROGRESSIVE WAVES 1 Candidates should be able to :

NATURAL DISASTERS Vol. I - Earthquake Parameters Including Strong Earthquakes- S.L.Yunga EARTHQUAKE PARAMETERS INCLUDING STRONG EARTHQUAKES

Tides and Water Levels

Transcription:

Name: Class: Date: EN: EARTHQUAKES 1. What causes earthquakes? Earthquakes occur when forces within the Earth become so great that the ground breaks along zones of weakness, known as geologic faults. The energy waves that radiate from these breaks are the vibrations that we feel as earthquakes. At 5:36 pm on Friday, March 27, 1964, the residents of Anchorage, Alaska felt the gentle rolling motion that marked the onset of one of the most violent earthquakes in modern history. Over the next five minutes, the Earth surged and buckled as people ran for safety. The rumbling and breaking sounds of the Earth were replaced by crashing sounds of falling buildings and screams of people injured and trapped by rubble. Then, as quickly and as mysteriously as it began, the movement of the Earth stopped. Seismologists say, Earthquakes don t kill people. Buildings do! In most earthquakes, the greatest loss of life and property happen in the collapse of man made structures where they have been built on loose sediments. One side of Anchorage s main shopping street overlooking Cook Inlet was lost in a massive landslide. Cities along the Pacific coast were lashed out by Earthquake generated ocean waves known as tsunami ( tidal waves ) as much as twenty meters high. Fortunately, Anchorage did not suffer the fires that destroyed San Francisco after the Earthquake of 1906, or the landslides that buried dozens of people in the Wyoming earthquake of 1959. 2. In movies, you sometimes see people fall into great cracks that open to swallow their victims, and then close in on them. Even in the greatest earthquakes, this kind of accident is very rare. What events associated with earthquakes do cause the greatest loss of life and property? 3. What is a tsunami? 4. Where should buildings be constructed if we what them to survive major earthquakes? 5. What geologic structures are associated with earthquakes? In 1902 the Italian geophysicist, Giuseppe Mercalli, devised a relative scale to measure earthquakes. This scale was based upon first hand observations, or published reports of the effects of the earthquake. On the Mercalli scale, an earthquake of intensity I would be so slight that it would felt by very few people. The most intense seismic events rate XII and cause total destruction in structures that are not reinforced by steel frames. Earthquakes, p. of 6 1

In 1935, a scale of absolute magnitude was proposed by Charles Richter if the California Institute of Technology. On this scale, an earthquake of magnitude I could be observed only with sensitive instruments like the seismograph in the diagram to the right. With each increase of I on this scale, the earthquake would be felt ten times stronger. The greatest earthquake in modern history occurred in the Pacific Ocean off Chile in 1960. It had a Richter magnitude between 9 and 10. That seems to be about the limit of terrestrial rocks to hold stress before they break. When the United States and the Soviet Union negotiated a ban on atmospheric testing of nuclear weapons in 1963, both nations set up a sensitive network of seismic recording stations to monitor the underground testing of nuclear weapons. These seismic stations have allowed scientists to record and measure many earthquake that would otherwise have been unnoticed. 6. What instruments are used to record and measure earthquakes? 7. How does the Mercalli scale differ from the Richter scale? 8. The strongest earthquakes probably have a Richter magnitude of about 9. How much stronger is an earthquake of magnitude 7, than an earthquake of magnitude 6? 10. What political event in the 1960s was a benefit to seismologists? The place underground where the rock actually breaks is known as the focus of the earthquake. Directly above the focus, on the surface of the Earth, is the epicenter. The earthquake will be felt most strongly by people at the epicenter. (ß See the diagram.) Energy radiates from the focus as vibration waves. The speed of these waves is directly proportional to the rigidity of the rock through which they travel. The study of earthquakes, both man made and natural, has given geologists some of our most important information about the interior of the Earth. Earthquakes generate primary, secondary and surface waves. These waves travel through the solid Earth like sound and light waves radiate through air. But each type of waves has its own special characteristics. Earthquakes, p. of 6 2

Primary ( P ) waves travel the fastest. P- waves are longitudinal waves, like sound, because the waves pass as a series of compressions and expansions. P-waves cause the Earth to vibrate back and forth in the direction of travel, in a push-pull motion. Like sound, P-waves can travel through both solids and liquids. Secondary ( S ) waves are a little slower than P-waves. Like light, S-waves are transverse waves that cause side to side vibrations making the ground move perpendicular to the direction of travel. For this reason, S-waves are also known as shear waves. S-waves cannot travel through liquids. Surface waves are the last to arrive. (This is partly because they because they travel through less rigid, more flexible rocks near the surface of the Earth.) Like waves on water, surface waves involve a combination of longitudinal and transverse vibrations. Surface waves cause the most damage and loss of life. 11. The epicenter of an earthquake is directly above the 12. As P and S-waves travel deeper within the Earth, the speed of these energy waves 13. Which kind of seismic waves cause the most damage to man made structures? 14. When an S-wave passes, the ground vibrates 15. Unlike P-waves, S-waves will not travel through a medium. 16. How have humans generated strong seismic tremors? Because P-waves travel faster than S-waves, the greater the distance between the epicenter and the recording station, the greater the time lag between the arrival of P and S-waves. For a nearby earthquake, the P and S-waves arrives with little separation. But for distant events, the time lag will be longer. Seismologists use this knowledge to determine the location of an earthquake. If the distance between the epicenter and three widely spaced recording stations can be found, the location of the earthquake can be determined. Thus, three recording stations are needed locate the epicenter of any earthquake. Earthquakes, p. of 6 3

Earthquakes, p. of 6 4

The diagram to the left shows three seismic recordings (seismograms) from a single earthquake detected at three different seismic stations. 17. Of P and S-waves, which is larger? 18. What is the length of time form one number to the next? 19. Therefore, each of the smallest marks represents Written records of P and S-wave arrival times are written as HOURS:MINUTES:SECONDS in 24 hour military time. So 08:27:30 would mean 30 seconds past 8:27 in the morning, and 14:00:03 would be 3 seconds past two in the afternoon. 20. In this system, at what time did the great Alaska earthquake hit Anchorage on 3/27/ 64? (Hint: Look at the second paragraph on page 1.) For these and all subsequent arrival times, record each arrival time to the nearest 5 seconds. 21. Record the arrival times of the S (secondary) waves as shown on the seismograms above. S-waves: Denver Great Falls Terre Haute 22. In the spaces below, record the arrival times of the P-waves at these stations. P-waves: Denver Great Falls Terre Haute In a few minutes you will use the space above ( ) to find the time lag between P and S- waves. However, you must first become familiar with the technique of borrowing from the minutes or hours columns. (Just keep in mind that there are 60 seconds in each minute and 60 minutes in each hour.) Look over the examples in 23-25 before you do the subtractions above. 23. 10:18:30 24: 18:31:25 25: 10:01:22-10:11:40-18:28:36-09:56:31 Now, go back and calculate the time differences in 21 and 22 above. (Three subtractions) Once the time lags between the P and S-wave arrival time are known, the distance from the epicenter to each seismic station can be found using the P and S-wave travel time graph on page 4 of this activity. Please look at that graph now. (Page 4) 26. Along the horizontal axis is scale used to measure the distance between the seismograph station and the Earthquakes, p. of 6 5

27. The vertical axis shows the of P and S-waves. 28. Why is the S-wave line higher than the P-wave line? 29. How long does it take for a P-wave to travel 2000 km? (To the nearest 5 seconds!) 30. How long does it take an S-wave to travel the same distance? (2000 km) 31. As the distance from the epicenter increases, the time lag between P and S-waves It is this delay that allows us to find the distance from the epicenter to each recording station using the graph on page 6 (also found in the Earth Science Reference Tables). Lay a straight line edge of a piece of paper along the vertical axis as shown in the first diagram to the right. Carefully make two marks along the blank edge at 0 minutes and at the 5 minute mark. (Mark your paper now as shown here ->.) Now move the paper to the place where there is a time difference of exactly 5 minutes between the P and S-wave lines. (See the second diagram ->.) Take care to keep the blank edge exactly vertical. 32. At what distance will the P-waves arrive 5 minutes ahead of the S-waves? (Please take care to be exact. A lack of precision will be a problem on the next lab!) 33. If the P-wave arrives 8 minutes before the S-wave, the distance to the epicenter must be 34. For this last question, you will need to refer to the numbers that you obtained in the middle of page 4. How far was this Earthquake epicenter from the three recording stations on page 5? Denver: Great Falls: Terre Haute: Earthquakes, p. of 6 6