Name: Date: Class: Finding Epicenters and Measuring Magnitudes Worksheet
|
|
|
- Leo Greer
- 9 years ago
- Views:
Transcription
1 Example Answers Name: Date: Class: Finding Epicenters and Measuring Magnitudes Worksheet Objective: To use seismic data and an interactive simulation to triangulate the location and measure the magnitude of an earthquake. Materials: Work in pairs sharing one computer with Internet access. Engage: 1. You may have heard news coverage saying something like the earthquake was a 6.3 on the Richter scale or the epicenter was located just outside the city. Describe in your journal what you think these statements mean. Student answers will vary. Explore: Navigate to the Earthquakes Living Lab at 2. The Earthquakes Living Lab has four main components to it, each based on one of four historic earthquakes. For this activity, select the Mexico box. 3. Take a few minutes to read the information on the left side of this page for the 1978 earthquake at La Paz of Baja California Sur, Mexico. Then locate and click the link in the center of the page under the question: How is an earthquake epicenter located and how is magnitude determined? 4. This opens a new window to California State University s Virtual Earthquake simulation from Geology Labs On-Line at Read the first page and then answer the following questions: a. What is an earthquake? An earthquake is a sudden release of stored energy that built up over time as a result of tectonic forces within the Earth. When one side of a fault moves rapidly relative to the other side of the fault, the sudden motion causes shock or seismic waves that travel through the Earth and produce ground motion. b. What is a seismic wave? A seismic wave, also known as a shock wave, is the transferring of energy from one spot to another within the Earth. c. What is the difference between S waves and P waves? P (primary) waves, which are similar to sound waves, come first. The S (secondary) waves, which are a type of shear wave, come second. Within the Earth, P waves can travel through solids and liquids, whereas S waves can only travel through solids. 5. At the bottom of the page, select the Mexico (number 4) location and submit choices to continue the simulation. 6. Follow the simulation instructions. As you read and complete the activity, take notes so you can complete the Explain questions next. Earthquakes Living Lab: Finding Epicenters and Measuring Magnitudes Activity Worksheet Example Answers 1
2 Earthquakes Living Lab: Finding Epicenters and Measuring Magnitudes Activity Worksheet Example Answers 2
3 Explain: 7. How is an earthquake located? We locate earthquakes by looking at seismogram recordings of seismic waves, P waves and S waves, because they travel at different speeds and thus arrive at seismic stations at different times. P waves travel faster, so they arrive first. S waves travel at about half the speed of P waves, so they arrive later. The time between the arrival of a P wave and the arrival of an S wave, called the S-P time or S- P interval, measured at three seismic stations can be used to triangulate the epicenter location. 8. What is an epicenter? The point on the Earth s surface that is directly above where the earthquake originated, or where the tectonic plates along a fault-line slipped past one another. [In this activity, students find this point through triangulation.] 9. How are S waves and P waves used to determine how far away epicenters are? To locate the epicenter of an earthquake, you must estimate the time interval between the arrivals of the earthquake s P and S waves (the S-P interval) on the seismograms from three different stations. The interval is measured to the closest second and then a graph is used to convert the S-P interval to the epicentral distance. Using information from three stations, the epicenter is triangulated. 10. How does distance from the epicenter affect the S-P time interval? With increasing distance from the earthquake, the time difference between the arrival of the P waves and the arrival of the S waves increases. Put more simply, the higher the time between the S and P waves (the S-P interval), the farther the distance. 11. Describe the process of triangulation to locate an epicenter. Triangulation requires seismic data from three centers. First the distance from each center is calculated using the S-P interval and this distance serves as the radius for a circle around the center. The location where the three circles overlap is the triangulated epicenter. 12. What is the magnitude of an earthquake? Describe it. The magnitude of an earthquake is an estimate of the total amount of energy released during fault rupture. Since the 1930s, earthquakes have been measured using the Richter magnitude scale, and Earthquakes Living Lab: Finding Epicenters and Measuring Magnitudes Activity Worksheet Example Answers 3
4 now big earthquakes are measured using the moment magnitude scale; both scales essentially rank the power (energy release) of the earthquake. 13. What data is used to determine magnitude? The magnitude determination is based on seismic data. A graphical device, called a nomogram, is used to estimate the magnitude from the earthquake s data. A nomogram requires two measurements: the S-P time interval (which yields distance) and the maximum amplitude of the seismic waves. Elaborate: 14. Why might the triangulation method not always produce an exact point (other than any measurement errors)? Triangulation assumes that the seismic waves traveled at the same velocities to all three seismic stations. In reality, ground material composition may differ between stations and the waves may travel at different speeds. As it states on the introduction page, the speed of an earthquake wave is not constant but varies with depth and rock type. Further, S waves can only travel through solids, and not through liquids, which is another factor to consider for stations near bodies of water. 15. How does distance from the epicenter affect the magnitude (height) of the seismograph reading? The magnitude decreases as the distance increases. Thus, the distance must be calculated first, in order to calibrate the magnitude. Magnitude Scale This concept is explained on the Richter nomogram page: a 100 km-away earthquake of magnitude 4 produces 10 mm of amplitude, while a magnitude 5 produces 100 mm of amplitude; 10 and 100 are all powers of 10, a good example of why the magnitude scale is said to be exponential: a change of one unit in magnitude (say from 4 to 5) increases the maximum amplitude by a factor of 10. Evaluate: 16. Some scientists and educators believe seismology (locating, measuring and predicting earthquakes) is a very reliable science and will one day allow us to predict future earthquakes. Other scientists and educators believe seismology is not a very exact science. Write a paragraph (or more) to express your opinion on this topic. Based on what you learned in this activity, is locating and measuring earthquakes a well-defined science? Be sure to include details from the Explore and Elaborate questions. Including some sketches and/or images is helpful, such as an image of a seismograph with key features labeled to support your explanation. Earthquakes Living Lab: Finding Epicenters and Measuring Magnitudes Activity Worksheet Example Answers 4
5 This is an opinion-based question, but expect students to bring in what they know about triangulation/distance calculation, seismograms/nomograms and/or the magnitude scale. 17. How do you think engineers use seismic data? Include specific examples. Engineers use seismic data in many ways: to possibly predict future earthquakes (at least general predictions, not very specific), to design buildings to withstand certain magnitudes, to locate particularly active fault planes, etc. Congratulations you have completed this activity! Feel free to complete the virtual seismologist information at the end of the simulation to get your virtual certificate. For more practice, return to the beginning of the simulation and complete the steps again for one or more of the other locations. Earthquakes Living Lab: Finding Epicenters and Measuring Magnitudes Activity Worksheet Example Answers 5
Locating the Epicenter and Determining the Magnitude of an Earthquake
Locating the and Determining the Magnitude of an Earthquake Locating the Measuring the S-P time interval There are hundreds of seismic data recording stations throughout the United States and the rest
Unit 4 Lesson 6 Measuring Earthquake Waves. Copyright Houghton Mifflin Harcourt Publishing Company
Shake, Rattle, and Roll What happens during an earthquake? As plates of the lithosphere move, the stress on rocks at or near the edges of the plates increases. This stress causes faults to form. A fault
Seismic Waves Practice
1. Base your answer to the following question on the diagram below, which shows models of two types of earthquake waves. Model A best represents the motion of earthquake waves called 1) P-waves (compressional
Name Date Class. By studying the Vocabulary and Notes listed for each section below, you can gain a better understanding of this chapter.
CHAPTER 7 VOCABULARY & NOTES WORKSHEET Earthquakes By studying the Vocabulary and Notes listed for each section below, you can gain a better understanding of this chapter. SECTION 1 Vocabulary In your
EARTHQUAKES. Compressional Tensional Slip-strike
Earthquakes-page 1 EARTHQUAKES Earthquakes occur along faults, planes of weakness in the crustal rocks. Although earthquakes can occur anywhere, they are most likely along crustal plate boundaries, such
FOURTH GRADE EARTHQUAKES 1 WEEK LESSON PLANS AND ACTIVITIES
FOURTH GRADE EARTHQUAKES 1 WEEK LESSON PLANS AND ACTIVITIES PLATE TECTONIC CYCLE OVERVIEW OF FOURTH GRADE VOLCANOES WEEK 1. PRE: Comparing different structures of volcanoes. DURING: Modeling three types
How do scientists measure earthquakes?
Name: Source: http://www.scholastic.com/browse/article.jsp?id=4892 http://gizmodo.com/5833688/what-do-earthquake-magnitudes-mean http://www.kids-fun-science.com/moment-magnitude-scale.html http://tremor.nmt.edu/faq/how.html
Activity #1-HS What is a Seismometer? High School Level
Activity #1-HS What is a Seismometer? High School Level Objective Students will learn that a seismometer detects 3 components of motion and that a seismogram is the record of an earthquake. Background
Earthquake Magnitude Calculator for the AS-1 Seismograph 1
Magnitude calculator for the AS-1 Page 1 of 23 Earthquake Magnitude Calculator for the AS-1 Seismograph 1 Lawrence W. Braile and Saptarshi Dasgupta, Purdue University SKIP TO CALCULATORS Introduction:
Earthquakes. Earthquakes: Big Ideas. Earthquakes
Earthquakes Earthquakes: Big Ideas Humans cannot eliminate natural hazards but can engage in activities that reduce their impacts by identifying high-risk locations, improving construction methods, and
The earthquake source
Global seismology: The earthquake source Reading: Fowler p111-140 and Bolt Appendix G Earthquake location Earthquake focus: Latitude, longitude, depth Earthquake epicenter: Latitude, longitude Earthquakes
Earthquake Lab. A. Locate the Epicenter. Name: Lab Section:
Earthquake Lab Name: Lab Section: The goal of this portion of the lab is to learn how recording of earthquakes seismograms are used to locate earthquakes, determine their magnitudes, and to understand
Geology 112 Earthquakes. Activity 1 Worksheet Introduction to the Course. What is a Fault? What is an Earthquake?
Geology 112 Earthquakes Name Activity 1 Worksheet Introduction to the Course. What is a Fault? What is an Earthquake? Activity 1 Objectives: Introduce student to the topics, requirements and format of
The Dynamic Crust 2) EVIDENCE FOR CRUSTAL MOVEMENT
The Dynamic Crust 1) Virtually everything you need to know about the interior of the earth can be found on page 10 of your reference tables. Take the time to become familiar with page 10 and everything
DYNAMIC CRUST: Unit 4 Exam Plate Tectonics and Earthquakes
DYNAMIC CRUST: Unit 4 Exam Plate Tectonics and Earthquakes NAME: BLOCK: DATE: 1. Base your answer to the following question on The block diagram below shows the boundary between two tectonic plates. Which
Lecture 12 Earthquake Magnitude
Lecture 12 Earthquake Magnitude Locating Earthquakes Last time, we learned that we could obtain a rough estimate of the distance in miles to an earthquake epicenter by multiplying the S - P time interval
THE 2004 SUMATRA EARTHQUAKE AND INDIAN OCEAN TSUNAMI: WHAT HAPPENED AND WHY
Page 6 The Earth Scientist THE 2004 SUMATRA EARTHQUAKE AND INDIAN OCEAN TSUNAMI: WHAT HAPPENED AND WHY Seth Stein and Emile A. Okal Dept of Geological Sciences, Northwestern University, Evanston Illinois
Earthquakes. www.earthquakes.bgs.ac.uk
Earthquakes www.earthquakes.bgs.ac.uk Introduction Earthquakes are among the most deadly natural hazards. There are around 100 earthquakes each year of a size that could cause serious damage. They strike
FIFTH GRADE PLATE TECTONICS 1 WEEK LESSON PLANS AND ACTIVITIES
FIFTH GRADE PLATE TECTONICS 1 WEEK LESSON PLANS AND ACTIVITIES PLATE TECTONIC CYCLE OVERVIEW OF FIFTH GRADE VOLCANOES WEEK 1. PRE: Exploring the rocks produced by volcanoes. LAB: Comparing igneous rocks.
Earthquakes. www.earthquakes.bgs.ac.uk. Seismograph stations operated by the British Geological Survey
Seismograph stations operated by the British Geological Survey Earthquakes Photograph supplied by Andy Thompson, Arup Advanced Technology, EEFIT Mission www.earthquakes.bgs.ac.uk Introduction Earthquakes
Earthquake Magnitude
Earthquake Magnitude Earthquake magnitude scales: Logarithmic measure of earthquake size amplitude of biggest wave: Magnitude 6 quake 10 * Magnitude 5 energy: Magnitude 6 quake is about 32 * Magnitude
Topic Area: Circles. Definitions. Formulas Distance Formula: D = ( x x ) + ( y ) Equation of a Circle: Activity 8 Algebra II with the Casio fx-9750gii
Where Did That Come From? Teacher Notes Topic Area: Circles NCTM Standards: Use symbolic algebra to represent and explain mathematical relationships. Use geometric models to gain insights into, and answer
Reading GPS Time Series Plots Worksheet
Reading GPS Time Series Plots Worksheet By: Roger Groom and Cate Fox-Lent, UNAVCO Master Teachers in-residence, Shelley Olds, UNAVCO The Global Positioning System, GPS, is used to study the Earth, how
12.510 Introduction to Seismology Spring 2008
MIT OpenCourseWare http://ocw.mit.edu 12.510 Introduction to Seismology Spring 2008 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. 04/30/2008 Today s
Determination of source parameters from seismic spectra
Topic Determination of source parameters from seismic spectra Authors Michael Baumbach, and Peter Bormann (formerly GeoForschungsZentrum Potsdam, Telegrafenberg, D-14473 Potsdam, Germany); E-mail: [email protected]
Plotting Earthquake Epicenters an activity for seismic discovery
Plotting Earthquake Epicenters an activity for seismic discovery Tammy K Bravo Anne M Ortiz Plotting Activity adapted from: Larry Braile and Sheryl Braile Department of Earth and Atmospheric Sciences Purdue
The University of Texas at Austin. Gravity and Orbits
UTeach Outreach The University of Texas at Austin Gravity and Orbits Time of Lesson: 60-75 minutes Content Standards Addressed in Lesson: TEKS6.11B understand that gravity is the force that governs the
The Severity of an Earthquake - ---- U.S. Department of the Interior/Geological Survey
The Severity of an Earthquake - ---- U.S. Department of the Interior/Geological Survey ----~ Earthquakes can be measured in terms of either the effect of the earthquake (intensity) or of the energy released
Seismographs. Lesson 7. Seismographs recording activity on Kilauea
Seismographs Lesson 7 E arthquakes generate seismic waves that travel all around the world and can be detected by sensitive instruments called seismographs. The earliest instrument to detect earthquakes
Exploring plate motion and deformation in California with GPS
Exploring plate motion and deformation in California with GPS Student worksheet Cate Fox-Lent, UNAVCO master teacher; Andy Newman, Georgia Institute of Technology; Shelley Olds, UNAVCO; and revised by
FOURTH GRADE PLATE TECTONICS 1 WEEK LESSON PLANS AND ACTIVITIES
FOURTH GRADE PLATE TECTONICS 1 WEEK LESSON PLANS AND ACTIVITIES PLATE TECTONIC CYCLE OVERVIEW OF FOURTH GRADE VOLCANOES WEEK 1. PRE: Comparing different structures of volcanoes. LAB: Modeling three types
Geological Maps 3: Faulted Strata
Geological Maps 3: Faulted Strata Brittle deformation in rocks is characterized by fractures, joints and faults. Fractures and joints can be of any size, orientation or pattern. Some joints form regular
Chapter 5: Earthquakes
Chapter 5: Earthquakes 1. Experiencing an Earthquake firsthand 2. The Science of Ghost Forests and Megaearthquakes 3. Faults, Earthquakes, and Plate Tectonics 4. Seismic Waves and Earthquake Detection
89.325 Geology for Engineers Earthquakes
89.325 Geology for Engineers Earthquakes Name I. Introduction The crust of the earth behaves in a brittle manner. Stress is the force applied to a brittle substance and strain represents the build-up of
EARTHQUAKE PREDICTION
Lecture 15 Earthquake Prediction EARTHQUAKE PREDICTION To successfully predict an earthquake we would like to know:- PLACE TIME MAGNITUDE (rather like a weather forecast) 1 Evidence must be integrated
Magnitude 7.2 GUERRERO, MEXICO
A powerful magnitude-7.2 earthquake shook central and southern Mexico on Friday. The earthquake occurred at a depth of 24 km (15 miles). Its epicenter was in the western state of Guerrero, near the seaside
Evaluating an Illinois Earthquake
Evaluating an Illinois Earthquake Grade Level: 7-8 Adapted from an activity by Robert A. Bauer, GeoActivity HAZD-1, ISGS GeoActivities Series, Activities and Other Resources for Teaching Geology, Illinois
Name: Period: # Plate Tectonics. Journey to the center of the Earth
Plate Tectonics Journey to the center of the Earth Use pages 124 129 to answer the following questions. Exploring Inside Earth (p. 125-126) 1. What are the two main types of evidence that Geologist use
TECTONICS ASSESSMENT
Tectonics Assessment / 1 TECTONICS ASSESSMENT 1. Movement along plate boundaries produces A. tides. B. fronts. C. hurricanes. D. earthquakes. 2. Which of the following is TRUE about the movement of continents?
Earthquakes Natural and Induced. Rick Aster Professor of Geophysics and Department Head Geosciences Department Colorado State University
Earthquakes Natural and Induced Rick Aster Professor of Geophysics and Department Head Geosciences Department Colorado State University Overview What causes earthquakes? How do we detect, locate, and measure
SIXTH GRADE PLATE TECTONICS 1 WEEK LESSON PLANS AND ACTIVITIES
SIXTH GRADE PLATE TECTONICS 1 WEEK LESSON PLANS AND ACTIVITIES PLATE TECTONIC CYCLE OVERVIEW OF SIXTH GRADE VOLCANOES WEEK 1. PRE: Comparing the structure of different types of volcanoes. LAB: Plotting
Suggested Activities Processes that Shape the Earth: Earth s Structure and Plate Tectonics
Suggested Activities Processes that Shape the Earth: Earth s Structure and Plate Tectonics From Harcourt Science Teacher Ed. Source (Grade Level) Title Pages Concept Harcourt Science (4) The Layers of
Glossary. continental crust: the sections of crust, the outermost layer of the earth, that include the continents
aftershock: an earthquake that follows a larger earthquake or main shock and originates in or near the rupture zone of the larger earthquake. Generally, major earthquakes are followed by a number of aftershocks
Chapter 6 Plate Tectonics and Earthquakes
Chapter 6 Plate Tectonics and Earthquakes Day Activity Homework 1 Notes I, II Gondwanaland Take-Home Continental Drift* 2 Notes III- V B Edible Tectonics* 3 Notes V C- VI Article- One Boy s Experience
Using Google Earth to Explore Plate Tectonics
Using Google Earth to Explore Plate Tectonics Laurel Goodell, Department of Geosciences, Princeton University, Princeton, NJ 08544 [email protected] Inspired by, and borrows from, the GIS-based Exploring
circular motion & gravitation physics 111N
circular motion & gravitation physics 111N uniform circular motion an object moving around a circle at a constant rate must have an acceleration always perpendicular to the velocity (else the speed would
SECOND GRADE PLATE TECTONICS 1 WEEK LESSON PLANS AND ACTIVITIES
SECOND GRADE PLATE TECTONICS 1 WEEK LESSON PLANS AND ACTIVITIES PLATE TECTONIC CYCLE OVERVIEW OF SECOND GRADE VOLCANOES WEEK 1. PRE: Investigating the parts of a volcano. LAB: Comparing the parts of a
Layers of the Earth s Interior
Layers of the Earth s Interior 1 Focus Question How is the Earth like an ogre? 2 Objectives Explain how geologists have learned about the interior of the Earth. Describe the layers of the Earth s interior.
Earthquakes, faulting, beach-balls, magnitude scales
Earthquakes, faulting, beach-balls, magnitude scales Faulting Geometry Faulting is a complex process and the variety of faults that exists is large. We will consider a simplified but general fault classification
Use the following information to deduce that the gravitational field strength at the surface of the Earth is approximately 10 N kg 1.
IB PHYSICS: Gravitational Forces Review 1. This question is about gravitation and ocean tides. (b) State Newton s law of universal gravitation. Use the following information to deduce that the gravitational
SUMMARY OF MAGNITUDE WORKING GROUP RECOMMENDATIONS ON DETERMINING EARTHQUAKE MAGNITUDES FROM DIGITAL DATA
B SUMMARY OF MAGNITUDE WORKING GROUP RECOMMENDATIONS ON DETERMINING EARTHQUAKE MAGNITUDES FROM DIGITAL DATA The Working Group on Magnitudes (Magnitude WG) of the International Association of Seismology
Magnitude 8.8 OFFSHORE MAULE, CHILE
A great 8.8-magnitude struck central Chile early Saturday. The quake hit 200 miles (325 kilometers) southwest of the capital Santiago. The epicenter was just 70 miles (115 kilometers) from Concepcion,
1. The Kinetic Theory of Matter states that all matter is composed of atoms and molecules that are in a constant state of constant random motion
Physical Science Period: Name: ANSWER KEY Date: Practice Test for Unit 3: Ch. 3, and some of 15 and 16: Kinetic Theory of Matter, States of matter, and and thermodynamics, and gas laws. 1. The Kinetic
Chapter 7 Earthquake Hazards Practice Exam and Study Guide
Chapter 7 Earthquake Hazards Practice Exam and Study Guide 1. Select from the following list, all of the factors that affect the intensity of ground shaking. a. The magnitude of the earthquake b. Rather
EARTHQUAKE MAGNITUDE
EARTHQUAKE MAGNITUDE Earliest measure of earthquake size Dimensionless number measured various ways, including M L local magnitude m b body wave magnitude M s surface wave magnitude M w moment magnitude
Study Guide Questions Earth Structure and Plate Tectonics
Study Guide Questions Earth Structure and Plate Tectonics What evidence did Alfred Wegener present in 1912 to support the idea of continental drift? Why did most geologists at the time dismiss Wegener
How Did These Ocean Features and Continental Margins Form?
298 10.14 INVESTIGATION How Did These Ocean Features and Continental Margins Form? The terrain below contains various features on the seafloor, as well as parts of three continents. Some general observations
1. You are about to begin a unit on geology. Can anyone tell me what geology is? The study of the physical earth I.
PLATE TECTONICS ACTIVITY The purpose of this lab is to introduce the concept of plate tectonics and the formation of mountains. Students will discuss the properties of the earth s crust and plate tectonics.
ICOLD POSITION PAPER ON DAM SAFETY AND EARTHQUAKES
ICOLD POSITION PAPER ON DAM SAFETY AND EARTHQUAKES August 2012 Dam Safety and Earthquakes Position Paper of International Commission on Large Dams (ICOLD) Prepared by ICOLD Committee on Seismic Aspects
Lesson 5: The Rock Cycle: Making the Connection
Target Grade or Age Level Sixth grade science Lesson 5: The Rock Cycle: Making the Connection Scientific Processes Addressed Defining operationally, formulating and testing hypotheses, constructing models
Sample Questions for the AP Physics 1 Exam
Sample Questions for the AP Physics 1 Exam Sample Questions for the AP Physics 1 Exam Multiple-choice Questions Note: To simplify calculations, you may use g 5 10 m/s 2 in all problems. Directions: Each
A Determination of g, the Acceleration Due to Gravity, from Newton's Laws of Motion
A Determination of g, the Acceleration Due to Gravity, from Newton's Laws of Motion Objective In the experiment you will determine the cart acceleration, a, and the friction force, f, experimentally for
Representing Vector Fields Using Field Line Diagrams
Minds On Physics Activity FFá2 5 Representing Vector Fields Using Field Line Diagrams Purpose and Expected Outcome One way of representing vector fields is using arrows to indicate the strength and direction
Acceleration of Gravity Lab Basic Version
Acceleration of Gravity Lab Basic Version In this lab you will explore the motion of falling objects. As an object begins to fall, it moves faster and faster (its velocity increases) due to the acceleration
Volcanoes Erupt Grade 6
TEACHING LEARNING COLLABORATIVE (TLC) EARTH SCIENCE Volcanoes Erupt Grade 6 Created by: Debra McKey (Mountain Vista Middle School); Valerie Duncan (Upper Lake Middle School); and Lynn Chick (Coyote Valley
A comparison of radio direction-finding technologies. Paul Denisowski, Applications Engineer Rohde & Schwarz
A comparison of radio direction-finding technologies Paul Denisowski, Applications Engineer Rohde & Schwarz Topics General introduction to radiolocation Manual DF techniques Doppler DF Time difference
Georgia Performance Standards Framework for Shaky Ground 6 th Grade
The following instructional plan is part of a GaDOE collection of Unit Frameworks, Performance Tasks, examples of Student Work, and Teacher Commentary. Many more GaDOE approved instructional plans are
Regents Questions: Plate Tectonics
Earth Science Regents Questions: Plate Tectonics Name: Date: Period: August 2013 Due Date: 17 Compared to the oceanic crust, the continental crust is (1) less dense and more basaltic (3) more dense and
Earthquake Hazards and Risks
Page 1 of 7 EENS 3050 Tulane University Natural Disasters Prof. Stephen A. Nelson Earthquake Hazards and Risks This page last updated on 28-Aug-2013 Earthquake Risk Many seismologists have said that "earthquakes
TRAINING SYSTEM AND INFORMATION NETWORK FOR EARTHQUAKE DISASTER MITIGATION
TRAINING SYSTEM AND INFORMATION NETWORK FOR EARTHQUAKE DISASTER MITIGATION T. Saito 1, N. Hurukawa 2, T.Yokoi 2, T. Hara 2, B. Shibazaki 2, Y. Fujii 2, S. Koyama 2, T. Kashima 2 and T. Mukai 2 1 International
Conservation of Momentum and Energy
Conservation of Momentum and Energy OBJECTIVES to investigate simple elastic and inelastic collisions in one dimension to study the conservation of momentum and energy phenomena EQUIPMENT horizontal dynamics
The purposes of this experiment are to test Faraday's Law qualitatively and to test Lenz's Law.
260 17-1 I. THEORY EXPERIMENT 17 QUALITATIVE STUDY OF INDUCED EMF Along the extended central axis of a bar magnet, the magnetic field vector B r, on the side nearer the North pole, points away from this
CHAPTER 6 THE TERRESTRIAL PLANETS
CHAPTER 6 THE TERRESTRIAL PLANETS MULTIPLE CHOICE 1. Which of the following is NOT one of the four stages in the development of a terrestrial planet? 2. That Earth, evidence that Earth differentiated.
Plate Tectonics: Ridges, Transform Faults and Subduction Zones
Plate Tectonics: Ridges, Transform Faults and Subduction Zones Goals of this exercise: 1. review the major physiographic features of the ocean basins 2. investigate the creation of oceanic crust at mid-ocean
FXA 2008. UNIT G484 Module 2 4.2.3 Simple Harmonic Oscillations 11. frequency of the applied = natural frequency of the
11 FORCED OSCILLATIONS AND RESONANCE POINTER INSTRUMENTS Analogue ammeter and voltmeters, have CRITICAL DAMPING so as to allow the needle pointer to reach its correct position on the scale after a single
DISASTER RESISTANCE EARTHQUAKES AND STRUCTURES
DISASTER RESISTANCE EARTHQUAKES AND STRUCTURES EARTHQUAKES Origin of earthquakes The earth was a single land about two hundred million years ago. This land split progressively over a long period of time
FREE FALL. Introduction. Reference Young and Freedman, University Physics, 12 th Edition: Chapter 2, section 2.5
Physics 161 FREE FALL Introduction This experiment is designed to study the motion of an object that is accelerated by the force of gravity. It also serves as an introduction to the data analysis capabilities
Unit 6 Earthquakes and Volcanoes
Unit 6 Earthquakes and Volcanoes Earthquakes and Volcanoes: Essential Questions What evidence can students observe that the Earth is changing? How do scientists know what s inside the Earth? What processes
Chapter 6 Work and Energy
Chapter 6 WORK AND ENERGY PREVIEW Work is the scalar product of the force acting on an object and the displacement through which it acts. When work is done on or by a system, the energy of that system
Layers of the Earth and Plate Tectonics
Layers of the Earth and Plate Tectonics Objectives: explain various ways the earth can be changed by natural forces define the term Geology define the terms Crust, Mantle, Outer Core and Inner Core classify
Earthquakes. Was anyone hur t? 358 Chuck Nacke/TimeLife Pictures/Getty Images
Academic Standard 3: Students collect and organize data to identify relationships between physical objects, events, and processes. They use logical reasoning to question their own ideas as new information
Newton s Law of Universal Gravitation
Newton s Law of Universal Gravitation The greatest moments in science are when two phenomena that were considered completely separate suddenly are seen as just two different versions of the same thing.
Chapter 3 Falling Objects and Projectile Motion
Chapter 3 Falling Objects and Projectile Motion Gravity influences motion in a particular way. How does a dropped object behave?!does the object accelerate, or is the speed constant?!do two objects behave
Unit 7: Normal Curves
Unit 7: Normal Curves Summary of Video Histograms of completely unrelated data often exhibit similar shapes. To focus on the overall shape of a distribution and to avoid being distracted by the irregularities
Basic Coordinates & Seasons Student Guide
Name: Basic Coordinates & Seasons Student Guide There are three main sections to this module: terrestrial coordinates, celestial equatorial coordinates, and understanding how the ecliptic is related to
Overview. NRC Regulations for Seismic. Applied to San Onofre Nuclear Generating Station. NRC History. How we Regulate
Overview 1. NRC History and Overview NRC Regulations for Seismic Analysis and Design Applied to San Onofre Nuclear Generating Station Christie Hale Megan Williams 2. Regulations for Seismic Hazards 3.
Exploring Our World with GIS Lesson Plans Engage
Exploring Our World with GIS Lesson Plans Engage Title: Exploring Our Nation 20 minutes *Have students complete group work prior to going to the computer lab. 2.List of themes 3. Computer lab 4. Student
AP1 Waves. (A) frequency (B) wavelength (C) speed (D) intensity. Answer: (A) and (D) frequency and intensity.
1. A fire truck is moving at a fairly high speed, with its siren emitting sound at a specific pitch. As the fire truck recedes from you which of the following characteristics of the sound wave from the
Reflection and Refraction
Equipment Reflection and Refraction Acrylic block set, plane-concave-convex universal mirror, cork board, cork board stand, pins, flashlight, protractor, ruler, mirror worksheet, rectangular block worksheet,
GENERAL SCIENCE LABORATORY 1110L Lab Experiment 9B: Tracking the Hawaiian Islands: How Fast Does the Pacific Plate Move?
GENERAL SCIENCE LABORATORY 1110L Lab Experiment 9B: Tracking the Hawaiian Islands: How Fast Does the Pacific Plate Move? Background You know that the Earth s crustal plates are always moving, but how fast?
Physical Science, Quarter 2, Unit 2.1. Gravity. Overview
Physical Science, Quarter 2, Unit 2.1 Gravity Overview Number of instructional days: 7 (1 day = 53 minutes) Content to be learned Explain how mass and distance affect gravitational forces. Explain how
Fluid structure interaction of a vibrating circular plate in a bounded fluid volume: simulation and experiment
Fluid Structure Interaction VI 3 Fluid structure interaction of a vibrating circular plate in a bounded fluid volume: simulation and experiment J. Hengstler & J. Dual Department of Mechanical and Process
1 Introduction. External Grant Award Number: 04HQGR0038. Title: Retrieval of high-resolution kinematic source parameters for large earthquakes
External Grant Award Number: 04HQGR0038 Title: Retrieval of high-resolution kinematic source parameters for large earthquakes Author: Hong Kie Thio URS Group Inc. 566 El Dorado Street, 2 nd floor Pasadena,
Pre Calculus Math 40S: Explained!
www.math40s.com 7 Part I Ferris Wheels One of the most common application questions for graphing trigonometric functions involves Ferris wheels, since the up and down motion of a rider follows the shape
Practice Exam Three Solutions
MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Physics Physics 8.01T Fall Term 2004 Practice Exam Three Solutions Problem 1a) (5 points) Collisions and Center of Mass Reference Frame In the lab frame,
ACTIVITY 6: Falling Objects
UNIT FM Developing Ideas ACTIVITY 6: Falling Objects Purpose and Key Question You developed your ideas about how the motion of an object is related to the forces acting on it using objects that move horizontally.
Magnetic Fields and Their Effects
Name Date Time to Complete h m Partner Course/ Section / Grade Magnetic Fields and Their Effects This experiment is intended to give you some hands-on experience with the effects of, and in some cases
II. Earth Science (Geology) Section (9/18/2013)
EAPS 100 Planet Earth Lecture Topics Brief Outlines II. Earth Science (Geology) Section (9/18/2013) 1. Interior of the Earth Learning objectives: Understand the structure of the Earth s interior crust,
Presentations. Session 1. Slide 1. Earthquake Risk Reduction. 1- Concepts & Terminology
Earthquake Risk Reduction Presentations Session 1 Slide 1 Earthquake Risk Reduction 1- Concepts & Terminology Welcome to the World Bank Institute s (WBI) Distance Learning (DL) course on Earthquake Risk
