Solutions of Systems of Linear Equations in a Finite Field Nick Rimes

Similar documents
by the matrix A results in a vector which is a reflection of the given

a 11 x 1 + a 12 x a 1n x n = b 1 a 21 x 1 + a 22 x a 2n x n = b 2.

Solving Linear Systems, Continued and The Inverse of a Matrix

MATRIX ALGEBRA AND SYSTEMS OF EQUATIONS

1 Introduction to Matrices

Linear Algebra Notes for Marsden and Tromba Vector Calculus

Chapter 7. Matrices. Definition. An m n matrix is an array of numbers set out in m rows and n columns. Examples. (

13 MATH FACTS a = The elements of a vector have a graphical interpretation, which is particularly easy to see in two or three dimensions.

MATRIX ALGEBRA AND SYSTEMS OF EQUATIONS. + + x 2. x n. a 11 a 12 a 1n b 1 a 21 a 22 a 2n b 2 a 31 a 32 a 3n b 3. a m1 a m2 a mn b m

MAT 200, Midterm Exam Solution. a. (5 points) Compute the determinant of the matrix A =

Similarity and Diagonalization. Similar Matrices

x = + x 2 + x

Using row reduction to calculate the inverse and the determinant of a square matrix

NOTES ON LINEAR TRANSFORMATIONS

Similar matrices and Jordan form

4.5 Linear Dependence and Linear Independence

MATH 423 Linear Algebra II Lecture 38: Generalized eigenvectors. Jordan canonical form (continued).

LS.6 Solution Matrices

MATH10212 Linear Algebra. Systems of Linear Equations. Definition. An n-dimensional vector is a row or a column of n numbers (or letters): a 1.

Orthogonal Diagonalization of Symmetric Matrices

LINEAR ALGEBRA. September 23, 2010

University of Lille I PC first year list of exercises n 7. Review

Notes on Determinant

MATH 304 Linear Algebra Lecture 9: Subspaces of vector spaces (continued). Span. Spanning set.

8 Square matrices continued: Determinants

Applied Linear Algebra I Review page 1

Systems of Linear Equations

Mathematics Course 111: Algebra I Part IV: Vector Spaces

The Characteristic Polynomial

General Framework for an Iterative Solution of Ax b. Jacobi s Method

Methods for Finding Bases

Matrix Algebra. Some Basic Matrix Laws. Before reading the text or the following notes glance at the following list of basic matrix algebra laws.

The Determinant: a Means to Calculate Volume

Solving Systems of Linear Equations

5 Homogeneous systems

MATH APPLIED MATRIX THEORY

December 4, 2013 MATH 171 BASIC LINEAR ALGEBRA B. KITCHENS

Abstract Algebra Cheat Sheet

Linear Algebra: Determinants, Inverses, Rank

= = 3 4, Now assume that P (k) is true for some fixed k 2. This means that

Eigenvalues and Eigenvectors

Continued Fractions and the Euclidean Algorithm

[1] Diagonal factorization

160 CHAPTER 4. VECTOR SPACES

Name: Section Registered In:

Au = = = 3u. Aw = = = 2w. so the action of A on u and w is very easy to picture: it simply amounts to a stretching by 3 and 2, respectively.

Math 115A HW4 Solutions University of California, Los Angeles. 5 2i 6 + 4i. (5 2i)7i (6 + 4i)( 3 + i) = 35i + 14 ( 22 6i) = i.

Continued Fractions. Darren C. Collins

PYTHAGOREAN TRIPLES KEITH CONRAD

Eigenvalues, Eigenvectors, Matrix Factoring, and Principal Components

1 Sets and Set Notation.

Brief Introduction to Vectors and Matrices

Solving Systems of Linear Equations Using Matrices

MAT 242 Test 2 SOLUTIONS, FORM T

Lecture Notes 2: Matrices as Systems of Linear Equations

Linear Algebra Review. Vectors

A =

T ( a i x i ) = a i T (x i ).

Question 2: How do you solve a matrix equation using the matrix inverse?

DETERMINANTS TERRY A. LORING

26. Determinants I. 1. Prehistory

MAT188H1S Lec0101 Burbulla

Linearly Independent Sets and Linearly Dependent Sets

Arithmetic and Algebra of Matrices

Inner Product Spaces

Math 312 Homework 1 Solutions

Linear Equations ! $ & " % & " 11,750 12,750 13,750% MATHEMATICS LEARNING SERVICE Centre for Learning and Professional Development

Typical Linear Equation Set and Corresponding Matrices

1 Determinants and the Solvability of Linear Systems

Row Echelon Form and Reduced Row Echelon Form

Data Mining: Algorithms and Applications Matrix Math Review

Lecture 2 Matrix Operations

7.4. The Inverse of a Matrix. Introduction. Prerequisites. Learning Style. Learning Outcomes

Matrix algebra for beginners, Part I matrices, determinants, inverses

MATH2210 Notebook 1 Fall Semester 2016/ MATH2210 Notebook Solving Systems of Linear Equations... 3

Matrix Representations of Linear Transformations and Changes of Coordinates

Solution to Homework 2

Arkansas Tech University MATH 4033: Elementary Modern Algebra Dr. Marcel B. Finan

Solving simultaneous equations using the inverse matrix

4: EIGENVALUES, EIGENVECTORS, DIAGONALIZATION

RESULTANT AND DISCRIMINANT OF POLYNOMIALS

1 VECTOR SPACES AND SUBSPACES

Mean value theorem, Taylors Theorem, Maxima and Minima.

Chapter 6. Orthogonality

Here are some examples of combining elements and the operations used:

GROUPS ACTING ON A SET

JUST THE MATHS UNIT NUMBER 1.8. ALGEBRA 8 (Polynomials) A.J.Hobson

Chapter 4, Arithmetic in F [x] Polynomial arithmetic and the division algorithm.

Solutions to Math 51 First Exam January 29, 2015

MA106 Linear Algebra lecture notes

Lecture L3 - Vectors, Matrices and Coordinate Transformations

Chapter 20. Vector Spaces and Bases

How To Prove The Dirichlet Unit Theorem

Linear Algebraic Equations, SVD, and the Pseudo-Inverse

10.2 ITERATIVE METHODS FOR SOLVING LINEAR SYSTEMS. The Jacobi Method

Notes on Orthogonal and Symmetric Matrices MENU, Winter 2013

SYSTEMS OF EQUATIONS AND MATRICES WITH THE TI-89. by Joseph Collison

CURVE FITTING LEAST SQUARES APPROXIMATION

Handout #1: Mathematical Reasoning

MATH1231 Algebra, 2015 Chapter 7: Linear maps

Transcription:

Solutions of Systems of Linear Equations in a Finite Field Nick Rimes Abstract: In this paper, the solutions for the system of linear equations of the form Av x is analyzed In particular, this paper focuses on the solutions for all matrices in the field Z p where p is a prime number The results will show that the expected properties from the real numbers do not necessarily hold in a finite field Introduction Linear algebra has roots which date back as far as the birth of calculus In the late 600 s, Leibnitz used coefficients of linear equations in much of his work, and later in the 700 s Lagrange further developed the idea of determinants through his Lagrangian multipliers The term matrix wasn t actually coined until the mid 800 s when JJ Sylvester used the term, which is Latin for womb, to describe an array of numbers In the same century, Gauss further developed the idea of using matrices to solve systems of linear equations through the use of Gaussian elimination Later, Wilhelm Jordan would introduce the technique of Gauss-Jordan elimination in a handbook on geodesy In the field of geodesy, mathematicians use concepts of linear algebra to examine the dimensions of the planet Earth Finally, in the late 800 s vector algebra, and more advanced matrix mathematics was cultivated by mathematicians such as Arthur Cayley and Hermann Grassmann It wasn t until the twentieth century though, that linear algebra really took off as a mathematical field The development of ring theory and abstract algebra opened up new avenues to take advantage of the techniques in the field of linear algebra The use of Cramer s rule, in particular, was used so widely to solve partial differential equations, that it led to the widespread introduction of linear algebra into the curriculum of modern universities Thus, linear algebra came into its own as the widely used and respected mathematical field that is used today To learn more about this subject, please look to the references section for the works of Tucker, Athloen, and Mclaughlin Preliminary Information Throughout the paper the following variables will be used: a b A, q ad bc, and B q c d d c b a Definition: The determinant of an n n matrix is the sum of all n possible signed products formed from the matrix using each row and each column only once for each product The sign to be attached to the product is the same as the one determined by the formula n We denote deta as the determinant of A

Note: It is known that A is non-singular iff deta 0, and A exists iff A is non-singular Figure Comparison table for Singular and Non-Singular Matrices Property Singular Non-Singular Determinant Zero Non-zero Invertible No Yes Linearly Independent rows/columns No Yes Unique Solution exists No Yes Zero is an eigenvalue Yes No Problem: Given an n n matrix A and an n vector x, findann vector v such that Av x Let us first consider the solution in the real numbers Note: There are three different cases which must be analyzed when discussing the solution of a system of linear equations Av x Case Determinant of A is non-zero In this case, the matrix A is non-singular and its inverse exists The linear system Av x has a unique solution of the form: v A x Case Determinant of A is zero, and rank of A is equal to the rank of the augmented matrix A v In this case, there are infinitely many solutions in Case 3 Determinant of A is zero, and the rank of A is less than the rank of the augmented matrix A v In this case, the linear system Av x has no solutions 3 Solutions of Av x in a finite field Note: Let p be a prime number Consider now A, v, and x in the finite field Z p Part Possible matrices and their determinants in a finite field

In order to accurately examine the solutions of the system of linear equations Av x, we must first determine the different matrix compositions for all possible matrices in Z p, and also determine which of these matrices are singular, and which are non-singular Note: InZ p, the number of total possible matrices is p 4 0 Case The triple-zero matrix: There are four different variations of this matrix with p possible values for This gives us 4p possible matrices in Z p For this type of matrix the determinant shall always be zero since deta ad bc 0 0 0 Hence, the matrix will be singular Case The zero-row/column matrix: There are four different variations of this matrix with 4p possible matrices The determinant of this matrix shall always be zero since deta ad bc 0 0 0 Case 3 The single-zero matrix: 0 There are four different variations of this matrix with 4p 3 possible matrices The determinant of matrices of this form will always be non-zero The reason is as follows Since p is a prime: p, np n 0,, Thus, deta ad bc 0 0 Case 4 The zero-diagonal matrix: 0 0 There are different variations of this matrix for a total of p possible matrices The determinant of this matrix is always non-zero since: p, np n 0,, Thus: 3

deta ad bc 0 0 Case 5 The zero matrix: There is only one matrix of this form and it is trivial to prove that the determinant of this matrix will always be zero Case 6 The non-zero matrix: For this case we will have four variables with p possible values for each variable, thus we have p 4 possible matrices of this form In order to determine the determinant of these matrices, we must further analyze this form For non-zero matrices with determinant equal to zero: ad bc 0 or ad bc The rows must be linear combinations of each other, and for each row there are p possible combinations of s Given any possible row combination, there are p multiples by which the rows may be multiplied to form a linear combination Thus for the non-zero matrix with determinant equal to zero, there are p p or p 3 possible matrices Since we know there are p 4 total non-zero matrices, by elimination we have p 4 p 3 or p p non-zero matrices with determinant not equal to zero Therefore, when we add all possible cases we should find that there are p 4 total matrices: p 3 p p 4p 4p 4p 3 p p 4 Part Invertability of a non-singular matrix in a finite field Now, we prove that for these given matrices, if A is non-singular then A is invertible in a finite field Let a b d b A, q ad bc, and B q c d c a We will show the following: If deta 0, then AB BA I where I is the identity matrix and B is the inverse of the matrix A Proof: 4

AB and BA q a b d b ad bc ab ab q q c d c a cd cd ad bc d b a b ad bc db bd q c a c d ca ca ad bc Therefore, over a finite field, if A is non-singular then A is invertible I I Part 3 Solution of Av x in a finite field when A is non-singular In, the system Av x has a unique solution We will show that the system also has a unique solution over a finite field Let Then x x x and v v v Av x BAv Bx v Bx and Bx q dx bx cx ax v v Therefore for a given vector x, there is a unique solution for the vector v, and dx bx v q cx ax Part 4 Solution of Av x in a finite field when A is singular When A is singular, we must examine two cases for the system Av x Caseoccurs when the rank of A is less than the rank of the augmented matrix A x, and Case is when the rank of A is equal to the rank of the augmented matrix A x Case In this case, there is no solution in the real numbers, therefore we will prove that there is no solution in a finite field Let be a constant integer and row of A row of A but x x Then 5

A x a b x row row x x Since the equation 0 0 x x 0 never holds in the finite field, the system Av x has no solution in a finite field Case In this case the system Av x has infinitely many solutions in We will show that the system Av x in Z p field will have only p solutions Let be a constant integer and row of A row of A and x x Then A x a b x row row 0 and we have only the equation av bv x Solving v in term of v, we have v b x av For a given x in Z p, we have p different possibilities for v and p corresponding possibilities for v Thus there are only p solutions in Z p Example: Consider Z 3 Let A and x Then A x 3 row row 0 Solving the equation v v 3, we have solutions for Av x : v 0, 0, Part 5 Results The results lead us to the theorem: Rimes Little Magical Theorem: 6

In the finite field Z p,where p is a prime number, the equation Av x where A is a x singular matrix and ranka ranka x, has p solutions in Z p 4 Conclusion The results found in this paper have only been proven for the case where A is a x matrix It becomes exponentially more complicated to examine n n matrices where n 3 It does, however, follow from the research given here that a similar result should be obtained for matrices of higher dimensions A singular X matrix can only have rank equal to one, but higher dimension singular matrices may have rank from to p Thus for any given value you may have p ranka various possible values for the elements in your solution vector This leads the researcher to hypothesis that for the singular n n where n 3, the number of possible solutions in Z p is p ranka This remains to be proven References [] S Athloen and R McLaughlin, Gauss-Jordan reduction: A brief history, American Mathematical Monthly 94 (987) 30-4 [] A Tucker, The growing importance of linear algebra in undergraduate mathematics, The College Mathematics Journal, 4 (993) 3-9 [3] Linear Algebra: An Introduction to the theory and use of vectors and matrices Alan Tucker Macmillan Publishing Co New York 993 [4] Introduction to Linear Algebra Strang, Gilbert, Wellesley-Cambridge Press Wellesley MA 003 7