Experiment 7 ET 332b No-load and Starting Characteristics of Squirrel-Cage Induction Motors

Similar documents
Equipment: Power Supply, DAI, Synchronous motor (8241), Electrodynamometer (8960), Tachometer, Timing belt.

Equipment: Power Supply, DAI, Wound rotor induction motor (8231), Electrodynamometer (8960), timing belt.

NO LOAD & BLOCK ROTOR TEST ON THREE PHASE INDUCTION MOTOR

Unit 33 Three-Phase Motors

Motor Fundamentals. DC Motor

Induction Motor Theory

Lab 14: 3-phase alternator.

2. A conductor of length 2m moves at 4m/s at 30 to a uniform magnetic field of 0.1T. Which one of the following gives the e.m.f. generated?

8 Speed control of Induction Machines

AC generator theory. Resources and methods for learning about these subjects (list a few here, in preparation for your research):

FREQUENCY CONTROLLED AC MOTOR DRIVE

IV. Three-Phase Induction Machines. Induction Machines

Synchronous motor. Type. Non-excited motors

DIRECT CURRENT GENERATORS

DHANALAKSHMI COLLEGE OF ENGINEERING DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING EE ELECTRICAL MACHINES II UNIT-I SYNCHRONOUS GENERATOR

Introduction. Three-phase induction motors are the most common and frequently encountered machines in industry

SYNCHRONOUS MACHINES

How To Understand And Understand The Electrical Power System

Equipment: Power Supply, DAI, Variable resistance (8311), Variable inductance (8321)

UNIVERSITY OF WATERLOO ELECTRICAL & COMPUTER ENGINEERING DEPARTMENT ME269 ELECTROMECHANICAL DEVICES AND POWER PROCESSING.

ET 332b Ac Electric Machines and Power Systems

SECTION 4 ELECTRIC MOTORS UNIT 17: TYPES OF ELECTRIC MOTORS

Basics of Electricity

INDUCTION REGULATOR. Objective:

Three phase circuits

Chapter 24. Three-Phase Voltage Generation

Equipment: Power Supply, DAI, Universal motor (8254), Electrodynamometer (8960), timing belt.

Introduction. Upon completion of Basics of AC Motors you should be able to:

SYNCHRONOUS MACHINE TESTING WITH MOTOR CIRCUIT ANALYSIS INSTRUMENTATION

Digital Energy ITI. Instrument Transformer Basic Technical Information and Application

AC Induction Motor Slip What It Is And How To Minimize It

PacifiCorp Original Sheet No. 476 FERC Electric Tariff, Substitute 6 th Rev Volume No. 11 APPENDIX 2 TO SGIP

Drive circuit basics + V. τ e. Industrial Circuits Application Note. Winding resistance and inductance

Equipment: Power Supply, DAI, Transformer (8341), Variable resistance (8311), Variable inductance (8321), Variable capacitance (8331)

NATIONAL CERTIFICATE (VOCATIONAL)

Chapter 11. Inductors ISU EE. C.Y. Lee

How to Turn an AC Induction Motor Into a DC Motor (A Matter of Perspective) Steve Bowling Application Segments Engineer Microchip Technology, Inc.

Basic Electrical Technology Dr. L. Umanand Department of Electrical Engineering Indian Institute of Science, Bangalore. Lecture phase System 4

Principles of Adjustable Frequency Drives

EDEXCEL NATIONAL CERTIFICATE/DIPLOMA UNIT 5 - ELECTRICAL AND ELECTRONIC PRINCIPLES NQF LEVEL 3 OUTCOME 4 - ALTERNATING CURRENT

The purposes of this experiment are to test Faraday's Law qualitatively and to test Lenz's Law.

AC Motor Speed. n s = synchronous speed (in RPM), f = frequency (in Hz), and p = the number of poles

First Year (Electrical & Electronics Engineering)

Power Quality Paper #3

OVERCURRENT & EARTH FAULT RELAYS. To study the protection of equipment and system by relays in conjunction with switchgear.

Direct Current Motors

Module Title: Electrotechnology for Mech L7

Effective: September 10, 2006 Vermont Attachment 1 to Rule Public Service Board Page 1 of 6

ATTACHMENT F. Electric Utility Contact Information Utility Name. For Office Use Only

GLOLAB Two Wire Stepper Motor Positioner

Circuits with inductors and alternating currents. Chapter 20 #45, 46, 47, 49

Lab 8: DC generators: shunt, series, and compounded.

ABB ! CAUTION. Type COQ Negative Sequence Generator Relay. (50/60 Hertz) J. Instruction Leaflet

ε: Voltage output of Signal Generator (also called the Source voltage or Applied

Prof. Krishna Vasudevan, Prof. G. Sridhara Rao, Prof. P. Sasidhara Rao

How the efficiency of induction motor is measured?

13 ELECTRIC MOTORS Basic Relations

USE OF ARNO CONVERTER AND MOTOR-GENERATOR SET TO CONVERT A SINGLE-PHASE AC SUPPLY TO A THREE-PHASE AC FOR CONTROLLING THE SPEED OF A THREE-PHASE INDUCTION MOTOR BY USING A THREE-PHASE TO THREE-PHASE CYCLOCONVERTER

Understanding Power Factor and How it Affects Your Electric Bill. Presented by Scott Peele PE

Power measurement in balanced 3 phase circuits and power factor improvement. 1 Power in Single Phase Circuits. Experiment no 1

ECE 431. Experiment #1. Three-Phase ac Measurements. PERFORMED: 26 January 2005 WRITTEN: 28 January Jason Wells

3) What is the difference between "Insulating", "Isolating", and "Shielded Winding" transformers?

Motors and Generators

Line Reactors and AC Drives

11. MEASUREMENT OF POWER CONSUMPTION OF THE NONBALANCED THREE-PHASE LOAD

Reading assignment: All students should read the Appendix about using oscilloscopes.

Speed Control Methods of Various Types of Speed Control Motors. Kazuya SHIRAHATA

AND8008/D. Solid State Control Solutions for Three Phase 1 HP Motor APPLICATION NOTE

VOLTAGE REGULATOR AND PARALLEL OPERATION

DC GENERATOR THEORY. LIST the three conditions necessary to induce a voltage into a conductor.

1. The diagram below represents magnetic lines of force within a region of space.

Experiment #5, Series and Parallel Circuits, Kirchhoff s Laws

Physics 221 Experiment 5: Magnetic Fields

Inductance. Motors. Generators

Ampere's Law. Introduction. times the current enclosed in that loop: Ampere's Law states that the line integral of B and dl over a closed path is 0

Induced voltages and Inductance Faraday s Law

Chapter 35 Alternating Current Circuits

THREE-PHASE INDUCTION MOTOR March 2007

Three-Phase Induction Motor

Principles and Working of DC and AC machines

Three-phase AC circuits

Measurement of Capacitance

Chapter 12: Three Phase Circuits

Lesson 3 DIRECT AND ALTERNATING CURRENTS. Task. The skills and knowledge taught in this lesson are common to all missile repairer tasks.

PowerFlex Dynamic Braking Resistor Calculator

Diodes have an arrow showing the direction of the flow.

GENERATOR SELECTION. a. Three phase - 120/208V, 3 phase, 4W wye; 277/408, 3 phase, 4W wye; * 120/240V 3 phase, 4W Delta

Modeling and Simulation of a Large Chipper Drive

AC Generators and Motors

Full representation of the real transformer

ELECTRIC FIELD LINES AND EQUIPOTENTIAL SURFACES

Chapter 22: Electric motors and electromagnetic induction

EXPERIMENT 7 OHM S LAW, RESISTORS IN SERIES AND PARALLEL

3-Phase AC Calculations Revisited

INTRODUCTION TO SYSTEM PROTECTION. Hands-On Relay School 2012

Technical Guide No High Performance Drives -- speed and torque regulation

7. What is the current in a circuit if 15 coulombs of electric charge move past a given point in 3 seconds? (1) 5 A (3) 18 A (2) 12 A (4) 45 A

Lab E1: Introduction to Circuits

Single-Phase AC Synchronous Generator

Physical Address: City: State: Zip Code:

Transcription:

Experiment 7 ET 33b No-load and Starting Characteristics of Squirrel-Cage Induction Motors Purpose: Determine the electrical and mechanical characteristics of a squirrel-cage induction motor during no-load and start-up operation through lab measurements and calculations. Theoretical Background A squirrel-cage induction motor consists of two parts: the stator and the rotor. There is no electrical connection between the rotor and stator. The magnetic flux produced by the stator provides power transfer across the air gap without any electrical connection. This makes the squirrel-cage induction motor a rugged machine for industrial applications Applying three phase voltages to the motor stator produces a rotating magnetic field. The field s rotational speed depends on the voltage frequency and the number of magnetic poles in the motor design. The variable, n s, synchronous speed, defines the speed of the rotating magnetic field. The rotating magnetic field induces a voltage in the squirrel-cage rotor bars. The induced voltage produces a current in the rotor bars since the squirrel-cage forms a complete circuit. At startup, the induced rotor voltage has maximum frequency since the slip speed is equal to the synchronous speed. The induced voltage has maximum magnitude also since the relative speed between the rotor and the rotating field is greatest. Equation () gives the relationship between rotor frequency and slip. f r f s () s Where: f r = rotor frequency (Hz) f s = synchronous frequency (Hz) s = motor slip (per unit) The motor slip is nearly zero when the squirrel-cage motor operates without mechanical load connected to the shaft. This produces a very low rotor frequency. The rotor leakage reactance magnitude varies with the rotor frequency based on equation () x f L () r This equation shows that the rotor leakage reactance is maximum when the motor starts since f r = f s. Figure shows a schematic per-phase circuit representation of the rotor-stator circuit. The rotor resistance is a function of the motor slip, which relates to the mechanical load on the motor. The motor slip changes from at start up to nearly zero for no-load. This causes the rotor resistance r r Spring 03 exp73b.docx

to change from a maximum value at no-load to a minimum value during the transition from startup to no-load. x r I fe I m R fe x m E BR s R r /s V L Rotor Circuit I r Figure : Induction Motor Rotor Circuit Per Phase Representation At no-load, the current flowing in the rotor, I r, is small since the induced voltage is very low and rotor resistance is high. Most of the current entering the motor goes to the stator circuit to produce the magnetization current that forces flux across the air gap. The value of x m in Figure represents the magnetization reactance that draws the current I m. Active power losses in the iron cores of the motor draw core loss current, I fe. The resistor, R fe, represents the power losses in the core in the motor model. Squirrel-cage induction motors draw a large lagging current at no-load since the magnetic circuit includes an air gap. Most of the current goes to I m, since x m is much smaller than R fe. The resulting power factor of the unloaded induction motor is very low (0.-.5) due to the large magnetization current component. The induced rotor voltage E BR is at a maximum when the motor starts. The rotor resistance is minimum, and the inductive reactance is maximum because slip is at start-up. This combination of factors produces rotor impedance that is highly inductive and low in value relative to the no-load rotor impedance. This produces a high rotor current that is reflected to the stator due to transformer action. This current is seven to ten times the motor rated current typically. The large inductive component of the rotor impedances gives the rotor a low power factor during start-up. The rotor current is directly proportional to stator voltage and inversely proportional to rotor impedance. The stator voltage also affects the motor torque. Motor torque is proportional to the strength of the stator magnetic field, which depends on stator voltage. Equation 3 gives the relationship between the rotor current, power factor, field flux and torque. Increasing the rotor resistance increases motor torque. T KI r cos( ) (3) Where: = field flux I r = rotor current cos() = rotor power factor T = motor torque K = proportionality constant Spring 03 exp73b.docx

Even though starting current is high; the starting power factor is low so the starting torque is not the maximum torque produced by the motor. Since current and flux are both proportional to the applied voltage, V L, in Figure, the following equation shows that the starting torque is proportional to the square of the applied voltage. T K V (4) st A motor starting torque test utilizing reduced terminal voltage can use Equation 4 to find the value of starting torque for rated terminal voltage. Reducing the terminal voltage by half reduces the starting torque by a factor of four. Reducing the terminal voltage lowers the motor line current during the test allowing measurement to be made before circuit breakers trip due to high starting currents. Three Phase Power Measurement Testing three-phase induction motors requires three-phase power measurement. The twowattmeter method can measure total three-phase power by using two single-phase wattmeters. Figure shows the connects for this method using an ABC phase sequence. L P = V ac I a cos(30-) Meter A I-coil V-coil C Motor I-coil V-coil B Meter P = V bc I b cos(30+) Figure. Two-Wattmeter Connections for Measuring Three-Phase Power. The total motor power is the algebraic sum of the meter readings. The meter readings also give the total reactive power consumed and the load power factor by using Equations 5-7 below. These equations are correct for ABC phase sequence. Total active power: P T P P (5) 3 P P (6) Total reactive power (VARS): Q T Spring 03 3 exp73b.docx

Load power factor: tan 3 P P P P (7) For a BAC phase rotation with the same meter connections, equations (6) and (7) become: Total reactive power (VARS): 3P P Q T Load power factor: tan 3 P P P P The equations above show variables P and P exchanged in the differences of the two equations when using BAC phase sequence. Performance Objectives After successfully completing this lab, the student will be able to:.) Perform a locked rotor test on an induction motor..) Use the two-wattmeter method to measure three-phase load power. 3.) Explain how motor terminal voltage affects starting torque. 4.) Measure motor no-load power factor. Required Equipment Required Machines: IM-00 Three Phase Squirrel-Cage Induction Motor Pony Brake Power Source: Meters: Other Equipment: 0-40 V Variable 3-phase ac, 0-8 A ac Ammeter, 0-300 V ac Voltmeter, 0-600 W wattmeters MGB-00 DG bedplate, banana leads, tachometer, rubber coupling, shaft guards. Program Plan Part : No load testing of the induction motor Step : Place the IM-00 induction machine on the bedplate and clamp the machine securely. Spring 03 4 exp73b.docx

Step : Connect the induction machine as shown in Figure 3. Note the polarity of the current and voltage coils of the wattmeters. The dotted ends indicate positive instantaneous polarity. Set the range to 600 watts when using the analog meters. The digital meters are auto-ranging and need no additional adjustment. Figure 4 gives the details of the power meter connections. B A C L L L3 L L L3 0-8 A A 0-600 W P 0-600 W P B V 0-300 V Stator Rotor A C Figure 3. Induction Motor Electrical Connections- No-Load Testing B P I-coil V-coil A I-coil P Motor V-coil C Figure 4. Power meter connection details. Dotted end of coils indicates positive terminals. Step 3: Find the induction motor nameplate and record the rated speed, voltage, current and horsepower in Table on the Data Tables and Calculations Summary sheet. Step 4: Move the voltmeter connections to the terminals of the bench supply. Turn on the bench power supply and adjust the output voltage to rated motor voltage. Replace the voltmeter leads to the position in Figure 3. Spring 03 5 exp73b.docx

Step 5: Turn the motor on by placing the motor circuit breaker in to ON position. Record the motor line current, line voltage and wattmeter P and P readings in Table. (Note: one of the meters should read negative. Turn off the power and reverse the voltage leads on analog meters to get proper indication and enter the value as a negative in the table. Digital meter automatically change polarity.) Step 6: Measure the no-load motor speed using the strobe tachometer. Record the measurement in Table 3. Step 7: Turn the motor off. Turn the bench power off. Part : Locked Rotor Testing of an Induction motor Step : Install the pony brake on the bedplate and couple it to the motor using the rubber coupling. Clamp the pony brake securely and place shaft guards on all rotating shafts. Step : Move the voltmeter leads from the motor to the bench power supply. Turn on the supply and adjust the supply voltage to 04 V. Turn off the supply and replace the leads in the position shown in Figure 3. Step 3: Loosen the pony brake tension strap by adjusting the knob located on top of the device (See photo ). Loosen the brake until the shaft turns freely. Step 4: Find the force scale and check the zero position. Adjust the zero position as necessary by pulling the metal tab located on the top of the scale. Spring 03 6 exp73b.docx

Step 5: Turn on the bench power supply and the motor. Step 6: Complete this step as quickly as possible because the motor will draw a large current at locked rotor and will eventually trip the breaker on the motor front panel. Tighten the pony brake until the motor shaft stops. Record the motor current, voltage and power readings. Record the scale force value in grams. Enter all these values in Table 4. Power the motor down using the breaker switch. (Note: Allow the motor to cool and reset it if it trips before all measurements are taken again. Step 7: Wait -5 minutes for the motor and breaker to cool and repeat step 6 two more times to complete Table 4. Step 8: Turn off the motor and the bench power supply. Remove all wiring and return test items to storage. De-briefing and Calculations Part : No load testing of the induction motor. The total three phase power is the algebraic sum of the P and P measurements. Add any negative value to find the net power. Record the value below. P T =. Compute the total apparent power entering the motor using the following formula and record the result below. S T 3 V I (8) L L Where: V L = the line voltage measurement from Table I L = the line current measurement from Table S T = 3. The ratio of motor active power to apparent power gives the no-load motor power factor. This value should be low since the motor draws a large reactive current to establish the flux in the air gap with little active power transfer. Compute the value and enter it below. PT Fp = Lagging S T Spring 03 7 exp73b.docx

4. Compute the per unit motor slip at using the measured no-load speed. The synchronous speed is 800 RPM. s n n n s r = p.u. s Part : Locked Rotor Testing of an Induction motor. Compute the average line current values using the measurement in Table 4 and enter it in the last row of the table.. The experiment uses half the rated terminal voltage when conducting the starting torque test. Full voltage starting current will be twice the average test value from Table 4. Compute this value and enter it in the first row of Table 5. 3. Compute the torque values for each test measurements in Table 4 using the following equation: T (N - m) F 0.97 gm/n d Where: T = torque in Newton-meters F = force in grams (gm) d = distance to center of rotation (m) Compute the average of the three tests and enter in Table 4. 4. Motor torque is proportional to the square of the applied voltage. Stated as proportions this becomes: T V T V Where: T = reduced voltage starting torque T = full voltage starting torque V = test voltage (04 V) V = rated line voltage (08 V) The experimental measurements are made using half voltage so starting torque at rated voltage is 4 times the average from Table 4. T 4 T Compute this value and enter it into the first row of Table 5. Spring 03 8 exp73b.docx

5. Find the full load running amps from the rated motor current in Table. Enter this value in the second row of Table 5. Compute the rated motor torque from the motor rated shaft horsepower and the rated speed using the following formula: 74HP T (N - m) n r Where: n r = rated motor shaft speed (RPM) from Table HP = rated motor shaft torque (HP) from Table. Enter this value in row of Table 5. 6. Compute the ratio of starting current to full load (rated) current and multiply it by 00% to determine the percentage of rated current. (Typical 400-700%). Compute the ratio of starting torque to full load (rated) torque and multiply by 00% to determine percentage of rated torque. (Typical 00-50%) Enter both these values in row 3 of Table 5. 7. Compute the reduced voltage starting apparent power using Equation (8) from step of this section. Use the average current and voltage values from Table 4. Enter the computed result below. S TR = VA 8. Compute the average total power and enter it in Table 4. Compute the rotor power factor by dividing the average total power by S TR from step 7. Enter the result below. F p = 9. Find the power factor angle of the rotor using the following formula and enter the result below. cos (F ) Quick Quiz. Motor starting current is: = a) greater than full load current. b) less than full load current. c) the same a full load current. p Spring 03 9 exp73b.docx

. Full load running torque is: a) greater than starting torque. b) less than starting torque. c) the same as starting torque. 3. Each amp of starting current provides: a) the same torque as each amp of running current. b) more torque than each amp of running current. c) less torque than each amp of running current. 4. You would get more N-m of starting torque from each amp of starting current if: a) there were more inductive reactance in the rotor. b) there were more resistance in the rotor. c) the rotor bars did not form a complete circuit. 5. At the instant of start, an induction motor has: a) a leading phase angle. b) a good power factor, small lagging phase angle. c) a poor power factor, large lagging phase angle. Spring 03 0 exp73b.docx

Experiment 7 Data Tables and Calculation Summary Table -Motor Ratings Rated Speed (RPM) Rated Terminal Voltage Rated Current (A) Rated Horsepower (HP) Table -Motor No-Load Electrical Readings Line Current (A) Line Voltage (V) Wattmeter P (W) Wattmeter P (W) Table 3-Motor N-Load Mechanical Readings Shaft Speed (RPM) Table 4- Lock-Rotor Test Readings Line V Line I P P Force (gm) Total P Lever Arm d (m) Test 04 0.588 Test 04 0.588 Test 3 04 0.588 Average 04 0.588 Torque N-m Table 5- Starting Torque Test Calculations Volts Amps Torque (N-m) Full Voltage Starting 08 V Full Load Running (Starting/Running)x00% Spring 03 exp73b.docx

ET33b 0 pts Discussion Points for Lab 7 Write a - page double spaced discussion that answers the following questions. Do not repeat the question. Write paragraphs that address these topics using correct grammar and spelling..) Explain how the induced voltage in the rotor of an induction motor changes as the rotor speed changes..) Show the per-phase schematic model of an induction motor and explain why the rotor current stays almost constant while the rotor power factor changes. 3.) Explain the relationship between stator terminal voltage and motor torque. 4.) Draw the connections for the two-wattmeter method of measuring active power. How is power factor found from the power measurements? Use both words and formulas to explain the process. Spring 03 exp73b.docx