topology has the practical advantages in low cost, high efficiency, and small volumetric physical size. In recent years, the authors have developed a

Similar documents
A MULTILEVEL INVERTER FOR SYNCHRONIZING THE GRID WITH RENEWABLE ENERGY SOURCES BY IMPLEMENTING BATTERY CUM DC-DC CONERTER

High Intensify Interleaved Converter for Renewable Energy Resources

Harmonics and Noise in Photovoltaic (PV) Inverter and the Mitigation Strategies

Transformerless UPS systems and the 9900 By: John Steele, EIT Engineering Manager

Design a Phase Interleaving PFC Buck Boost Converter to Improve the Power Factor

Fundamentals of Power Electronics. Robert W. Erickson University of Colorado, Boulder

Design and Simulation of Soft Switched Converter Fed DC Servo Drive

An Isolated Multiport DC-DC Converter for Different Renewable Energy Sources

Solar Energy Conversion using MIAC. by Tharowat Mohamed Ali, May 2011

Implementation of High Step-Up Solar Power Optimizer for DC Micro Grid Application

DC/DC BUCK Converter for Renewable Energy Applications Mr.C..Rajeshkumar M.E Power Electronic and Drives,

Design, Analysis, and Implementation of Solar Power Optimizer for DC Distribution System

A bidirectional, sinusoidal, high-frequency inverter design

Iron Powder Cores for Switchmode Power Supply Inductors. by: Jim Cox

A bidirectional DC-DC converter for renewable energy systems

Hybrid Power System with A Two-Input Power Converter

Chapter 4. LLC Resonant Converter

AN ULTRA-CHEAP GRID CONNECTED INVERTER FOR SMALL SCALE GRID CONNECTION

AC/DC Power Supply Reference Design. Advanced SMPS Applications using the dspic DSC SMPS Family

Selecting IHLP Composite Inductors for Non-Isolated Converters Utilizing Vishay s Application Sheet

Modeling and Simulation of a Novel Switched Reluctance Motor Drive System with Power Factor Improvement

Power supplies. EE328 Power Electronics Assoc. Prof. Dr. Mutlu BOZTEPE Ege University, Dept. of E&E

Relationship between large subject matter areas

WIND TURBINE TECHNOLOGY

Modified Cascaded Five Level Multilevel Inverter Using Hybrid Pulse Width Modulation

UNINTERRUPTIBLE POWER SUPPLIES >9900AUPS UNINTERRUPTIBLE POWER SUPPLIES

Modelling, Simulation and Performance Analysis of A Variable Frequency Drive in Speed Control Of Induction Motor

An Efficient AC/DC Converter with Power Factor Correction

Diode Applications. by Kenneth A. Kuhn Sept. 1, This note illustrates some common applications of diodes.

Creating a Usable Power Supply from a Solar Panel

Principles of Adjustable Frequency Drives

A Design of DC/DC Converter of Photovoltaic Generation System for Streetcars

98% Efficient Single-Stage AC/DC Converter Topologies

UNDERSTANDING AND CONTROLLING COMMON-MODE EMISSIONS IN HIGH-POWER ELECTRONICS

Variable Frequency Drives - a Comparison of VSI versus LCI Systems

A COMPERATIVE PERFORMANCE ANALYSIS OF BRIDGELESS PFC BOOST CONVERTER WITH THE CONVENTIONAL CONVERTER

APPLICATION NOTE TESTING PV MICRO INVERTERS USING A FOUR QUADRANT CAPABLE PROGRAMMABLE AC POWER SOURCE FOR GRID SIMULATION. Abstract.

Design of Solar Power Optimizer And Eliminating Leakage Current In Multi-Level Inverter For PV Systems

Line Reactors and AC Drives

Improvements of Reliability of Micro Hydro Power Plants in Sri Lanka

How To Simulate A Multilevel Inverter

A Zero-Voltage Switching Two-Inductor Boost Converter With an Auxiliary Transformer

3.3 kv IGBT Modules. Takeharu Koga Yasuhiko Arita Takatoshi Kobayashi. 1. Introduction. 2. Specifications of 3.3 kv IGBT Module

Lab 3 Rectifier Circuits

SIMULATION OF CLOSED LOOP CONTROLLED BRIDGELESS PFC BOOST CONVERTER

Power Flow Control Using Bidirectional Dc/Dc Converter for Grid Connected Photovoltaic Power System

4. ACTIVE-CLAMP BOOST AS AN ISOLATED PFC FRONT-END CONVERTER

ANADOLU UNIVERSITY DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING

Solar Inverters. Ferrites in Renewable Energies: Solar Inverters. customer requirements. Support and flexibility to design custom product to fulfill

Philosophy of Topology and Components Selection for Cost and Performance in Automotive Converters.

Novel Loaded-Resonant Converter & Application of DC-to-DC Energy Conversions systems

Analysis of PV cell fed High Voltage Gain Seven and Nine level inverter with Reduced Switches

How To Improve Power Quality

Modeling and Analysis of DC Link Bus Capacitor and Inductor Heating Effect on AC Drives (Part I)

Comparison of an Efficient Buck Converter Configuration for the DC Power Distribution Of Future Green Data Centers

Power Quality For The Digital Age INVERTING SOLAR POWER A N E N V IRONME N TA L P OT E N T I A L S W HI T E PA PER

Product Data Bulletin

SOLAR PV-WIND HYBRID POWER GENERATION SYSTEM

Single-Stage High Power Factor Flyback for LED Lighting

Application Information Improving Efficiency in Smart Grid Applications With Fully Integrated Current Sensing ICs

Module 11: Conducted Emissions

Which is the best PFC stage for a 1kW application?

Modeling Grid Connection for Solar and Wind Energy

Design and Development of Speed Control of Induction motor drive using Pulse-Width Modulation

Tamura Closed Loop Hall Effect Current Sensors

Closed Loop PWM Control for Induction Motor Drive Using Dual Output Three Phase Inverter

T.FRANCIS, D.NARASIMHARAO

= V peak 2 = 0.707V peak

Power Supplies. 1.0 Power Supply Basics. Module

Power Quality Issues, Impacts, and Mitigation for Industrial Customers

APPLICATION NOTE USING A MODEL 3060-MS SERIES AS A REGENERATIVE AC SOURCE FOR PV INVERTER TEST APPLICATIONS. Abstract.

VICOR WHITE PAPER. The Sine Amplitude Converter Topology Provides Superior Efficiency and Power Density in Intermediate Bus Architecture Applications

MULTI-LEVEL INVERTER WITH DC LINK SWITCHES FOR RENEWABLE ENERGY SOURCES

Development of High Frequency Link Direct DC to AC Converters for Solid Oxide Fuel Cells (SOFC)

Simulation and Analysis of Parameter Identification Techniques for Induction Motor Drive

A Practical Guide to Free Energy Devices

Design of an Auxiliary Power Distribution Network for an Electric Vehicle

Understanding Delta Conversion Online "Power Regulation" - Part 2

FPAB20BH60B PFC SPM 3 Series for Single-Phase Boost PFC

FREQUENCY CONTROLLED AC MOTOR DRIVE

Design and Implementation of dspic Fed Vienna Rectifier for Induction Heating Appliances

The full wave rectifier consists of two diodes and a resister as shown in Figure

EET272 Worksheet Week 9

TOPOLOGIES FOR SWITCHED MODE POWER SUPPLIES

Design and Construction of Variable DC Source for Laboratory Using Solar Energy

CYCLOCONVERTERS. Fig.1 Block diagram of a cycloconverter

Distribution Generation System

Application Note AN- 1095

Control Strategy for Three Phase Shunt Active Power Filter with Minimum Current Measurements

2 Topology and Control Schemes

2012 San Francisco Colloquium

HIGH FREQUENCY TRANSFORMER WITH TRANSFORMER SWITCHOVER

High Voltage Power Supplies for Analytical Instrumentation

Design of Four Input Buck-Boost DC-DC Converter for Renewable Energy Application

High Power Density Capacitor Charging Power Supply Development for Repetitive Pulsed Power

POWER SYSTEM HARMONICS. A Reference Guide to Causes, Effects and Corrective Measures AN ALLEN-BRADLEY SERIES OF ISSUES AND ANSWERS

UNDERSTANDING POWER FACTOR AND INPUT CURRENT HARMONICS IN SWITCHED MODE POWER SUPPLIES

Analysis of Space Vector Pulse Width Modulation VSI Induction Motor on various conditions

7-41 POWER FACTOR CORRECTION

The Facts About Harmonics and Power Factor. Power Quality: Harmonics & Power Factor Correction

Transcription:

Small Scale Utility-Connected Solar Photovoltaic Power Conditioner using Soft Switching High-Frequency Sinewave Modulated Inverter Link for Residential Applications Koki OGURA (Dept. of Electrical and Electronics Eng.) Srawouth CHANDHAKET (Dept. of Electrical and Electronics Eng.) Yoshihiko HIROTA (Dept. of Electrical and Electronics Eng.) Eiji HIRAKI (Dept. of Electrical and Electronics Eng.) Mutsuo NAKAOKA (Dept. of Electrical and Electronics Eng.) (95) 1 Abstract The utility-interfaced sinewave modulated inverter for the solar photovoltaic power conversion conditioning and processing with a high frequency transformer isolated AC link is presented for residential applications. As compared with the conventional full-bridge hard switching-based PWM inverter with a high frequency AC link, the simplest single-ended quasi-resonant soft switching-based sinewave modulated inverter with a duty cycle pulse frequency control is implemented, resulting in size and weight reduction and low-cost. This paper presents a prototype circuit of the single-ended zero voltage soft switching inverter-based sinewave power processor for solar power conditioner in addition to its operating principle. This paper also proposes a control system to deliver high quality output current. The power loss evaluation under actual power processing is discussed from an experimental point of view. A newly-developed sinewave power processor which has 92.5% efficiency at 4kW output is demonstrated for small scale utility-connected power aplications. Key Words: Zero voltage soft switching, High frequency inverter, High frequency transformer link, Utility interfaced solar power conditioner, High frequency transformer link 1. Introduction The Solar photovoltaic (PV) power energy is an effective type of natural energy resources because it is clean, abundant and pollution free. Moreover, it produces no acoustic noise and is distributed under on-site power generator everywhere on earth. A variety of small scale dispersed PV power conditioners are presently used in various power applications such as water pumping, lighting, home power appliances, the mechanical power appliances for air conditioner and refrigerator. Most PV power applications require high efficient power conversion processing system such as DC-DC converter and DC-AC converter 1), 3)~7). The conventional utility-connected power conditioner is generally classified into three different types; an isolated low frequency transformer link type, an isolated high frequency transformer link type, and a transformer-less direct AC link type. The system topologies of low frequency transformer AC link type and high frequency transformer AC link are both advantageous in safety viewpoint due to the transformer type electrical isolation. On the other hand, the transformer-less direct AC link topology has the practical advantages in low cost, high efficiency, and small volumetric physical size. In recent years, the authors have developed a high frequency transformer linked utilityconnected inverter system for the small scale PV power generator that can control to produce the sinewave output waveform by using a singleended quasi-resonant zero voltage soft switching high frequency inverter with a transformer in its primary power stage. A novel type of high frequency transformer link utility- connected solar power conditioner using a new soft switching inverter is suitable for the residential PV power generator system, which delivers the single-phase 50/60Hz 4kW AC output into the utility AC power grid. This paper presents a new utility- connected sinewave modulated inverter type solar power conditioner with a high frequency transformer link, which is composed of the new generation trench-gate IGBTs for low saturation voltage design. Its operating principle and its related control scheme are illustrated and evaluated described from a practical point of view. Mem Fac Eng Yamaguchi Univ

(96) 2 2. Circuit Description and circuit operation The basic circuit configuration of the voltage-source single-ended soft switching high frequency sinewave modulated inverter developed for solar power regeneration system is depicted in Fig. 1. The main circuit consists of the single-ended quasi-resonant inverter, specially-designed leakage transformer, high frequency voltage doubler rectifier circuit, and synchronized polarity switching bridge inverter connected to the utility power source. The leakage transformer T HF provides an equivalent series inductance component to achieve zero voltage soft switching of this inverter by means of the quasi-resonant operation in addition to the electrical isolation between DC input and AC output. The operation of this zero voltage soft switching inverter is able to be achieved by connecting a resonant capacitor in parallel with the primary winding of the high frequency leakage transformer and resonating the collector-emitter voltage across the power semiconductor device Q 1 ( / ). Fig. 2 shows the equivalent circuit for three operating modes of the single-ended resonant high frequency inverter. Its operation principle is described below 2). Mode 1: During a time interval in mode 1, when the active power switch Q 1 ( / ) is turned on with ZVS and ZCS, the current flows through the primary winding of a leakage transformer. The collector current through Q 1 increases linearly until Q 1 is turned off. Then, this mode moves to mode 2 by turning off the main power switch Q 1. Mode 2: When Q 1 is turned off with ZVS, the current PV Array N F vdc C1 i c High-Frequency Leakage Transformer T HF CS1 Np Ns D S1 D S2 CS2 current stored into the equivalent leakage inductance in the primary winding N p of the high frequency transformer begins to flow through the quasi-resonant capacitor, and the voltage across collector-emitter of Q 1 gradually builds up from zero to establish the resonant waveform. When the voltage returns to zero again, the operating mode moves to Mode 3. Mode 3: When the voltage reaches zero, the flywheel diode naturally becomes a conducting state. Thus, the power is regenerated into the input DC side of this inverter. During this period, the gate signal of the active power switch Q 1 is on. And Mode 3 shifts to Mode 1. The soft switching high frequency inverter circuit repeats the interrupted switching operation described above. To protect the acoustic noise and to reduce the power losses of the inverter, the operating frequency of this inverter is optimized in the range of 20-30kHz. Fig. 3 illustrates the theoretical operating waveforms of the single-ended resonant inverter in Fig. 2. While the active power switch of Q 1 is off, in the secondary side of the transformer, D S1 is conductive and C S1 is electrically charged. While is on, the voltage across C S1 is boosted over the transformer voltage. D S2 is naturally turned on. This power processing results in a half-wave voltage-doubler type high frequency rectification, and the current generated in the quasi-resonant high frequency inverter treated here is delivered to the output stage of the voltage doubler rectifier. The AC power processed by the filtered current with a full-wave rectified sinusoidal waveform is delivered to the utility AC power grid through the Q 2a Q 2c LS1 C o N F Utility 1Φ 3W 200V 50 / 60Hz Q 2b Q 2d ( / ) Q 1 Single-Ended Resonant Inverter Voltage Doubler Rectifier Synchronized Polarity-switching Bridge Low-pass Filter Fig. 1 Single-ended quasi-resonant utility-connected inverter Vol.52 No.2 (2002)

(97) 3 i LP C S1 D S2 quality Gate Signal D S1 C S2 i o V DC L P L S (a) Mode 1 i LP V DC L P i o v Lp (b) Mode 2 i LP i Lp V DC L P i o Mode 2 3 1 2 3 Fig. 3 Theoretical operating waveform (c) Mode 3 Fig. 2 Mode transition of single-ended quasiresonant inverter in equivalent circuit the polarity switching low frequency IGBT full bridge inverter using IGBT power module. The full bridge type low frequency inverter is to be operated in synchronization with the utility power AC grid voltage. Fig. 4 illustrates the operating waveforms of Q 1 (SW / D) under the condition with maximum utility voltage v o (v o =282V). This sinewave inverter system achieves the zero voltage switching of Q 1 as can be seen from the operating waveforms in Fig. 4. It is noted that the maximum points of and reach 800V and 100A, respectively. 3. Control System Implementation The single-ended quasi-resonant soft switching high frequency inverter performs duty cycle control based PFM (Pulse Frequency Modulation) control in synchronization with the utility AC voltage in order to deliver high quality sinusoidal output current from the solar array panel as the DC input power source. Fig. 5 shows the control system block diagram required for delivering sinusoidal output waveform. T on (Q 1 on-time) command signal of the single-ended quasi-resonant soft switching inverter for controlling the output current waveform is able to be obtained by adjusting the synchronized oscillator with sinusoidal reference signal that is synchronized with the utility AC grid voltage. Since non-linearity exists between T on and i o due to the resonant switching operation, the T on command is corrected in signal Fig. 4 Voltage and current switching waveforms Mem Fac Eng Yamaguchi Univ

(98) 4 accordance with an error signal between the output current i o and the reference signal. This correction is conducted after every cycle of the utility grid voltage. The experimental operating waveforms of the AC output current and the output voltage of this inverter are displayed in Fig. 6. The output power P o, the DC voltage and the utility voltage V o are designed for; P o =4kW, V o =200V rms, and V in =200V ave, respectively. The total harmonic distortion (THD) of the output current i o in this case is 3% or less. The major design specifications of the developed solar power conditioner using DC-AC power conversion processing are listed in Table 1. PV Array Fig. 5 Q 1 Ton Synchronized Oscillator Voltage Full Bridge Doubler Inverter Ton command Polarity Switching 1 S N F io < io correction> io Utility Voltage and Frequency PLL Phase Shifter Reference Signal Generator Block diagram for sinewave modulated control system 4. Power Loss Analysis and Evaluations Table 2 indicates the measured power losses of each component in actual operation under the input voltage V in ; 200V ave, the output current i o ; 20A rms, and output power P o ; 4kW. By making the optimal component arrangement on the basis of the power losses obtained, the natural air cooling method can be introduced for the utility-connected sinewave inverter type power conditioner for the solar power generation. The switching power semiconductor devices for hard switching PWM inverters cause the power losses of approximately 130W for a 4kW power conditioner in the residential applications. On the other hand, the proposed sinewave modulated inverter type power conditioner with 40% power loss reduction using an efficient resonant switching circuit topology and the 4th generation low saturation voltage type IGBT with a trench gate structure, two IGBTs are provided as the active power switch Q 1 so that its power dissipation is shared. As a result, the cooling equipment becomes simple. Table. 3 indicates the actual specifications of the 4th generation IGBT used for the quasi-resonant high frequency inverter switch Q 1, and Q 2a - Q 2d for the polarity switching inverter. And the appearance of the IGBT is shown in Fig. 7. Because the polarity switching utilityconnected low frequency inverter is operated under a low frequency (50 or 60Hz) and the operation of switching is performed when the utility AC grid voltage remains in almost zero state, the majority of the power losses in Q 2a -Q 2d are produced for the conducting state. Since the high frequency resonant inverter operates at 20kHz or more, high frequency current flows under Fig. 6 Output voltage and current waveforms Table 1 Specifications of solar power conditioner Item Specification Efficiency 92.5% Dimensions W 540mm x D 300mm x H 125mm (20 liters) Weight 20kg Fig. 7 Physical appearance of Trench-gate IGBT Vol.52 No.2 (2002)

(99) 5 Table 2 Measured results of power loss analysis Component Symbol Loss Switching element (primary) Switching element (secondary) Rectifying diode Resonance capacitor Voltage doubler capacitor Filter capacitor Output choke coil High frequency transformer Control circuit Others Q 1 Q 2a - Q 2d D S1, D S2 C S1 C S2 L S1 T HF Total 78W 69W 30W 5W 10W 4W 5W 65W 28W 30W 324W Rating Table 3 The 4 th generation IGBT(CT90AM-18) rating and performances Item Symbol Specification Collector - Emitter voltage V CES 900V Collector current I C 60A Gate- Emitter voltage V GES ±25V Collector loss P C 250W Performance Collector - Emitter saturation voltage Fall time V CE (sat) t f 1.55V 0.3µ s through the transformer windings. To suppress increase of the copper losses produced in the transformer windings due to a skin effect under the high frequency operation, Litz wire with a diameter of 0.14mm and 575 turns is introduced as the primary and secondary windings. The ferrite core is used for the transformer magnetic circuit to reduce the core losses. The high frequency AC link transformer has a little gap in the magnetic circuit to obtain the reasonable equivalent series leakage inductance, and thus the transformer produces leakage flux outside of the transformer. This leakage flux may result in the radiation noise. To reduce this power loss, the transformer is covered with an aluminum sheet as a low permeability material. This arrangement effectively prevents power loss generation caused by a coupling with the steel chassis that forms the cabinet. Table. 4 indicates the major specifications of the high frequency transformer. sheet Table 4 Transformer Specifications Item Specification Primary indactance 58µH Secondary indactance 43µH Coupling coefficient 0.78 5. Conclusions By applying the system topology of the single-ended high frequency soft switching sinewave pulse modulated inverter with a high frequency transformer isolation for utilityconnected inverter type power conditioner, a downsized lightweight sinewave modulated inverter for a solar photovoltaic power conditioner using the trench gate IGBTs was demonstrated and evaluated from a practical point of view. The excellent performances of this power conditioner were confirmed through the experimental results obtained from a 4kW prototype breadboard setup for residential applications. Mem Fac Eng Yamaguchi Univ

(100) 6 Reference 1) S. Sumiyoshi, H. Terai, T. Kitaizumi, T. Okude, H. Omori, Y. Nishida and M. Nakaoka, Practical Evaluation of Single-Ended Resonant Utility Interactive Inverter, Proc. of International Power Electronics Conference (IPEC-Tokyo), Vol. 3, pp. 1680-1685, March, 2000. 2) I. Hirota, H. Omori and M. Nakaoka, Practical evaluations of a ZVS-PFM quasi load-resonant high-frequency inverter using a new generation IGBT for an induction-heated cooking appliance, International Journal of Electronics, Vol. 80, No. 2, pp. 329-340, 1996. 3) K. Hirachi, and M. Nakaoka, Improved control strategy on single-phase current-fed interactive inverter, International Journal of Electronics, Vol. 88, No. 1, pp. 115-126, 2001. 4) J. A. Gow and C. D. Manning, Photovoltaic converter system suitable for use in small scale stand-alone or grid connected applications, IEE Trans. on Electr. Power Appl., Vol. 147, No. 6, pp. 535-543, Nov. 2000. 5) B. K. Bose, P. M. Szczesny and R. L. Steigerwald, Microcomputer Control of a Residential Photovoltaic Power Conditioning System, IEEE Trans. on Ind. Application, Vol. IA-21, No. 5, pp. 1182-1191, Sep./Oct. 1985. 6) H. Terai, S. Sumiyoshi, T. Kitaizumi, K. Ogura, S. Chandhaket and M. Nakaoka, Utility Interactive Solar Power Conditioner with Zero Voltage Soft Switching High frequency Sinewave Modulated Inverter Link, Proc. of International Conference on Power Electronics (ICPE 01), pp. 668-672, Oct. 2001. 7) Y. Konishi, S. Chandhaket, K. Ogura and M. Nakaoka, Utility-Interactive High-Frequency Flyback Transformer Linked Solar Power Conditioner for Renewal Energy Utilizations, Proc. of IEEE International Conference on Power Electronics and Drive Systems (PEDS 2001), Vol. 2, pp. 628-632, Oct. 2001. (Received December 27, 2001) Vol.52 No.2 (2002)