TOPOLOGIES FOR SWITCHED MODE POWER SUPPLIES
|
|
|
- Lorraine Lambert
- 9 years ago
- Views:
Transcription
1 TOPOLOGIES FOR SWITCHED MODE POWER SUPPLIES by L. Wuidart I INTRODUCTION This paper presents an overview of the most important DC-DC converter topologies. The main object is to guide the designer in selecting the topology with its associated power semiconductor devices. The DC-DC converter topologies can be divided in two major parts, depending on whether or not they have galvanic isolation between the input supply and the output circuitry. II NON - ISOLATED REGULATORS SWITCHING According to the position of the switch and the rectifier, different types of voltage converters can be made: - Step down Buck regulator - Step up Boost regulator - Step up / Step down Buck - Boost regulator II - 1 The Buck converter: Step down voltage regulator The circuit diagram, often referred to as a chopper circuit, and its principal waveforms are represented in figure 1: AN513/0393 1/18
2 Figure 1: The step down Buck regulator The power device is switched at a frequency f = 1/T with a conduction duty cycle, δ = t on /T. The output voltage can also be expressed as: = V in. δ * Rectifier: V in max I F(AV) I out (1-δ) Device selection: * Power switch: V cev > V in max I I cmax or I D max > I out + 2 2/18
3 II.2 The Boost converter: Step up voltage regulator Figure 2 : The step up Boost regulator δ = ton T In normal operation, the energy is fed from the inductor to the load, and then stored in the output capacitor. For this reason, the output capacitor is stressed a lot more than in the Buck converter. Device selection: * Power switch: V cev > I out I I cmax or I Dmax > + 1-δ 2 = V in 1-δ * Rectifier: > I F(av) > I out 3/18
4 II - 3 Buck-Boost converter: Step up/step down voltage regulator Figure 3 : The step up/step down Buck-Boost regulator i L For a duty cycle under 0.5 the conversion works in step down mode, for a duty cycle over 0.5, the converter then operates in the step up mode. = V in.δ 1-δ * Rectifier: > V inmax I F (av) > I out + Device selection: * Power switch : V cevmax > V inmax + I out I I cmax or I Dmax > + 1-δ 2 4/18
5 II.4 Summery STEP DOWN STEP UP STEP UP/DOWN V in. δ V in /1- δ [-V in.δ ] / [1- δ ] RMS low high high current in C out Supplied input discontinuous continuous discontinuous current Gate drive floating grounded floating III - ISOLATED CONVERTERS: The isolated converters can be classified according to their magnetic cycle swing in the B-H plot (see figure 4). An isolated converter is asymmetrical if the magnetic operating point of the transformer remains in the same quadrant. Any other converter is, of course, called symmetrical. Figure 4 : B-H plot of symmetrical converters 5/18
6 III - 1 Asymmetrical converters III Off-line flyback regulators The energy is stored in the primary L p inductance of the transformer during the time the power switch is on, and transferred to the secondary output when the power switch is off. If n = N p / N s is the turns ratio of the transformer we have: V = in δ n 1-δ Off-line flyback regulators are mainly used for an output power ranging from 30W up to 250W. Flyback topology is dedicated to multiple low cost output SMPS as there is no filter inductor on the output. Figure 5 : Isolated single switch flyback R-C-D SNUBBER NETWORK *Power switch: V CEV V inmax + n + leakage inductance spike * Secondary Rectifier: + V inmax n 6/18
7 a. Single switch versus double switch flyback In the single switch flyback, an overvoltage spike is applied across the power switch at each turn off. The peak value of this overvoltage depends upon the switching time, the circuit capacitance and the primary to secondary transformer leakage inductance. So, a single switch flyback nearly always requires a snubber circuit limiting this voltage spike (see figure 5). In a double switch flyback, the leakage inductance of the power transformer is much less critical (see figure 6). The two demagnetization diodes (D 1 and D 2 ) provide a single non dissipative way to systematically clamp the voltage across the switches to the input DC voltage V in. This energy recovery system allows us to work at higher switching frequencies and with a better efficiency than that of the single switch structure. However, the double switch structure requires driving a high side switch. This double switch flyback is also known as asymmetrical half bridge flyback. Figure 6: Isolated double switch flyback * Power switch: V CEV V inmax * Primary Rectifiers: D 3 and D 4 V inmax 7/18
8 b. Discontinuous versus continuous mode flyback The flyback converter has two operating modes depending whether the primary Discontinuous mode ADVANTAGES - Zero turn-on losses for the power switch - Good transient line/load response inductance of the transformer is completely demagnetized or not. DISADVANTAGES - High peak currents in rectifiers and power switches - Large output ripple: C out (disc.) 2 C out (cont.) - Feedback loop (single pole) easy to stabilize - Recovery time rectifier not critical: current is zero well before reverse voltage is applied Figure 7: Discontinuous mode flyback waveforms * Power switch: I Cpeak 2P out 2P * Rectifier: I Fpeak out Vout ηv inmin δ max (1- δmax ) 2P out I Drms ηvinmin (3δ max ) I F(AV) P out 8/18
9 Continuous mode ADVANTAGES - Peak current of rectifier and switch is half the value of discontinuous mode DISADVANTAGES - Recovery time rectifier losses - Low output ripple: C out (cont.) 0.5 C out (disc.) -Feedback loop difficult to stabilize (2 poles and right half plane zero) Figure 8: Continuous mode flyback waveforms 9/18
10 * Power switch: * Rectifier: I Cpeak η δ max V inmin (1+A ) I Drms 2P out (1 + A + A2 ) ηv inmin 3δ max I Fpeak I F (AV) 2P outmax 2P out (1 - δ max )(1+A ) P out in single switches, and up to 1kW in double switch structures. Single switch vs. double switch forward In the single switch forward, the magnetizing energy stored in the primary inductance is restored to the input source by a demagnetization winding N d. Most commonly, the primary and the demagnetization windings have the same number of turns. So, at turn-off, the power switch has to withstand twice the input voltage during the demagnetization time, and then, once the input voltage (see figure 9). The demagnetization and primary windings have to be tightly coupled to reduce the voltage spike - more than the theoretical 2 V in - occuring at turn-off across the power switch. with A = I peak I I peak III Off line forward regulators The forward converter transfers directly the energy from the input source to the load during the on-time of the power switch. During off-time of the power switch, the energy is freewheeling through the output inductor and the rectifier D 2, like in a chopper (see figure 1). = δ V in n A forward regulator can be realized with a single switch structure or with a double switch structure, according to the way the energy stored in the transformer primary inductance is demagnetized. Forward converters are commonly used for output power up to 250W 10/18
11 Figure 9: Isolated single switch forward 11/18
12 * Power switch: V CEV V inmax N p [1 + ] + leakage inductance spike N d I cpeak 1.2.P out ηv inmin. δ max I Drms 1.2.P out ηv inmin. δ max *Rectifiers: FORWARD D1: V inmax. N s N d + leakage inductance spike I F(av) I out.δ max FREEWHEELING D2: V inmax. ( + V F ) V inmin. δ max I F(av) I out DEMAGNETIZATION D3: 1 + N d N p V inmax I F(av) I magnpeak 2. δ max 12/18
13 In the "double switch forward", also called asymmetrical half bridge forward, the magnetizing energy stored in the primary inductance is automatically returned to the bulk capacitor by the two demagnetization diodes D 1 and D 2. The two power switches and demagnetisation diodes have to withstand only once the input voltage V in. As for the double switch flyback, the asymmetrical half bridge needs a floating gate drive for the high side switch. * Rectifiers: FORWARD D1: I Drms 1.2.P out ηv inmin. δ max V inmax ( + V F ) V inmin. δ max I F(av) I out.δ max * Power switch: V CEV V inmax FREEWHEELING D2: V inmax ( + V F ) I F(av) I out Figure 10: Half bridge asymmetrical forward converter 13/18
14 III - 2 Symmetrical converters This type of converter always uses an even number of switches. It also better exploits the transformer s magnetic circuit than in asymmetrical converters. So, smaller size and weight can be achieved. The three most common structures used are: - PUSH/PULL - HALF BRIDGE with capacitors - FULL BRIDGE III Push/Pull converter T 1 and T 2 switches (see figure 11) are alternately turned-on during a time t on. The secondary circuit operates at twice the switching frequency. A deadtime t d between the end of conduction of one switch and the turn-on time of the other one is required in order to avoid simultaneous conduction of the two switches. δv in = 2 n Moreover, the snubber network in symmetrical converters must be carefully designed, since they inter-react with one another. Figure 11: Push-Pull converter 14/18
15 * Power switch I Dpeak or I Cpeak P out ηv inmin V CEV 2V inmax + leakage inductance spike * Rectifier ( + V F ) V inmax δ max.v inmin + Voltage spike I F(av) I outmax 2 The switches are easy to drive since they are both referenced to ground, however they must withstand twice the input supply voltage. The inherent flux symmetry problems can be corrected with a current mode PWM control circuit. III Half bridge converter The capacitors in series across the supply fix a mid-point so that switches withstand only once the input voltage V in. However, this topology requires driving a high side switch. When using bipolar switches, transistor s storage time should have tight tolerances to avoid imbalance in operating flux level. This topology can be used for an output power capability up to 500W. As for the push-pull converter, T 1 and T 2 switches are alternately turned on during a time t on. = V in. δ n 15/18
16 Figure 12: Half bridge converter * Power switch: I Cpeak or I Dpeak 2P out ηv inmin V CEV V inmax * Rectifier: out + V F ). V inmax (V + leakage inductance spike δ max.v inmin I F(av) I outmax 2 16/18
17 Deadtimes (t d an figure 12) between two consecutive switch conduction are absolutely mandatory to avoid bridge-leg short circuit. III Full bridge converter Because of the number of components, the full bridge is for high power applications, ranging from 500 up to 2000W. Sometimes, power transformers are paralleled to provide higher output power. = 2V in δ n Switch pairs T 1 and T 3, T 2 and T 4 are alternately driven. Figure 13: Full bridge converter 17/18
18 * Power switch: I Cpeak or I Dpeak P out ηv inmin V CEV V inmax * Rectifier: out + V F ) V inmax (V + leakage inductance spike δ max.v inmin I F (av) I outmax 2 The full bridge provides twice the output power of the half bridge circuit with the same switch ratings. Nevertheless, this topology requires 4 switches and clamping diodes. IV - CONCLUSION Many significant technological changes in power supply design have resulted in lower cost per Watt with improved performance. Today, designers keep going ahead with the state-of-the-art in switching regulator technology in order to reduce size and weight of power packages. Output voltage and load current always depend upon the application. The power supply designs are often tailored to specific applications. No simple procedure exists to select the right topology. This paper provides an overview of the most commonly used topologies and lists the most important features for each topology. Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specification mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics. The ST logo is a trademark of STMicroelectronics 1999 STMicroelectronics - Printed in Italy - All Rights Reserved STMicroelectronics GROUP OF COMPANIES Australia - Brazil - China - Finland - France - Germany - Hong Kong - India - Italy - Japan - Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - U.S.A. 18/18
DRIVE CIRCUITS FOR POWER MOSFETs AND IGBTs
DRIVE CIRCUITS FOR POWER MOSFETs AND IGBTs by B. Maurice, L. Wuidart 1. INTRODUCTION Unlike the bipolar transistor, which is current driven, Power MOSFETs, with their insulated gates, are voltage driven.
Introduction to Power Supplies
Introduction to Power Supplies INTRODUCTION Virtually every piece of electronic equipment e g computers and their peripherals calculators TV and hi-fi equipment and instruments is powered from a DC power
AN ISOLATED GATE DRIVE FOR POWER MOSFETs AND IGBTs
APPLICATION NOTE AN ISOLATED GATE DRIVE FOR POWER MOSFETs AND IGBTs by J.M. Bourgeois ABSTRACT Power MOSFET and IGBT gate drives often face isolation and high voltage constraints. The gate drive described
TDA4605 CONTROL CIRCUIT FOR SWITCH MODE POWER SUPPLIES USING MOS TRANSISTORS
CONTROL CIRCUIT FOR SWITCH MODE POWER SUPPLIES USING MOS TRANSISTORS Fold-Back Characteristic provides Overload Protection for External Diodes Burst Operation under Short-Circuit and no Load Conditions
AN2389 Application note
Application note An MCU-based low cost non-inverting buck-boost converter for battery chargers Introduction As the demand for rechargeable batteries increases, so does the demand for battery chargers.
TN0023 Technical note
Technical note Discontinuous flyback transformer description and design parameters Introduction The following is a general description and basic design procedure for a discontinuous flyback transformer.
Power supplies. EE328 Power Electronics Assoc. Prof. Dr. Mutlu BOZTEPE Ege University, Dept. of E&E
Power supplies EE328 Power Electronics Assoc. Prof. Dr. Mutlu BOZTEPE Ege University, Dept. of E&E EE328 POWER ELECTRONICS Outline of lecture Introduction to power supplies Modelling a power transformer
AN820 APPLICATION NOTE INPUT/OUTPUT PROTECTION FOR AUTOMOTIVE COMPUTER
AN820 APPLICATION NOTE INPUT/OUTPUT PROTECTION FOR AUTOMOTIE COMPUTER INTRODUCTION In cars, the number of functions carried out by electronic components has greatly increased during the last 10 years.
.OPERATING SUPPLY VOLTAGE UP TO 46 V
L298 DUAL FULL-BRIDGE DRIVER.OPERATING SUPPLY VOLTAGE UP TO 46 V TOTAL DC CURRENT UP TO 4 A. LOW SATURATION VOLTAGE OVERTEMPERATURE PROTECTION LOGICAL "0" INPUT VOLTAGE UP TO 1.5 V (HIGH NOISE IMMUNITY)
Switched Mode Power Supplies
CHAPTER 2 Switched Mode Power Supplies 2.1 Using Power Semiconductors in Switched Mode Topologies (including transistor selection guides) 2.2 Output Rectification 2.3 Design Examples 2.4 Magnetics Design
STP80NF55-08 STB80NF55-08 STB80NF55-08-1 N-CHANNEL 55V - 0.0065 Ω - 80A D2PAK/I2PAK/TO-220 STripFET II POWER MOSFET
STP80NF55-08 STB80NF55-08 STB80NF55-08-1 N-CHANNEL 55V - 0.0065 Ω - 80A D2PAK/I2PAK/TO-220 STripFET II POWER MOSFET TYPE V DSS R DS(on) I D STB80NF55-08/-1 STP80NF55-08 55 V 55 V
STGW40NC60V N-CHANNEL 50A - 600V - TO-247 Very Fast PowerMESH IGBT
N-CHANNEL 50A - 600V - TO-247 Very Fast PowerMESH IGBT Table 1: General Features STGW40NC60V 600 V < 2.5 V 50 A HIGH CURRENT CAPABILITY HIGH FREQUENCY OPERATION UP TO 50 KHz LOSSES INCLUDE DIODE RECOVERY
AN438 APPLICATION NOTE SAFETY PRECAUTIONS FOR DEVELOPMENT TOOL TRIAC + MICROCONTROLLER
AN438 APPLICATION NOTE SAFETY PRECAUTIONS FOR DEVELOPMENT TOOL TRIAC + MICROCONTROLLER INTRODUCTION The goal of this paper is to analyse the different ways to configure a micro-controller and a development
The Flyback Converter
The Flyback Converter Lecture notes ECEN4517! Derivation of the flyback converter: a transformer-isolated version of the buck-boost converter! Typical waveforms, and derivation of M(D) = V/! Flyback transformer
Power Electronic Circuits
Power Electronic Circuits Assoc. Prof. Dr. H. İbrahim OKUMUŞ Karadeniz Technical University Engineering Faculty Department of Electrical And Electronics 1 DC to DC CONVERTER (CHOPPER) General Buck converter
SWITCH-MODE POWER SUPPLY CONTROLLER PULSE OUTPUT DC OUTPUT GROUND EXTERNAL FUNCTION SIMULATION ZERO CROSSING INPUT CONTROL EXTERNAL FUNCTION
SWITCH-MODE POWER SUPPLY CONTROLLER. LOW START-UP CURRENT. DIRECT CONTROL OF SWITCHING TRAN- SISTOR. COLLECTOR CURRENT PROPORTIONAL TO BASE-CURRENT INPUT REERSE-GOING LINEAR OERLOAD CHARACTERISTIC CURE
Chapter 4. LLC Resonant Converter
Chapter 4 LLC Resonant Converter 4.1 Introduction In previous chapters, the trends and technical challenges for front end DC/DC converter were discussed. High power density, high efficiency and high power
STP62NS04Z N-CHANNEL CLAMPED 12.5mΩ - 62A TO-220 FULLY PROTECTED MESH OVERLAY MOSFET
N-CHANNEL CLAMPED 12.5mΩ - 62A TO-220 FULLY PROTECTED MESH OVERLAY MOSFET TYPE V DSS R DS(on) I D STP62NS04Z CLAMPED
AN1826 APPLICATION NOTE TRANSIENT PROTECTION SOLUTIONS: Transil diode versus Varistor
AN1826 APPLICATION NOTE TRANSIENT PROTECTION SOLUTIONS: Transil diode versus A. BREMOND / C. KAROUI Since the seventies, electronic modules are more and more present in our life. This is the case for our
Symbol Parameter Value Unit V DS Drain-source Voltage (V GS =0) 50 V V DGR Drain- gate Voltage (R GS =20kΩ) 50 V
BUZ71A N - CHANNEL 50V - 0.1Ω - 13A TO-220 STripFET POWER MOSFET TYPE V DSS R DS(on) I D BUZ71A 50 V < 0.12 Ω 13 A TYPICAL RDS(on) = 0.1 Ω AVALANCHE RUGGED TECHNOLOGY 100% AVALANCHE TESTED HIGH CURRENT
STW20NM50 N-CHANNEL 550V @ Tjmax - 0.20Ω - 20ATO-247 MDmesh MOSFET
N-CHANNEL 550V @ Tjmax - 0.20Ω - 20ATO-247 MDmesh MOSFET TYPE V DSS (@Tjmax) R DS(on) I D STW20NM50 550V < 0.25Ω 20 A TYPICAL R DS (on) = 0.20Ω HIGH dv/dt AND AVALANCHE CAPABILITIES 100% AVALANCHE TESTED
HCF4056B BCD TO 7 SEGMENT DECODER /DRIVER WITH STROBED LATCH FUNCTION
BCD TO 7 SEGMENT DECODER /DRIVER WITH STROBED LATCH FUNCTION QUIESCENT CURRENT SPECIF. UP TO 20V OPERATION OF LIQUID CRYSTALS WITH CMOS CIRCUITS PROVIDES ULTRA LOW POWER DISPLAY. EQUIVALENT AC OUTPUT DRIVE
AN2228 APPLICATION NOTE
AN2228 APPLICATION NOTE STD1LNK60Z-based Cell Phone Battery Charger Design Introduction This application note is a Ringing Choke Converter (RCC)-based, step-by-step cell phone battery charger design procedure.
L4940 series VERY LOW DROP 1.5 A REGULATORS
L4940 series VERY LOW DROP 1.5 A REGULATORS PRECISE 5 V, 8.5 V, 10 V, 12 V OUTPUTS LOW DROPOUT VOLTAGE (500 typ at 1.5A) VERY LOW QUIESCENT CURRENT THERMAL SHUTDOWN SHORT CIRCUIT PROTECTION REVERSE POLARITY
STW34NB20 N-CHANNEL 200V - 0.062 Ω - 34A TO-247 PowerMESH MOSFET
N-CHANNEL 200V - 0.062 Ω - 34A TO-247 PowerMESH MOSFET Table 1. General Features Figure 1. Package Type V DSS R DS(on) I D STW34NB20 200 V < 0.075 Ω 34 A FEATURES SUMMARY TYPICAL R DS(on) = 0.062 Ω EXTREMELY
HCF4081B QUAD 2 INPUT AND GATE
QUAD 2 INPUT AND GATE MEDIUM SPEED OPERATION : t PD = 60ns (Typ.) at 10 QUIESCENT CURRENT SPECIFIED UP TO 20 5, 10 AND 15 PARAMETRIC RATINGS INPUT LEAKAGE CURRENT I I = 100nA (MAX) AT DD = 18 T A = 25
HCF4001B QUAD 2-INPUT NOR GATE
QUAD 2-INPUT NOR GATE PROPAGATION DELAY TIME: t PD = 50ns (TYP.) at V DD = 10V C L = 50pF BUFFERED INPUTS AND OUTPUTS STANDARDIZED SYMMETRICAL OUTPUT CHARACTERISTICS QUIESCENT CURRENT SPECIFIED UP TO 20V
ULN2801A, ULN2802A, ULN2803A, ULN2804A
ULN2801A, ULN2802A, ULN2803A, ULN2804A Eight Darlington array Datasheet production data Features Eight Darlington transistors with common emitters Output current to 500 ma Output voltage to 50 V Integral
L297 STEPPER MOTOR CONTROLLERS
L297 STEPPER MOTOR CONTROLLERS NORMAL/WAVE DRIVE HALF/FULL STEP MODES CLOCKWISE/ANTICLOCKWISE DIRECTION SWITCHMODE LOAD CURRENT REGULA- TION PROGRAMMABLE LOAD CURRENT FEW EXTERNAL COMPONENTS RESET INPUT
IRF740 N-CHANNEL 400V - 0.46Ω - 10A TO-220 PowerMESH II MOSFET
N-CHANNEL 400V - 0.46Ω - 10A TO-220 PowerMESH II MOSFET TYPE V DSS R DS(on) I D IRF740 400 V < 0.55 Ω 10 A TYPICAL R DS (on) = 0.46Ω EXCEPTIONAL dv/dt CAPABILITY 100% AVALANCHE TESTED LOW GATE CHARGE VERY
Symbol Parameter Value Unit V i-o Input-output Differential Voltage 40 V I O Output Current Intenrally Limited Top
LM117/217 LM317 1.2V TO 37V VOLTAGE REGULATOR OUTPUT VOLTAGE RANGE : 1.2 TO 37V OUTPUT CURRENT IN EXCESS OF 1.5A 0.1% LINE AND LOAD REGULATION FLOATING OPERATION FOR HIGH VOLTAGES COMPLETE SERIES OF PROTECTIONS
VNP5N07 "OMNIFET": FULLY AUTOPROTECTED POWER MOSFET
"OMNIFET": FULLY AUTOPROTECTED POWER MOSFET TYPE Vclamp RDS(on) Ilim VNP5N07 70 V 0.2 Ω 5 A LINEAR CURRENT LIMITATION THERMAL SHUT DOWN SHORT CIRCUIT PROTECTION INTEGRATED CLAMP LOW CURRENT DRAWN FROM
ADJUSTABLE VOLTAGE AND CURRENT REGULATOR
L200 ADJUSTABLE VOLTAGE AND CURRENT REGULATOR ADJUSTABLE OUTPUT CURRENT UP TO 2 A (GUARANTEED UP TO Tj = 150 C) ADJUSTABLE OUTPUT VOLTAGE DOWN TO 2.85 V INPUT OVERVOLTAGE PROTECTION (UP TO 60 V, 10 ms)
AN235 Application note
Application note Stepper motor driving By Thomas Hopkins Introduction Dedicated integrated circuits have dramatically simplified stepper motor driving. To apply these ICs, designers need little specific
HCF4070B QUAD EXCLUSIVE OR GATE
QUAD EXCLUSIE OR GATE MEDIUM-SPEED OPERATION t PHL = t PLH = 70ns (Typ.) at CL = 50 pf and DD = 10 QUIESCENT CURRENT SPECIFIED UP TO 20 5, 10 AND 15 PARAMETRIC RATINGS INPUT LEAKAGE CURRENT I I = 100nA
MC34063A MC34063E DC-DC CONVERTER CONTROL CIRCUITS
MC34063A MC34063E DC-DC CONVERTER CONTROL CIRCUITS OUTPUT SWITCH CURRENT IN EXCESS OF 1.5A 2% REFERENCE ACCURACY LOW QUIESCENT CURRENT: 2.5mA (TYP.) OPERATING FROM 3V TO 40V FREQUENCY OPERATION TO 100KHz
LM337. Three-terminal adjustable negative voltage regulators. Features. Description
Three-terminal adjustable negative voltage regulators Datasheet - production data current limit, thermal overload protection and safe area protection. All overload protection circuitry remains fully functional
L6234. Three phase motor driver. Features. Description
Three phase motor driver Features Supply voltage from 7 to 52 V 5 A peak current R DSon 0.3 Ω typ. value at 25 C Cross conduction protection TTL compatible driver Operating frequency up to 150 khz Thermal
STP60NF06FP. N-channel 60V - 0.014Ω - 30A TO-220FP STripFET II Power MOSFET. General features. Description. Internal schematic diagram.
N-channel 60V - 0.014Ω - 30A TO-220FP STripFET II Power MOSFET General features Type V DSS R DS(on) I D STP60NF06FP 60V
Description. Table 1. Device summary
2 A positive voltage regulator IC Description Datasheet - production data Features TO-220 Output current up to 2 A Output voltages of 5; 7.5; 9; 10; 12; 15; 18; 24 V Thermal protection Short circuit protection
Current Ripple Factor of a Buck Converter
Application Note Edwin Wang AN1 April 14 Current Ripple Factor of a Buck Converter Abstract Inductor and capacitor forms a low-pass filter in a buck converter. The corner frequency the C filter is always
STP10NK60Z/FP, STB10NK60Z/-1 STW10NK60Z N-CHANNEL 600V-0.65Ω-10A TO-220/FP/D 2 PAK/I 2 PAK/TO-247 Zener-Protected SuperMESH Power MOSFET
STP10NK60Z/FP, STB10NK60Z/-1 STW10NK60Z N-CHANNEL 600V-0.65Ω-10A TO-220/FP/D 2 PAK/I 2 PAK/TO-247 Zener-Protected SuperMESH Power MOSFET TYPE V DSS R DS(on) I D Pw STP10NK60Z STP10NK60ZFP STB10NK60Z STB10NK60Z-1
DC-DC Converter Basics
Page 1 of 16 Free Downloads / Design Tips / Java Calculators / App. Notes / Tutorials / Newsletter / Discussion / Components Database / Library / Power Links / Software / Technical Articles / On-Line Textbook
LF00AB/C SERIES VERY LOW DROP VOLTAGE REGULATORS WITH INHIBIT
LF00AB/C SERIES ERY LOW DROP OLTAGE REGULATORS WITH INHIBIT ERY LOW DROPOUT OLTAGE (5) ERY LOW QUIESCENT CURRENT (TYP. 50 µa IN OFF MODE, 500µA INON MODE) OUTPUT CURRENT UP TO 500 ma LOGIC-CONTROLLED ELECTRONIC
CLASS-D VERTICAL DEFLECTION AMPLIFIER FOR TV AND MONITOR APPLICATION OUT CFLY + CFLY - BOOT VREG FEEDCAP FREQ. July 2001 1/8
CLASS-D VERTICAL DEFLECTION AMPLIFIER FOR TV AND MONITOR APPLICATION FEATURES PRELIMINARY DATA HIGH EFFICIENCY POWER AMPLIFIER NO HEATSINK SPLIT SUPPLY INTERNAL FLYBACK GENERATOR OUTPUT CURRENT UP TO.5
STP6NK60Z - STP6NK60ZFP STB6NK60Z - STB6NK60Z-1 N-CHANNEL 600V - 1Ω - 6A TO-220/TO-220FP/D 2 PAK/I 2 PAK Zener-Protected SuperMESH Power MOSFET
STP6NK60Z - STP6NK60ZFP STB6NK60Z - STB6NK60Z-1 N-CHANNEL 600V - 1Ω - 6A TO-220/TO-220FP/D 2 PAK/I 2 PAK Zener-Protected SuperMESH Power MOSFET TYPE V DSS R DS(on) I D Pw STP6NK60Z STP6NK60ZFP STB6NK60Z
L78M00 SERIES POSITIVE VOLTAGE REGULATORS. www.tvsat.com.pl
SERIES POSITIVE VOLTAGE REGULATORS OUTPUT CURRENT TO 0.5A OUTPUT VOLTAGES OF 5; 6; 8; 9; 10; 12; 15; 18; 20; 24V THERMAL OVERLOAD PROTECTION SHORT CIRCUIT PROTECTION OUTPUT TRANSISTOR SOA PROTECTION DESCRIPTION
STP60NF06. N-channel 60V - 0.014Ω - 60A TO-220 STripFET II Power MOSFET. General features. Description. Internal schematic diagram.
N-channel 60V - 0.014Ω - 60A TO-220 STripFET II Power MOSFET General features Type V DSS R DS(on) I D STP60NF06 60V
HCF4028B BCD TO DECIMAL DECODER
BCD TO DECIMAL DECODER BCD TO DECIMAL DECODING OR BINARY TO OCTAL DECODING HIGH DECODED OUTPUT DRIVE CAPABILITY "POSITIVE LOGIC" INPUTS AND OUTPUTS: DECODED OUTPUTS GO HIGH ON SELECTION MEDIUM SPEED OPERATION
The leakage inductance of the power transformer
Nondissipative lamping Benefits - onverters Even if small, a transformer s leakage inductance reduces the efficiency of some isolated dc-dc converter topologies However, the technique of lossless voltage
LM833 LOW NOISE DUAL OPERATIONAL AMPLIFIER
LOW NOISE DUAL OPERATIONAL AMPLIFIER LOW VOLTAGE NOISE: 4.5nV/ Hz HIGH GAIN BANDWIDTH PRODUCT: 15MHz HIGH SLEW RATE: 7V/µs LOW DISTORTION:.2% EXCELLENT FREQUENCY STABILITY ESD PROTECTION 2kV DESCRIPTION
Chapter 6: Converter circuits
Chapter 6. Converter Circuits 6.. Circuit manipulations 6.2. A short list of converters 6.3. Transformer isolation 6.4. Converter evaluation and design 6.5. Summary of key points Where do the boost, buck-boost,
Obsolete Product(s) - Obsolete Product(s)
SYNCHRONOUS PROGRAMMABLE 4-BIT BINARY COUNTER WITH ASYNCHRONOUS CLEAR INTERNAL LOOK-AHEAD FOR FAST COUNTING CARRY OUTPUT FOR CASCADING SYNCHRONOUSLY PROGRAMMABLE LOW-POWER TTL COMPATIBILITY STANDARDIZED
FLC21-135A LOW POWER FIRE LIGHTER CIRCUIT. Application Specific Discretes A.S.D.
Application Specific iscretes A.S.. LC21-135A LOW POWER IRE LIGHTER CIRCUIT EATURES EICATE THYRISTOR STRUCTURE OR CAPACITIVE ISCHARGE IGNITION OPERATION HIGH PULSE CURRENT CAPABILITY I RM =90A @ tp=10µs
AN2703 Application note
Application note list for SCRs, TRIACs, AC switches, and DIACS Introduction All datasheet parameters are rated as minimum or maximum values, corresponding to the product parameter distribution. In each
STP6N60FI N - CHANNEL ENHANCEMENT MODE POWER MOS TRANSISTOR
N - CHANNEL ENHANCEMENT MODE POWER MOS TRANSISTOR TYPE VDSS RDS(on) ID STP6N60FI 600 V < 1.2 Ω 3.8 A TYPICAL R DS(on) =1Ω AVALANCHE RUGGED TECHNOLOGY 100% AVALANCHE TESTED REPETITIVE AVALANCHE DATA AT
TL084 TL084A - TL084B
A B GENERAL PURPOSE JFET QUAD OPERATIONAL AMPLIFIERS WIDE COMMONMODE (UP TO V + CC ) AND DIFFERENTIAL VOLTAGE RANGE LOW INPUT BIAS AND OFFSET CURRENT OUTPUT SHORTCIRCUIT PROTECTION HIGH INPUT IMPEDANCE
HCF4010B HEX BUFFER/CONVERTER (NON INVERTING)
HEX BUFFER/CONVERTER (NON INVERTING) PROPAGATION DELAY TIME: t PD = 50ns (Typ.) at V DD = 10V C L = 50pF HIGH TO LOW LEVEL LOGIC CONVERSION MULTIPLEXER: 1 TO 6 OR 6 TO 1 HIGH "SINK" AND "SOURCE" CURRENT
AN2435 Application note
AN435 Application note TM sepic converter in PFC pre-regulator Introduction For the PFC (power factor correction) converter, sepic topology can be used when an output voltage lower than the maximum input
Transformerless UPS systems and the 9900 By: John Steele, EIT Engineering Manager
Transformerless UPS systems and the 9900 By: John Steele, EIT Engineering Manager Introduction There is a growing trend in the UPS industry to create a highly efficient, more lightweight and smaller UPS
ULN2001, ULN2002 ULN2003, ULN2004
ULN2001, ULN2002 ULN2003, ULN2004 Seven Darlington array Datasheet production data Features Seven Darlingtons per package Output current 500 ma per driver (600 ma peak) Output voltage 50 V Integrated suppression
BUX48/48A BUV48A/V48AFI
BUX48/48A BU48A/48AFI HIGH POWER NPN SILICON TRANSISTORS STMicroelectronics PREFERRED SALESTYPES NPN TRANSISTOR HIGH OLTAGE CAPABILITY HIGH CURRENT CAPABILITY FAST SWITCHING SPEED APPLICATIONS SWITCH MODE
Symbol Parameter Value Unit IAR Avalanche Current, Repetitive or Not-Repetitive
BUZ11 N - CHANNEL 50V - 0.03Ω - 30A -TO-220 STripFET POWER MOSFET TYPE V DSS R DS(on) I D BUZ11 50 V < 0.04 Ω 30 A TYPICAL R DS(on) = 0.03 Ω AVALANCHE RUGGED TECHNOLOGY 100% AVALANCHE TESTED HIGH CURRENT
98% Efficient Single-Stage AC/DC Converter Topologies
16 POWER CONVERTERS www.teslaco.com 98% Efficient Single-Stage AC/DC Converter Topologies A new Hybrid Switching Method is introduced in this article which for the first time makes possible AC/DC power
Designers Series XII. Switching Power Magazine. Copyright 2005
Designers Series XII n this issue, and previous issues of SPM, we cover the latest technologies in exotic high-density power. Most power supplies in the commercial world, however, are built with the bread-and-butter
STN3NF06L. N-channel 60 V, 0.07 Ω, 4 A, SOT-223 STripFET II Power MOSFET. Features. Application. Description
N-channel 60 V, 0.07 Ω, 4 A, SOT-223 STripFET II Power MOSFET Features Type V DSS (@Tjmax) Exceptional dv/dt capability Avalanche rugged technology 100% avalanche tested R DS(on) max STN3NF06L 60 V < 0.1
TDA2003 10W CAR RADIO AUDIO AMPLIFIER
TDA2003 10W CAR RADIO AUDIO AMPLIFIER DESCRIPTION The TDA 2003 has improved performance with the same pin configuration as the TDA 2002. The additional features of TDA 2002, very low number of external
STCS1. 1.5 A max constant current LED driver. Features. Applications. Description
1.5 A max constant current LED driver Features Up to 40 V input voltage Less than 0.5 V voltage overhead Up to 1.5 A output current PWM dimming pin Shutdown pin LED disconnection diagnostic DFN8 (3x3 mm)
SG2525A SG3525A REGULATING PULSE WIDTH MODULATORS
SG2525A SG3525A REGULATING PULSE WIDTH MODULATORS 8 TO 35 V OPERATION 5.1 V REFERENCE TRIMMED TO ± 1 % 100 Hz TO 500 KHz OSCILLATOR RANGE SEPARATE OSCILLATOR SYNC TERMINAL ADJUSTABLE DEADTIME CONTROL INTERNAL
STTH1R04-Y. Automotive ultrafast recovery diode. Features. Description
Automotive ultrafast recovery diode Features Datasheet - production data K SMA STTH1R4AY Table 1. Device summary Symbol Value I F(AV) 1 A V RRM 4 V T j (max) 175 C V F (typ) t rr (typ) A K.9 V 14 ns A
Table 1. Absolute maximum ratings (T amb = 25 C) Symbol Parameter Value Unit. ISO 10605 - C = 330 pf, R = 330 Ω : Contact discharge Air discharge
Automotive dual-line Transil, transient voltage suppressor (TVS) for CAN bus Datasheet - production data Complies with the following standards ISO 10605 - C = 150 pf, R = 330 Ω : 30 kv (air discharge)
ESDLIN1524BJ. Transil, transient voltage surge suppressor diode for ESD protection. Features. Description SOD323
Transil, transient voltage surge suppressor diode for ESD protection Datasheet production data Features Max peak pulse power 160 W (8/0 µs) Asymmetrical bidirectional device Stand-off voltage: 15 and 4
TDA2822 DUAL POWER AMPLIFIER SUPPLY VOLTAGE DOWN TO 3 V LOW CROSSOVER DISTORSION LOW QUIESCENT CURRENT BRIDGE OR STEREO CONFIGURATION
TDA2822 DUAL POER AMPLIFIER SUPPLY VOLTAGE DON TO 3 V. LO CROSSOVER DISTORSION LO QUIESCENT CURRENT BRIDGE OR STEREO CONFIGURATION DESCRIPTION The TDA2822 is a monolithic integrated circuit in 12+2+2 powerdip,
L293B L293E PUSH-PULL FOUR CHANNEL DRIVERS. OUTPUT CURRENT 1A PER CHANNEL PEAK OUTPUT CURRENT 2A PER CHANNEL (non repetitive) INHIBIT FACILITY
L293B L293E PUSH-PULL FOUR CHANNEL DRIVERS OUTPUT CURRENT 1A PER CHANNEL PEAK OUTPUT CURRENT 2A PER CHANNEL (non repetitive) INHIBIT FACILITY. HIGH NOISE IMMUNITY SEPARATE LOGIC SUPPLY OVERTEMPERATURE
STCS1A. 1.5 A max constant current LED driver. Features. Applications. Description
1.5 A max constant current LED driver Features Up to 40 V input voltage Less than 0.5 V voltage overhead Up to 1.5 A output current PWM dimming pin Shutdown pin LED disconnection diagnostic DFN8 (3 x 3
TL074 TL074A - TL074B
A B LOW NOISE JFET QUAD OPERATIONAL AMPLIFIERS WIDE COMMONMODE (UP TO V + CC ) AND DIFFERENTIAL VOLTAGE RANGE LOW INPUT BIAS AND OFFSET CURRENT LOW NOISE e n = 15nV/ Hz (typ) OUTPUT SHORTCIRCUIT PROTECTION
The full wave rectifier consists of two diodes and a resister as shown in Figure
The Full-Wave Rectifier The full wave rectifier consists of two diodes and a resister as shown in Figure The transformer has a centre-tapped secondary winding. This secondary winding has a lead attached
LM134-LM234-LM334. Three terminal adjustable current sources. Features. Description
Three terminal adjustable current sources Features Operates from 1V to 40V 0.02%/V current regulation Programmable from 1µA to 10mA ±3% initial accuracy Description The LM134/LM234/LM334 are 3-terminal
STP55NF06L STB55NF06L - STB55NF06L-1
General features STP55NF06L STB55NF06L - STB55NF06L-1 N-channel 60V - 0.014Ω - 55A TO-220/D 2 PAK/I 2 PAK STripFET II Power MOSFET Type V DSS R DS(on) I D STP55NF06L 60V
Description. Table 1. Device summary. Order codes. TO-220 (single gauge) TO-220 (double gauge) D²PAK (tape and reel) TO-220FP
1.2 V to 37 V adjustable voltage regulators Description Datasheet - production data TO-220 TO-220FP The LM217, LM317 are monolithic integrated circuits in TO-220, TO-220FP and D²PAK packages intended for
TDA2040. 20W Hi-Fi AUDIO POWER AMPLIFIER
20W Hi-Fi AUDIO POWER AMPLIFIER DESCRIPTION The TDA2040 is a monolithic integrated circuit in Pentawatt package, intended for use as an audio class AB amplifier. Typically it provides 22W output power
DDSL01. Secondary protection for DSL lines. Features. Description
Secondary protection for DSL lines Features Stand off voltage: 30 V Surge capability: I pp = 30 A 8/20 µs Low capacitance device: 4.5 pf at 2 V RoHS package Low leakage current: 0.5 µa at 25 C 3 2 Description
IRFP450. N - CHANNEL 500V - 0.33Ω - 14A - TO-247 PowerMESH MOSFET
IRFP450 N - CHANNEL 500V - 0.33Ω - 14A - TO-247 PowerMESH MOSFET TYPE V DSS R DS(on) I D IRFP450 500 V < 0.4 Ω 14 A TYPICAL R DS(on) = 0.33 Ω EXTREMELY HIGH dv/dt CAPABILITY 100% AVALANCHE TESTED VERY
Planar versus conventional transformer
Planar versus conventional transformer Majid Dadafshar, Principal Engineer Gerard Healy, Field Application Engineer Pulse, a Technitrol Company Power Division Usually the first step on any power supply
DC/DC power modules basics
DC/DC power modules basics Design Note 024 Ericsson Power Modules General Abstract This design note covers basic considerations for the use of on-board switch mode DC/DC power modules, also commonly known
AN100. The Elusive Tapped Output Inductor. By Colonel Wm. T. McLyman
N1 Page 1 of 8 N1 he Elusive apped Output Inductor y Colonel Wm.. McLyman Designers of forward voltagefed dc/dc converters are always facing the possibility of transformer core saturation and the resultant
Power supply output voltages are dropping with each
DESIGNER S SERIES Second-Stage LC Filter Design First Inductor by Dr. Ray Ridley First Capacitor Power supply output voltages are dropping with each new generation of Integrated Circuits (ICs). Anticipated
Drive circuit basics + V. τ e. Industrial Circuits Application Note. Winding resistance and inductance
ndustrial Circuits Application Note Drive circuit basics For a given size of a stepper motor, a limited space is available for the windings. n the process of optimizing a stepper motor drive system, an
L78MxxAB L78MxxAC. Precision 500 ma regulators. Features. Description
L78MxxAB L78MxxAC Precision 500 ma regulators Features Output current to 0.5 A Output voltages of 5; 6; 8; 9; 10; 12; 15; 18; 24 V Thermal overload protection Short circuit protection Output transition
AN2680 Application note
Application note Fan speed controller based on STDS75 or STLM75 digital temperature sensor and ST72651AR6 MCU Introduction This application note describes the method of defining the system for regulating
ULRASONIC GENERATOR POWER CIRCUITRY. Will it fit on PC board
ULRASONIC GENERATOR POWER CIRCUITRY Will it fit on PC board MAJOR COMPONENTS HIGH POWER FACTOR RECTIFIER RECTIFIES POWER LINE RAIL SUPPLY SETS VOLTAGE AMPLITUDE INVERTER INVERTS RAIL VOLTAGE FILTER FILTERS
IRF830. N - CHANNEL 500V - 1.35Ω - 4.5A - TO-220 PowerMESH MOSFET
IRF830 N - CHANNEL 500V - 1.35Ω - 4.5A - TO-220 PowerMESH MOSFET TYPE V DSS R DS(on) I D IRF830 500 V < 1.5 Ω 4.5 A TYPICAL R DS(on) = 1.35 Ω EXTREMELY HIGH dv/dt CAPABILITY 100% AVALANCHE TESTED VERY
Switch Mode Power Supply Topologies
Switch Mode Power Supply Topologies The Buck Converter 2008 Microchip Technology Incorporated. All Rights Reserved. WebSeminar Title Slide 1 Welcome to this Web seminar on Switch Mode Power Supply Topologies.
TDA2004R. 10 + 10 W stereo amplifier for car radio. Features. Description
10 + 10 W stereo amplifier for car radio Features Low distortion Low noise Protection against: Output AC short circuit to ground Overrating chip temperature Load dump voltage surge Fortuitous open ground
BD241A BD241C. NPN power transistors. Features. Applications. Description. NPN transistors. Audio, general purpose switching and amplifier transistors
BD241A BD241C NPN power transistors Features. NPN transistors Applications Audio, general purpose switching and amplifier transistors Description The devices are manufactured in Planar technology with
5A 3A. Symbol Parameter Value Unit
STP5NA50 STP5NA50FI N - CHANNEL ENHANCEMENT MODE FAST POWER MOS TRANSISTOR TYPE VDSS RDS(on) ID STP5NA50 STP5NA50FI 500 V 500 V
Two-Switch Forward Converter: Operation, FOM, and MOSFET Selection Guide
VISHAY SILICONIX www.vishay.com MOSFETs by Philip Zuk and Sanjay Havanur The two-switch forward converter is a widely used topology and considered to be one of the most reliable converters ever. Its benefits
STTH2R06. High efficiency ultrafast diode. Features. Description
STTH2R6 High efficiency ultrafast diode Features Very low conduction losses Negligible switching losses Low forward and reverse recovery times High junction temperature Description A K The STTH2R6 uses
Design of an Auxiliary Power Distribution Network for an Electric Vehicle
Design of an Auxiliary Power Distribution Network for an Electric Vehicle William Chen, Simon Round and Richard Duke Department of Electrical & Computer Engineering University of Canterbury, Christchurch,
