CYCLOCONVERTERS. Fig.1 Block diagram of a cycloconverter
|
|
|
- Lucas Hart
- 9 years ago
- Views:
Transcription
1 CYCLOCONVERTERS Burak Ozpineci, Leon M. Tolbert Department of Electrical and Computer Engineering University of Tennessee-Knoxville Knoxville, TN In industrial applications, two forms of electrical energy are used: direct current (dc) and alternating current (ac). Usually constant voltage constant frequency single-phase or three-phase ac is readily available. However, for different applications, different forms, magnitudes and/or frequencies are required. There are four different conversions between dc and ac power sources. These conversions are done by circuits called power converters. The converters are classified as: 1-rectifiers: from single-phase or three-phase ac to variable voltage dc 2-choppers: from dc to variable voltage dc 3-inverters: from dc to variable magnitude and variable frequency, single-phase or threephase ac 4-cycloconverters: from single-phase or three-phase ac to variable magnitude and variable frequency, single-phase or three-phase ac The first three classes are explained in other articles. This article explains what cycloconverters are, their types, how they operate and their applications. Traditionally, ac-ac conversion using semiconductor switches is done in two different ways: 1- in two stages (ac-dc and then dc-ac) as in dc link converters or 2- in one stage (ac-ac) cycloconverters (Fig. 1). Cycloconverters are used in high power applications driving induction and synchronous motors. They are usually phase-controlled and they traditionally use thyristors due to their ease of phase commutation. Fig.1 Block diagram of a cycloconverter
2 There are other newer forms of cycloconversion such as ac-ac matrix converters and high frequency ac-ac (hfac-ac) converters and these use self-controlled switches. These converters, however, are not popular yet. Some applications of cycloconverters are: Cement mill drives Ship propulsion drives Rolling mill drives Scherbius drives Ore grinding mills Mine winders 1.Operation Principles: The following sections will describe the operation principles of the cycloconverter starting from the simplest one, single-phase to single-phase (1φ-1φ) cycloconverter Single-phase to Single-phase (1φ-1φ) Cycloconverter: To understand the operation principles of cycloconverters, the single-phase to single-phase cycloconverter (Fig. 2) should be studied first. This converter consists of back-to-back connection of two full-wave rectifier circuits. Fig 3 shows the operating waveforms for this converter with a resistive load. The input voltage, v s is an ac voltage at a frequency, f i as shown in Fig. 3a. For easy understanding assume that all the thyristors are fired at α=0 firing angle, i.e. thyristors act like diodes. Note that the firing angles are named as α P for the positive converter and α N for the negative converter. Consider the operation of the cycloconverter to get one-fourth of the input frequency at the output. For the first two cycles of v s, the positive converter operates supplying current to the load. It rectifies the input voltage; therefore, the load sees 4 positive half cycles as seen in Fig. 3b. In the next two cycles, the negative converter operates supplying current to the load in the reverse direction. The current waveforms are not shown in the figures because the resistive load
3 current will have the same waveform as the voltage but only scaled by the resistance. Note that when one of the converters operates the other one is disabled, so that there is no current circulating between the two rectifiers. a a b b Fig. 2 Single-phase to single-phase cycloconverter
4 Fig. 3 Single-phase to single-phase cycloconverter waveforms a) input voltage b) output voltage for zero firing angle c) output voltage with firing angle π/3 rad. d) output voltage with varying firing angle The frequency of the output voltage, v o in Fig. 3b is 4 times less than that of v s, the input voltage, i.e. f o /f i =1/4. Thus, this is a step-down cycloconverter. On the other hand, cycloconverters that have f o /f i >1 frequency relation are called step-up cycloconverters. Note that step-down cycloconverters are more widely used than the step-up ones. The frequency of v o can be changed by varying the number of cycles the positive and the negative converters work. It can only change as integer multiples of f i in 1φ-1φ cycloconverters. With the above operation, the 1φ-1φ cycloconverter can only supply a certain voltage at a certain firing angle α. The dc output of each rectifier is: 2 2 Vd = Vcosα (1) π where V is the input rms voltage. The dc value per half cycle is shown as dotted in Fig. 3d. Then the peak of the fundamental output voltage is 42 2 vo () t = V cosα 1 π π (2) Equation 2 implies that the fundamental output voltage depends on α. For α=0, V = V = V where do do Vdo = 42 2 V π π. If α is increased to π/3 as in Fig. 3d, then V 0.5 o = V 1 do. Thus varying α, the fundamental output voltage can be controlled. Constant α operation gives a crude output waveform with rich harmonic content. The dotted lines in Fig. 3b and c show a square wave. If the square wave can be modified to look more like a sine wave, the harmonics would be reduced. For this reason α is modulated as shown in Fig. 3d. Now, the six-stepped dotted line is more like a sinewave with fewer harmonics. The more pulses there are with different α's, the less are the harmonics.
5 1.2. Three-Phase to Single-Phase (3φ-1φ) Cycloconverter: There are two kinds of three-phase to single-phase (3φ-1φ) cycloconverters: 3φ-1φ half-wave cycloconverter (Fig. 4) and 3φ-1φ bridge cycloconverter (Fig. 5). Like the 1φ-1φ case, the 3φ-1φ cycloconverter applies rectified voltage to the load. Both positive and negative converters can generate voltages at either polarity, but the positive converter can only supply positive current and the negative converter can only supply negative current. Thus, the cycloconverter can operate in four quadrants: (+v, +i) and (-v, -i) rectification modes and (+v, -i) and (-v, +i) inversion modes. The modulation of the output voltage and the fundamental output voltage are shown in Fig. 6. Note that α is sinusoidally modulated over the cycle to generate a harmonically optimum output voltage. Fig. 4 3φ-1φ half-wave cycloconverter Fig. 5 3φ-1φ bridge cycloconverter
6 Fig. 6 3φ-1φ half-wave cycloconverter waveforms a) + converter output voltage b) cosine timing waves c) converter output voltage The polarity of the current determines if the positive or negative converter should be supplying power to the load. Conventionally, the firing angle for the positive converter is named α P, and that of the negative converter is named α N. When the polarity of the current changes, the converter previously supplying the current is disabled and the other one is enabled. The load always requires the fundamental voltage to be continuous. Therefore, during the current polarity reversal, the average voltage supplied by both of the converters should be equal. Otherwise, switching from one converter to the other one would cause an undesirable voltage jump. To prevent this problem, the converters are forced to produce the same average voltage at all times. Thus, the following condition for the firing angles should be met. α + α = π (3) P N The fundamental output voltage in Fig. 6 can be given as: v () t = 2V sinω t (4) o1 o o where V o is the rms value of the fundamental voltage At a time t o the output fundamental voltage is v ( ) 2 sin o t 1 o = Vo ωoto (5) The positive converter can supply this voltage if α P satisfies the following condition. v ( t ) = 2V sinω t = V cosα (6) o1 o o o o do P
7 p π where Vdo = 2Vo sin (p=3 for half wave converter and 6 for bridge converter) π p From the α condition (3) vo = V cos sin 1 do αp = Vdo αn (7) The firing angles at any instant can be found from (6) and (7). The operation of the 3φ-1φ bridge cycloconverter is similar to the above 3φ-1φ half-wave cycloconverter. Note that the pulse number for this case is Three-Phase to Three-Phase (3φ-3φ) Cycloconverter: If the outputs of 3 3φ-1φ converters of the same kind are connected in wye or delta and if the output voltages are 2π/3 radians phase shifted from each other, the resulting converter is a threephase to three-phase (3φ-3φ) cycloconverter. The resulting cycloconverters are shown in Figs. 7 and 8 with wye connections. If the three converters connected are half-wave converters, then the new converter is called a 3φ-3φ half-wave cycloconverter. If instead, bridge converters are used, then the result is a 3φ-3φ bridge cycloconverter. 3φ-3φ half-wave cycloconverter is also called a 3-pulse cycloconverter or an 18-thyristor cycloconverter. On the other hand, the 3φ-3φ bridge cycloconverter is also called a 6-pulse cycloconverter or a 36-thyristor cycloconverter. The operation of each phase is explained in the previous section. Fig. 7 3φ-3φ half-wave cycloconverter
8 Fig. 8 3φ-3φ bridge cycloconverter The three-phase cycloconverters are mainly used in ac machine drive systems running threephase synchronous and induction machines. They are more advantageous when used with a synchronous machine due to their output power factor characteristics. A cycloconverter can supply lagging, leading, or unity power factor loads while its input is always lagging. A synchronous machine can draw any power factor current from the converter. This characteristic operation matches the cycloconverter to the synchronous machine. On the other hand, induction machines can only draw lagging current, so the cycloconverter does not have an edge compared to the other converters in this aspect for running an induction machine. However, cycloconverters are used in Scherbius drives for speed control purposes driving wound rotor induction motors.
9 Cycloconverters produce harmonic rich output voltages, which will be discussed in the following sections. When cycloconverters are used to run an ac machine, the leakage inductance of the machine filters most of the higher frequency harmonics and reduces the magnitudes of the lower order harmonics. 2. Blocked Mode and Circulating Current Mode: The operation of the cycloconverters is explained above in ideal terms. When the load current is positive, the positive converter supplies the required voltage and the negative converter is disabled. On the other hand, when the load current is negative, then the negative converter supplies the required voltage and the positive converter is blocked. This operation is called the blocked mode operation, and the cycloconverters using this approach are called blocking mode cycloconverters. However, if by any chance both of the converters are enabled, then the supply is short-circuited. To avoid this short circuit, an intergroup reactor (IGR) can be connected between the converters as shown in Fig. 9. Instead of blocking the converters during current reversal, if they are both enabled, then a circulating current is produced. This current is called the circulating current. It is unidirectional because the thyristors allow the current to flow in only one direction. Some cycloconverters allow this circulating current at all times. These are called circulating current cycloconverters. Fig. 9 Circulating current and IGR
10 2.1 Blocking Mode Cycloconverters: The operation of these cycloconverters was explained briefly before. They do not let circulating current flow, and therefore they do not need a bulky IGR. When the current goes to zero, both positive and negative converters are blocked. The converters stay off for a short delay time to assure that the load current ceases. Then, depending on the polarity, one of the converters is enabled. With each zero crossing of the current, the converter, which was disabled before the zero crossing, is enabled. A toggle flip-flop, which toggles when the current goes to zero, can be used for this purpose. The operation waveforms for a three-pulse blocking mode cycloconverter are given in Fig. 10. The blocking mode operation has some advantages and disadvantages over the circulating mode operation. During the delay time, the current stays at zero distorting the voltage and current waveforms. This distortion means complex harmonics patterns compared to the circulating mode cycloconverters. In addition to this, the current reversal problem brings more control complexity. However, no bulky IGRs are used, so the size and cost is less than that of the circulating current case. Another advantage is that only one converter is in conduction at all times rather than two. This means less losses and higher efficiency. 2.2 Circulating Current Cycloconverters: Fig. 10 Blocking mode operation waveforms a) + converter output voltage b) converter output voltage c) load voltage In this case, both of the converters operate at all times producing the same fundamental output voltage. The firing angles of the converters satisfy the firing angle condition (Eq. 3), thus when
11 one converter is in rectification mode the other one is in inversion mode and vice versa. If both of the converters are producing pure sine waves, then there would not be any circulating current because the instantaneous potential difference between the outputs of the converters would be zero. In reality, an IGR is connected between the outputs of two phase controlled converters (in either rectification or inversion mode). The voltage waveform across the IGR can be seen in Fig. 11d. This is the difference of the instantaneous output voltages produced by the two converters. Note that it is zero when both of the converters produce the same instantaneous voltage. The center tap voltage of IGR is the voltage applied to the load and it is the mean of the voltages applied to the ends of IGR, thus the load voltage ripple is reduced. Fig. 11 Circulating mode operation waveforms a) + converter output voltage b) converter output voltage c) load voltage d) IGR voltage The circulating current cycloconverter applies a smoother load voltage with less harmonics compared to the blocking mode case. Moreover, the control is simple because there is no current reversal problem. However, the bulky IGR is a big disadvantage for this converter. In addition to this, the number of devices conducting at any time is twice that of the blocking mode converter. Due to these disadvantages, this cycloconverter is not attractive. The blocked mode cycloconverter converter and the circulating current cycloconverter can be combined to give a hybrid system, which has the advantages of both. The resulting cycloconverter looks like a circulating mode cycloconverter circuit, but depending on the
12 polarity of the output current only one converter is enabled and the other one is disabled as with the blocking mode cycloconverters. When the load current decreases below a threshold, both of the converters are enabled. Thus, the current has a smooth reversal. When the current increases above a threshold in the other direction, the outgoing converter is disabled. This hybrid cycloconverter operates in the blocking mode most of the time so a smaller IGR can be used. The efficiency is slightly higher than that of the circulating current cycloconverter but much less than the blocking mode cycloconverter. Moreover, the distortion caused by the blocking mode operation disappears due to the circulating current operation around zero current. Moreover, the control of the converter is still less complex than that of the blocking mode cycloconverter. 3. Output and Input Harmonics: The cycloconverter output voltage waveforms have complex harmonics. Higher order harmonics are usually filtered by the machine inductance, therefore the machine current has less harmonics. The remaining harmonics cause harmonic losses and torque pulsations. Note that in a cycloconverter, unlike other converters, there are no inductors or capacitors, i.e. no storage devices. For this reason, the instantaneous input power and the output power are equal. There are several factors effecting the harmonic content of the waveforms. Blocking mode operation produces more complex harmonics than circulating mode of operation due to the zero current distortion. In addition to this, the pulse number effects the harmonic content. A greater number of pulses has less harmonic content. Therefore, a 6-pulse (bridge) cycloconverter produces less harmonics than a 3-pulse (half-wave) cycloconverter. Moreover, if the output frequency gets closer to the input frequency, the harmonics increase. Finally, low power factor and discontinuous conduction, both contribute to harmonics. For a typical p-pulse converter, the order of the input harmonics is "pn+1" and that of the output harmonics is "pn", where p is the pulse number and n is an integer. Thus for a 3-pulse converter the input harmonics are at frequencies 2f i, 4f i for n=1, 5f i, 7f i for n=2, and so on. The output harmonics, on the other hand, are at frequencies 3f i, 6f i,
13 The firing angle, α, in cycloconverter operation is sinusoidally modulated. The modulation frequency is the same as the output frequency and sideband harmonics are induced at the output. Therefore, the output waveform is expected to have harmonics at frequencies related to both the input and output frequencies. For blocking mode operation, the output harmonics are found at "pnf i +Nf o ", where N is an integer and pn+n=odd condition is satisfied. Then the output harmonics for a 3-pulse cycloconverter in blocking mode will be found at frequencies n=1 3f i, 3f i +2f o, 3f i +4f o, 3f i +6f o, 3f i +8f o, 3f i +10f o n=2 6f i, 6f i +1f o, 6f i +3f o, 6f i +5f o, 6f i +7f o, 6f i +9f o n=3 9f i, 9f i +2f o, 9f i +4f o, 9f i +6f o, 9f i +8f o, 9f i +10f o, n=4, 5, Some of the above harmonics might coincide to frequencies below f i. These are called subharmonics. They are highly unwanted harmonics because the machine inductance cannot filter these. For the circulating mode operation, the harmonics are at the same frequencies as the blocking mode, but N is limited to (n+1). Thus, the output harmonics for a 3-pulse cycloconverter in circulating mode will be found at frequencies n=1 3f i, 3f i +2f o, 3f i +4f o n=2 6f i +1f o, 6f i +3f o, 6f i +5f o, 6f i +7f o n=3 9f i, 9f i +2f o, 9f i +4f o, 9f i +6f o, 9f i +8f o, 9f i +10f o n=4, 5, With N limited in the circulating mode, there are fewer subharmonics expected. According to calculations done in [1], subharmonics in this mode exist for f o /f i >0.6. For the blocking mode, [1] states that the subharmonics exist for f o /f i >0.2. The output voltage of a cycloconverter has many complex harmonics, but the output current is smoother due to heavy machine filtering. The input voltages of a cycloconverter are sinusoidal voltages. As stated before the instantaneous output and input powers of a cycloconverter are
14 balanced because it does not have any storage devices. To maintain this balance on the input side with sinusoidal voltages, the input current is expected to have complex harmonic patterns. Thus as expected, the input current harmonics are at frequencies "(pn+1)f i +Mf o " where M is an integer and (pn+1)+m=odd condition is satisfied. Thus, a 3-pulse cycloconverter has input current harmonics at the following frequencies: n=0 f i, f i +6f o, f i +12f o, n=1 2f i +3f o, 2f i +9f o, 2f i +15f o 4f i +3f o, 4f i +9f o, 4f i +15f o, n=2, 3, 4. Newer Types of Cycloconverters: 4.1 Matrix Converter: The matrix converter is a fairly new converter topology, which was first proposed in the beginning of the 1980s. A matrix converter consists of a matrix of 9 switches connecting the three input phases to the three output phases directly as shown in Fig. 12. Any input phase can be connected to any output phase at any time depending on the control. However, no two switches from the same phase should be on at the same time, otherwise this will cause a short circuit of the input phases. These converters are usually controlled by PWM to produce three-phase variable voltages at variable frequency. Bidirectional AC Switch v A S Aa a S Ab S Ac i a v B S Ba S Bb S Bc b v C S Ca S Cb S Cc Fig. 12 Matrix converter c
15 This direct frequency changer is not commonly used because of the high device count, i.e. 18 switches compared to 12 of a dc link rectifier-inverter system. However, the devices used are smaller because of their shorter ON time compared to the latter. 4.2 Single-Phase to Three-Phase (1φ-3φ) Cycloconverters: Recently, with the decrease in the size and the price of power electronics switches, single-phase to three-phase cycloconverters (1φ-3φ) started drawing more research interest. Usually, an H- bridge inverter produces a high frequency single-phase voltage waveform, which is fed to the cycloconverter either through a high frequency transformer or not. If a transformer is used, it isolates the inverter from the cycloconverter. In addition to this, additional taps from the transformer can be used to power other converters producing a high frequency ac link. The single-phase high frequency ac (hfac) voltage can be either sinusoidal or trapezoidal. There might be zero voltage intervals for control purposes or zero voltage commutation. Fig. 13 shows the circuit diagram of a typical hfac link converter. These converters are not commercially available yet. They are in the research state. Among several kinds, only two of them will be addressed here: Integral Pulse Modulated (1φ-3φ) Cycloconverters [4]: The input to these cycloconverters is single-phase high frequency sinusoidal or square waveforms with or without zero voltage gaps. Every half-cycle of the input signal, the control for each phase decides if it needs a positive pulse or a negative pulse using integral pulse modulation. For integral pulse modulation, the command signal and the output phase voltage are integrated and the latter result is subtracted from the former. For a positive difference, a negative pulse is required, and vice versa for the negative difference. For the positive (negative) input half-cycle, if a positive pulse is required, the upper (lower) switch is turned on; otherwise, the lower (upper) switch is turned on. Therefore, the three-phase output voltage consists of positive and negative half-cycle pulses of the input voltage. Note that this converter can only work at output frequencies which are multiples of the input frequency.
16 Bidirectional AC Switch + V d = + V 1 1:n + V 2 S 1 a S 3 b S 5 c i a S 2 S 4 S 6 High frequency inverter High frequency transformer - Cycloconverter Fig. 13 High frequency ac link converter (1φ hf inverter + (1φ-3φ) Cycloconverter) Phase-Controlled (1φ-3φ) Cycloconverter [5]: This cycloconverter converts the single-phase high frequency sinusoidal or square wave voltage into three-phase voltages using the previously explained phase control principles. The voltage command is compared to a sawtooth waveform to find the firing instant of the switches. Depending on the polarity of the current and the input voltage, the next switch to be turned on is determined. Compared to the previous one, this converter has more complex control but it can work at any frequency. 5. Summary: Cycloconverters are widely used in industry for ac-to-ac conversion. With recent device advances, newer forms of cycloconversion are being developed. These newer forms are drawing more research interest. In this article, the most commonly known cycloconverter schemes are introduced, and their operation principles are discussed. For more detailed information, the following references can be used.
17 References: 1- B. R. Pelly, Thyristor Phase-Controlled Converters and Cycloconverters, Wiley, New York, C. Lander, Power Electronics, Second Edition, McGraw Hill, England, B. K. Bose, Power Electronics and Ac Drives, Prentice-Hall, New Jersey, H. Li, B.Ozpineci and B.K.Bose, A Soft-Switched High Frequency Non-Resonant Link Integral Pulse Modulated DC-DC Converter for AC Motor Drive, Conference Proceedings of IEEE-IECON, Aachen/Germany, 1998, vol. 2, pp B. Ozpineci, B.K. Bose, A Soft-Switched Performance Enhanced High Frequency Non- Resonant Link Phase-Controlled Converter for AC Motor Drive, Conference Proceedings of IEEE-IECON, Aachen/Germany, 1998, vol. 2, pp
Chapter 4 AC to AC Converters ( AC Controllers and Frequency Converters )
Chapter 4 AC to AC Converters ( AC Controllers and Frequency Converters ) Classification of AC to AC converters Same frequency variable magnitude AC power AC controllers AC power Frequency converters (Cycloconverters)
The full wave rectifier consists of two diodes and a resister as shown in Figure
The Full-Wave Rectifier The full wave rectifier consists of two diodes and a resister as shown in Figure The transformer has a centre-tapped secondary winding. This secondary winding has a lead attached
FREQUENCY CONTROLLED AC MOTOR DRIVE
FREQUENCY CONTROLLED AC MOTOR DRIVE 1.0 Features of Standard AC Motors The squirrel cage induction motor is the electrical motor motor type most widely used in industry. This leading position results mainly
98% Efficient Single-Stage AC/DC Converter Topologies
16 POWER CONVERTERS www.teslaco.com 98% Efficient Single-Stage AC/DC Converter Topologies A new Hybrid Switching Method is introduced in this article which for the first time makes possible AC/DC power
Control of a Three Phase Induction Motor using Single Phase Supply
Control of a Three Phase Induction Motor using Single Phase Supply G. R. Sreehitha #1, A. Krishna Teja *2, Kondenti. P. Prasad Rao #3 Department of Electrical & Electronics Engineering, K L University,
Precision Diode Rectifiers
by Kenneth A. Kuhn March 21, 2013 Precision half-wave rectifiers An operational amplifier can be used to linearize a non-linear function such as the transfer function of a semiconductor diode. The classic
LABORATORY 10 TIME AVERAGES, RMS VALUES AND THE BRIDGE RECTIFIER. Bridge Rectifier
LABORATORY 10 TIME AVERAGES, RMS VALUES AND THE BRIDGE RECTIFIER Full-wave Rectification: Bridge Rectifier For many electronic circuits, DC supply voltages are required but only AC voltages are available.
Lecture - 4 Diode Rectifier Circuits
Basic Electronics (Module 1 Semiconductor Diodes) Dr. Chitralekha Mahanta Department of Electronics and Communication Engineering Indian Institute of Technology, Guwahati Lecture - 4 Diode Rectifier Circuits
Transformerless UPS systems and the 9900 By: John Steele, EIT Engineering Manager
Transformerless UPS systems and the 9900 By: John Steele, EIT Engineering Manager Introduction There is a growing trend in the UPS industry to create a highly efficient, more lightweight and smaller UPS
The D.C Power Supply
The D.C Power Supply Voltage Step Down Electrical Isolation Converts Bipolar signal to Unipolar Half or Full wave Smoothes the voltage variation Still has some ripples Reduce ripples Stabilize the output
Properties of electrical signals
DC Voltage Component (Average voltage) Properties of electrical signals v(t) = V DC + v ac (t) V DC is the voltage value displayed on a DC voltmeter Triangular waveform DC component Half-wave rectifier
Fundamentals of Power Electronics. Robert W. Erickson University of Colorado, Boulder
Robert W. Erickson University of Colorado, Boulder 1 1.1. Introduction to power processing 1.2. Some applications of power electronics 1.3. Elements of power electronics Summary of the course 2 1.1 Introduction
CHAPTER 2B: DIODE AND APPLICATIONS. D.Wilcher
CHAPTER 2B: DIODE AND APPLICATIONS D.Wilcher 1 CHAPTER 2B: OBJECTIVES Analyze the operation of 3 basic types of rectifiers Describe the operation of rectifier filters and IC regulators Analyze the operation
DIODE CIRCUITS LABORATORY. Fig. 8.1a Fig 8.1b
DIODE CIRCUITS LABORATORY A solid state diode consists of a junction of either dissimilar semiconductors (pn junction diode) or a metal and a semiconductor (Schottky barrier diode). Regardless of the type,
Diode Applications. by Kenneth A. Kuhn Sept. 1, 2008. This note illustrates some common applications of diodes.
by Kenneth A. Kuhn Sept. 1, 2008 This note illustrates some common applications of diodes. Power supply applications A common application for diodes is converting AC to DC. Although half-wave rectification
Chapter 4. LLC Resonant Converter
Chapter 4 LLC Resonant Converter 4.1 Introduction In previous chapters, the trends and technical challenges for front end DC/DC converter were discussed. High power density, high efficiency and high power
Semiconductor Diode. It has already been discussed in the previous chapter that a pn junction conducts current easily. Principles of Electronics
76 6 Principles of Electronics Semiconductor Diode 6.1 Semiconductor Diode 6.3 Resistance of Crystal Diode 6.5 Crystal Diode Equivalent Circuits 6.7 Crystal Diode Rectifiers 6.9 Output Frequency of Half-Wave
See Horenstein 4.3 and 4.4
EE 462: Laboratory # 4 DC Power Supply Circuits Using Diodes by Drs. A.V. Radun and K.D. Donohue (2/14/07) Department of Electrical and Computer Engineering University of Kentucky Lexington, KY 40506 Updated
Power Electronics. Prof. K. Gopakumar. Centre for Electronics Design and Technology. Indian Institute of Science, Bangalore.
Power Electronics Prof. K. Gopakumar Centre for Electronics Design and Technology Indian Institute of Science, Bangalore Lecture - 1 Electric Drive Today, we will start with the topic on industrial drive
Diode Applications. As we have already seen the diode can act as a switch Forward biased or reverse biased - On or Off.
Diode Applications Diode Switching As we have already seen the diode can act as a switch Forward biased or reverse biased - On or Off. Voltage Rectifier A voltage rectifier is a circuit that converts an
POWER SYSTEM HARMONICS. A Reference Guide to Causes, Effects and Corrective Measures AN ALLEN-BRADLEY SERIES OF ISSUES AND ANSWERS
A Reference Guide to Causes, Effects and Corrective Measures AN ALLEN-BRADLEY SERIES OF ISSUES AND ANSWERS By: Robert G. Ellis, P. Eng., Rockwell Automation Medium Voltage Business CONTENTS INTRODUCTION...
electronics fundamentals
electronics fundamentals circuits, devices, and applications THOMAS L. FLOYD DAVID M. BUCHLA Lesson 1: Diodes and Applications Center-Tapped Full-wave Rectifier The center-tapped (CT) full-wave rectifier
ANADOLU UNIVERSITY DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING
ANADOLU UNIVERSITY DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING EEM 102 INTRODUCTION TO ELECTRICAL ENGINEERING EXPERIMENT 9: DIODES AND DC POWER SUPPLY OBJECTIVE: To observe how a diode functions
Principles of Adjustable Frequency Drives
What is an Adjustable Frequency Drive? An adjustable frequency drive is a system for controlling the speed of an AC motor by controlling the frequency of the power supplied to the motor. A basic adjustable
Silicon Controlled Rectifiers
554 20 Principles of Electronics Silicon Controlled Rectifiers 20.1 Silicon Controlled Rectifier (SCR) 20.2 Working of SCR 20.3 Equivalent Circuit of SCR 20.4 Important Terms 20.5 V-I Characteristics of
DC-DC Converter Basics
Page 1 of 16 Free Downloads / Design Tips / Java Calculators / App. Notes / Tutorials / Newsletter / Discussion / Components Database / Library / Power Links / Software / Technical Articles / On-Line Textbook
AC Direct Off-Line Power Supplies
AC Direct Off-Line Power Supplies r Introduction Many DC power supplies found in electronic systems, including those in this Tech School, rectify the 120 volts available at an electric outlet. The initial
Analog & Digital Electronics Course No: PH-218
Analog & Digital Electronics Course No: PH-18 Lec 3: Rectifier and Clipper circuits Course nstructors: Dr. A. P. VAJPEY Department of Physics, ndian nstitute of Technology Guwahati, ndia 1 Rectifier Circuits:
Chapter 3. Diodes and Applications. Introduction [5], [6]
Chapter 3 Diodes and Applications Introduction [5], [6] Diode is the most basic of semiconductor device. It should be noted that the term of diode refers to the basic p-n junction diode. All other diode
Chapter 6: Converter circuits
Chapter 6. Converter Circuits 6.. Circuit manipulations 6.2. A short list of converters 6.3. Transformer isolation 6.4. Converter evaluation and design 6.5. Summary of key points Where do the boost, buck-boost,
AMZ-FX Guitar effects. (2007) Mosfet Body Diodes. http://www.muzique.com/news/mosfet-body-diodes/. Accessed 22/12/09.
Pulse width modulation Pulse width modulation is a pulsed DC square wave, commonly used to control the on-off switching of a silicon controlled rectifier via the gate. There are many types of SCR s, most
Rectifier circuits & DC power supplies
Rectifier circuits & DC power supplies Goal: Generate the DC voltages needed for most electronics starting with the AC power that comes through the power line? 120 V RMS f = 60 Hz T = 1667 ms) = )sin How
Relationship between large subject matter areas
H02M APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER;
Design and Development of Speed Control of Induction motor drive using Pulse-Width Modulation
Design and Development of Speed Control of Induction motor drive using Pulse-Width Modulation Jigar Vaidya 1, Vatsal Shukla 2, Darshan Kale 3 1 UG Student, Electrical Department,[email protected], +91-9662532919
Phase-Control Alternatives for Single-Phase AC Motors Offer Smart, Low-Cost, Solutions Abstract INTRODUCTION
Phase-Control Alternatives for Single-Phase AC Motors Offer Smart, Low-Cost, Solutions by Howard Abramowitz, Ph.D EE, President, AirCare Automation Inc. Abstract - Single Phase AC motors continue to be
Product Data Bulletin
Product Data Bulletin Power System Harmonics Causes and Effects of Variable Frequency Drives Relative to the IEEE 519-1992 Standard Raleigh, NC, U.S.A. INTRODUCTION This document describes power system
Chapter 20 Quasi-Resonant Converters
Chapter 0 Quasi-Resonant Converters Introduction 0.1 The zero-current-switching quasi-resonant switch cell 0.1.1 Waveforms of the half-wave ZCS quasi-resonant switch cell 0.1. The average terminal waveforms
Power Supplies. 1.0 Power Supply Basics. www.learnabout-electronics.org. Module
Module 1 www.learnabout-electronics.org Power Supplies 1.0 Power Supply Basics What you ll learn in Module 1 Section 1.0 Power Supply Basics. Basic functions of a power supply. Safety aspects of working
UNDERSTANDING POWER FACTOR AND INPUT CURRENT HARMONICS IN SWITCHED MODE POWER SUPPLIES
UNDERSTANDING POWER FACTOR AND INPUT CURRENT HARMONICS IN SWITCHED MODE POWER SUPPLIES WHITE PAPER: TW0062 36 Newburgh Road Hackettstown, NJ 07840 Feb 2009 Alan Gobbi About the Author Alan Gobbi Alan Gobbi
Homework Assignment 03
Question 1 (2 points each unless noted otherwise) Homework Assignment 03 1. A 9-V dc power supply generates 10 W in a resistor. What peak-to-peak amplitude should an ac source have to generate the same
Analysis of AC-DC Converter Based on Power Factor and THD
Website: www.ijetae.com (SSN 50-459, SO 900:008 Certified Journal, Volume 3, ssue, February 03) Analysis of AC-DC Converter Based on Power Factor and THD Shiney.S.Varghese, Sincy George Department of Electrical
Line Reactors and AC Drives
Line Reactors and AC Drives Rockwell Automation Mequon Wisconsin Quite often, line and load reactors are installed on AC drives without a solid understanding of why or what the positive and negative consequences
Rectifiers. 1 Introduction. R. Visintini Elettra Synchrotron Light Laboratory, Trieste, Italy
Rectifiers R. isintini Elettra Synchrotron ight aboratory, Trieste, taly Abstract n particle accelerators, rectifiers are used to convert the AC voltage into DC or low-frequency AC to supply loads like
Modelling, Simulation and Performance Analysis of A Variable Frequency Drive in Speed Control Of Induction Motor
International Journal of Engineering Inventions e-issn: 78-7461, p-issn: 319-6491 Volume 3, Issue 5 (December 013) PP: 36-41 Modelling, Simulation and Performance Analysis of A Variable Frequency Drive
Three-port DC-DC Converters to Interface Renewable Energy Sources with Bi-directional Load and Energy Storage Ports
Three-port DC-DC Converters to Interface Renewable Energy Sources with Bi-directional Load and Energy Storage Ports A DISSERTATION SUBMITTED TO THE FACULTY OF THE GRADUATE SCHOOL OF THE UNIVERSITY OF MINNESOTA
Simulation and Analysis of PWM Inverter Fed Induction Motor Drive
Simulation and Analysis of PWM Inverter Fed Induction Motor Drive C.S.Sharma, Tali Nagwani Abstract Sinusoidal Pulse Width Modulation variable speed drives are increasingly applied in many new industrial
Modeling and Simulation of a Novel Switched Reluctance Motor Drive System with Power Factor Improvement
American Journal of Applied Sciences 3 (1): 1649-1654, 2006 ISSN 1546-9239 2006 Science Publications Modeling and Simulation of a Novel Switched Reluctance Motor Drive System with Power Factor Improvement
Variable Frequency Drives - a Comparison of VSI versus LCI Systems
Variable Frequency Drives - a Comparison of VSI versus LCI Systems Introduction TMEIC is a leader in the innovative design and manufacture of large ac variable f requency drive systems. TMEIC has been
Switch Mode Power Supply Topologies
Switch Mode Power Supply Topologies The Buck Converter 2008 Microchip Technology Incorporated. All Rights Reserved. WebSeminar Title Slide 1 Welcome to this Web seminar on Switch Mode Power Supply Topologies.
BALANCED THREE-PHASE CIRCUITS
BALANCED THREE-PHASE CIRCUITS The voltages in the three-phase power system are produced by a synchronous generator (Chapter 6). In a balanced system, each of the three instantaneous voltages have equal
A bidirectional, sinusoidal, high-frequency inverter design
A bidirectional, sinusoidal, high-frequency inverter design E.Koutroulis, J.Chatzakis, K.Kalaitzakis and N.C.Voulgaris Abstract: A new method for the design of a bidirectional inverter based on the sinusoidal
EDEXCEL NATIONAL CERTIFICATE/DIPLOMA UNIT 5 - ELECTRICAL AND ELECTRONIC PRINCIPLES NQF LEVEL 3 OUTCOME 4 - ALTERNATING CURRENT
EDEXCEL NATIONAL CERTIFICATE/DIPLOMA UNIT 5 - ELECTRICAL AND ELECTRONIC PRINCIPLES NQF LEVEL 3 OUTCOME 4 - ALTERNATING CURRENT 4 Understand single-phase alternating current (ac) theory Single phase AC
Design and Simulation of Soft Switched Converter Fed DC Servo Drive
International Journal of Soft Computing and Engineering (IJSCE) ISSN: 2231-237, Volume-1, Issue-5, November 211 Design and Simulation of Soft Switched Converter Fed DC Servo Drive Bal Mukund Sharma, A.
Novel Loaded-Resonant Converter & Application of DC-to-DC Energy Conversions systems
International Refereed Journal of Engineering and Science (IRJES) ISSN (Online) 2319-183X, (Print) 2319-1821 Volume 2, Issue 11 (November 2013), PP.50-57 Novel Loaded-Resonant Converter & Application of
SECTION 4 ELECTRIC MOTORS UNIT 17: TYPES OF ELECTRIC MOTORS
SECTION 4 ELECTRIC MOTORS UNIT 17: TYPES OF ELECTRIC MOTORS UNIT OBJECTIVES After studying this unit, the reader should be able to Describe the different types of open single-phase motors used to drive
Experiment 2 Diode Applications: Rectifiers
ECE 3550 - Practicum Fall 2007 Experiment 2 Diode Applications: Rectifiers Objectives 1. To investigate the characteristics of half-wave and full-wave rectifier circuits. 2. To recognize the usefulness
WHITE PAPER. DC Motors Explained. DC Motors Explained: White Paper, Title Page
DC Motors Explained: White Paper, Title Page DC Motors Explained By Joe Kimbrell, Product Manager, Drives, Motors & Motion, AutomationDirect DC Motors Explained: White Paper, pg. 2 How many types of DC
Introduction to Power Supplies
Introduction to Power Supplies INTRODUCTION Virtually every piece of electronic equipment e g computers and their peripherals calculators TV and hi-fi equipment and instruments is powered from a DC power
Bridgeless PFC Implementation Using One Cycle Control Technique
Bridgeless PFC Implementation Using One Cycle Control Technique Bing Lu Center for Power Electronics Systems Virginia Polytechnic Institute and State University 674 Whittemore Hall Blacksburg, VA 24061
Power supplies. EE328 Power Electronics Assoc. Prof. Dr. Mutlu BOZTEPE Ege University, Dept. of E&E
Power supplies EE328 Power Electronics Assoc. Prof. Dr. Mutlu BOZTEPE Ege University, Dept. of E&E EE328 POWER ELECTRONICS Outline of lecture Introduction to power supplies Modelling a power transformer
AN ULTRA-CHEAP GRID CONNECTED INVERTER FOR SMALL SCALE GRID CONNECTION
AN ULTRA-CHEAP GRID CONNECTED INVERTER FOR SMALL SCALE GRID CONNECTION Pramod Ghimire 1, Dr. Alan R. Wood 2 1 ME Candidate Email: [email protected] 2 Senior Lecturer: Canterbury University
= V peak 2 = 0.707V peak
BASIC ELECTRONICS - RECTIFICATION AND FILTERING PURPOSE Suppose that you wanted to build a simple DC electronic power supply, which operated off of an AC input (e.g., something you might plug into a standard
The Facts About Harmonics and Power Factor. Power Quality: Harmonics & Power Factor Correction
The Facts About Harmonics and Power Factor Power Quality: Harmonics & Power Factor Correction 1 Agenda I. Harmonic Basics II. Harmonic Mitigation Methods III. Active Harmonic Filters IV. Applications V.
High Power Factor Boost Converter with Bridgeless Rectifier
IOSR Journal of Electrical and Electronics Engineering (IOSR-JEEE) e-issn: 2278-1676 Volume 4, Issue 3 (Jan. - Feb. 2013), PP 33-38 High Power Factor Boost Converter with Bridgeless Rectifier Kavithamani
DC/DC BUCK Converter for Renewable Energy Applications Mr.C..Rajeshkumar M.E Power Electronic and Drives,
DC/DC BUCK Converter for Renewable Energy Applications Mr.C..Rajeshkumar M.E Power Electronic and Drives, Mr.C.Anandaraj Assistant Professor -EEE Thiruvalluvar college of Engineering And technology, Ponnur
Closed Loop PWM Control for Induction Motor Drive Using Dual Output Three Phase Inverter
Closed Loop PWM Control for Induction Motor Drive Using Dual Output Three Phase Inverter Archana.P 1, Karthick.R 2 Pg Scholar [PED], Department of EEE, CSI College of Engineering, Ketti, Tamilnadu, India
THE development of new methods and circuits for electrical energy conversion
FACTA UNIERSITATIS (NIŠ) SER.: ELEC. ENERG. vol. 22, no. 2, August 29, 245252 Investigation of ThreePhase to SinglePhase Matrix Converter Mihail Antchev and Georgi Kunov Abstract: A threephase to singlephase
Understanding Delta Conversion Online "Power Regulation" - Part 2
Application Note #40 Understanding Delta Conversion Online "Power Regulation" - Part 2 Introduction This application note is the second in a series on delta conversion theory of operation. For complete
Drive circuit basics + V. τ e. Industrial Circuits Application Note. Winding resistance and inductance
ndustrial Circuits Application Note Drive circuit basics For a given size of a stepper motor, a limited space is available for the windings. n the process of optimizing a stepper motor drive system, an
Application Guide. Power Factor Correction (PFC) Basics
Power Factor Correction (PFC) Basics Introduction Power Factor, in simple terms, is a number between zero and one that represents the ratio of the real power to apparent power. Real power (P), measured
Design a Phase Interleaving PFC Buck Boost Converter to Improve the Power Factor
International Journal of Innovation and Scientific Research ISSN 2351-8014 Vol. 11 No. 2 Nov. 2014, pp. 445-449 2014 Innovative Space of Scientific Research Journals http://www.ijisr.issr-journals.org/
New Pulse Width Modulation Technique for Three Phase Induction Motor Drive Umesha K L, Sri Harsha J, Capt. L. Sanjeev Kumar
New Pulse Width Modulation Technique for Three Phase Induction Motor Drive Umesha K L, Sri Harsha J, Capt. L. Sanjeev Kumar Abstract In this paper, various types of speed control methods for the three
Chapter 17 The Ideal Rectifier
Chapter 17 The Ideal Rectifier 17.1 Properties of the ideal rectifier 17.2 Realization of a near-ideal rectifier 17.3 Single-phase converter systems employing ideal rectifiers 17.4 RMS values of rectifier
EE0314- POWER ELECTRONICS LAB REFERENCE MANUAL
EE0314- POWER ELECTRONICS LAB REFERENCE MANUAL SEMESTER VI DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING SRM UNIVERSITY KATTANKULATHUR-603203 1 EXPT. NO. 1 : Pre lab Questions Single Phase Half
Design Considerations for an LLC Resonant Converter
Design Considerations for an LLC Resonant Converter Hangseok Choi Power Conversion Team www.fairchildsemi.com 1. Introduction Growing demand for higher power density and low profile in power converter
Experiment # (4) AM Demodulator
Islamic University of Gaza Faculty of Engineering Electrical Department Experiment # (4) AM Demodulator Communications Engineering I (Lab.) Prepared by: Eng. Omar A. Qarmout Eng. Mohammed K. Abu Foul Experiment
7-41 POWER FACTOR CORRECTION
POWER FTOR CORRECTION INTRODUCTION Modern electronic equipment can create noise that will cause problems with other equipment on the same supply system. To reduce system disturbances it is therefore essential
Control Development and Modeling for Flexible DC Grids in Modelica
Control Development and Modeling for Flexible DC Grids in Modelica Andreas Olenmark 1 Jens Sloth 2 Anna Johnsson 3 Carl Wilhelmsson 3 Jörgen Svensson 4 1 One Nordic AB, Sweden, [email protected].
Chapter 19 Resonant Conversion
Chapter 9 Resonant Conversion Introduction 9. Sinusoidal analysis of resonant converters 9. Examples Series resonant converter Parallel resonant converter 9.3 Exact characteristics of the series and parallel
Improvements of Reliability of Micro Hydro Power Plants in Sri Lanka
Improvements of Reliability of Micro Hydro Power Plants in Sri Lanka S S B Udugampala, V Vijayarajah, N T L W Vithanawasam, W M S C Weerasinghe, Supervised by: Eng J Karunanayake, Dr. K T M U Hemapala
Renewable Energy Applications: Photovoltaic and Wind Energy Conversion Systems (WECS)
Renewable Energy Applications: Photovoltaic and Wind Energy Conversion Systems (WECS) Josep Pou Antoni Arias Page 1 Outline 1. Renewable Energy Perspectives 2. Solar Photovoltaic (PV) 3. Wind Generation
Welcome to this presentation on Switch Mode Drivers, part of OSRAM Opto Semiconductors LED Fundamentals series. In this presentation we will look at:
Welcome to this presentation on Switch Mode Drivers, part of OSRAM Opto Semiconductors LED Fundamentals series. In this presentation we will look at: How switch mode drivers work, switch mode driver topologies,
Survey of Harmonics Measurements in Electrical Distribution Systems
Survey of Harmonics Measurements in Electrical Distribution Systems Leon M. Tolbert, Member, IEEE Oak Ridge National Laboratory* P.O. Box 28, Bldg Oak Ridge, TN 3783-6334 Alexandria, VA 2235-3862 Phone:
Transient analysis of integrated solar/diesel hybrid power system using MATLAB Simulink
Transient analysis of integrated solar/diesel hybrid power system using ATLAB Simulink Takyin Taky Chan School of Electrical Engineering Victoria University PO Box 14428 C, elbourne 81, Australia. [email protected]
Power Electronic Circuits
Power Electronic Circuits Assoc. Prof. Dr. H. İbrahim OKUMUŞ Karadeniz Technical University Engineering Faculty Department of Electrical And Electronics 1 DC to DC CONVERTER (CHOPPER) General Buck converter
EET272 Worksheet Week 9
EET272 Worksheet Week 9 answer questions 1-5 in preparation for discussion for the quiz on Monday. Finish the rest of the questions for discussion in class on Wednesday. Question 1 Questions AC s are becoming
Current Ripple Factor of a Buck Converter
Application Note Edwin Wang AN1 April 14 Current Ripple Factor of a Buck Converter Abstract Inductor and capacitor forms a low-pass filter in a buck converter. The corner frequency the C filter is always
Pulse Width Modulated (PWM)
Control Technologies Manual PWM AC Drives Revision 1.0 Pulse Width Modulated (PWM) Figure 1.8 shows a block diagram of the power conversion unit in a PWM drive. In this type of drive, a diode bridge rectifier
Simulation of VSI-Fed Variable Speed Drive Using PI-Fuzzy based SVM-DTC Technique
Simulation of VSI-Fed Variable Speed Drive Using PI-Fuzzy based SVM-DTC Technique B.Hemanth Kumar 1, Dr.G.V.Marutheshwar 2 PG Student,EEE S.V. College of Engineering Tirupati Senior Professor,EEE dept.
TOPOLOGIES FOR SWITCHED MODE POWER SUPPLIES
TOPOLOGIES FOR SWITCHED MODE POWER SUPPLIES by L. Wuidart I INTRODUCTION This paper presents an overview of the most important DC-DC converter topologies. The main object is to guide the designer in selecting
MODELING AND SIMULATION OF A THREE-PHASE INVERTER WITH RECTIFIER-TYPE NONLINEAR LOADS
, pp. 7-1 MODELING AND SIMULAION OF A HREE-PHASE INERER WIH RECIFIER-YPE NONLINEAR LOADS Jawad Faiz 1 and Ghazanfar Shahgholian 2 1 School of Electrical and Computer Engineering, Faculty of Engineering,
Application Note AN- 1095
Application Note AN- 1095 Design of the Inverter Output Filter for Motor Drives with IRAMS Power Modules Cesare Bocchiola Table of Contents Page Section 1: Introduction...2 Section 2 : Output Filter Design
Parametric variation analysis of CUK converter for constant voltage applications
ISSN (Print) : 232 3765 (An ISO 3297: 27 Certified Organization) Vol. 3, Issue 2, February 214 Parametric variation analysis of CUK converter for constant voltage applications Rheesabh Dwivedi 1, Vinay
Yrd. Doç. Dr. Aytaç Gören
H2 - AC to DC Yrd. Doç. Dr. Aytaç Gören ELK 2018 - Contents W01 Basic Concepts in Electronics W02 AC to DC Conversion W03 Analysis of DC Circuits W04 Transistors and Applications (H-Bridge) W05 Op Amps
Mathematical Modeling and Dynamic Simulation of a Class of Drive Systems with Permanent Magnet Synchronous Motors
Applied and Computational Mechanics 3 (2009) 331 338 Mathematical Modeling and Dynamic Simulation of a Class of Drive Systems with Permanent Magnet Synchronous Motors M. Mikhov a, a Faculty of Automatics,
Speed Control Methods of Various Types of Speed Control Motors. Kazuya SHIRAHATA
Speed Control Methods of Various Types of Speed Control Motors Kazuya SHIRAHATA Oriental Motor Co., Ltd. offers a wide variety of speed control motors. Our speed control motor packages include the motor,
The Flyback Converter
The Flyback Converter Lecture notes ECEN4517! Derivation of the flyback converter: a transformer-isolated version of the buck-boost converter! Typical waveforms, and derivation of M(D) = V/! Flyback transformer
