2 Topology and Control Schemes

Size: px
Start display at page:

Download "2 Topology and Control Schemes"

Transcription

1 AC Motor Drive Fed by Renewable Energy Sources with PWM J. Pavalam 1 ; R. Ramesh Kumar 2 ; R. Mohanraj 3 ; K. Umadevi 4 1 PG Scholar, M.E-Power electronics and Drives Excel College of Engineering and Technology pavalam.eee@gmail.com 2 PG Scholar, M.E-Power electronics and Drives Excel College of Engineering and Technology pbrameshkumar@gmail.com 3 Associative Professor, Head of the Department/ EEE, Excel College of Engineering and Technology ciemohanraj@gmail.com 4 Excel College of Engineering and Technology Uma1raj@gmail.com Abstract - In this fast approaching nature of technology the need of Electricity becomes a mandatory in developing technology. The need of Electricity increases the power demand where the power demand met by the conventional sources of energy has some disadvantage of pollution, this disadvantage can be decreased by the use of the Renewable energy sources like Fuel Cell and available solar energy. When a FUEL cell produces AC power, basically two stages are required for conversion first a boosting stage and second is inversion stage. In this paper the Boost inverter topology is achieved where in the conventional methods the normal DC - AC power conversion method is used where as in this paper the PWM based DC - AC inverter has been used which is useful in reducing the harmonics in the output of the Inverter. The voltage controlled output is produced in the boost inverter the current controlled output is taken from dc-dc bidirectional converter. The Fuel cell cannot be relied as a whole so a Solar PV module is connected across the Load so while the Sunlight days the PV arrays generate power and in the night time the Fuel cell is used to generate power for the load. Since, the Fuel cell and PV arrays can generate power in Partial load they are preferred than any other sources. When the output from the Solar PV array is low or when the sunlight available is not efficient in generating the power a automatic switch over is provided in the junction between the Solar PV array and Fuel cell so that whenever it happens the switch automatically switch over to another source. The simulation results are presented to confirm the operational feature of the proposed system. Key Words - PWM Boost-inverter; fuel cell; fuel cell power conditioning system; renewable energy. 1 Introduction Electricity is the most well-known energy transporter. An energy transporter is a substance or, system that moves power in a functional form from one position to one more. Electricity was generated in influence plants, in which a principal energy source is changed into electrical power. Case of widely 41

2 International Journal of Basic and Applied Science, Pavalam at. al. vigor sources are fossil fuels, falling or flowing dampen and nuclear fission. An important drawback of generating electricity from fossil fuels and nuclear fission. Most common primary energy sources for electricity generation worldwide is the adverse environmental impact, such as the greenhouse effect caused by the increase of the CO 2 concentration in the earth s atmosphere and the nuclear waste problem. Further, fossil fuel and uranium reserves are finite [1]. The output of the FUEL cell would be low more over the FUEL cell response would be very low when compared to the other conventional sources. Thus, a battery backup unit is added with the FUEL cell for improving the response time of the FUEL cell as well as to protect the FUEL cell from the over voltage or Transient Voltages. The double stage power production in FUEL cell is considered to be a bulky one thus it contains a separate circuit for Boosting process and also it contains separate circuit for Inverting process. Thus, to replace the Bulkier circuits with a simpler one the Single stage power processing is used in the FUEL cell. The objective of this paper is to propose an FC energy system with the lowest possible harmonics. In particular, the proposed system, based on the boost-inverter with a backup energy storage unit, solves the aforementioned problems, i.e., the low and variable output voltage of the FC and its slow response. The boost-inverter utilizes two identical bidirectional boost converters with a PWM and delivers in a single-stage boosting and inversion functions [2]. This results in a high power conversion efficiency, reduced converter size, and low cost. Additionally, the backup unit supplies the low-frequency current harmonics, hence minimizing the stresses on the FC, if it were to supply such currents. The control of the boost-inverter is moderately complex to handle, and sliding-mode control or double-loop voltage and current control schemes may be adopted in this system.[2] 2 Topology and Control Schemes In our conventional method of Boost inverter the controlling method or triggering method used is the normal pulse generation method. In this method of triggering the output may contains many harmonics which may leads to poor power factor and also to a very low efficiency of the operating FUEL cell. Even though the FUEL cell processing stage is reduced, due to the presence of harmonics in the output the output voltage becomes inefficient. The conventional equivalent circuit of the FUEL CELL is shown in the Fig.1 The popular FC energy system consists of two power converters: the main boost-inverter (Normal) and the extra backup unit, as shown in Figs. 2 and 3. The output of the boost-inverter is connected to the load, while the input side is supplied by the FC and the backup unit, and both are connected to the same unregulated dc bus. The backup unit incorporates a current-mode-controlled bidirectional boost converter with battery-based energy storage to support the FC power generation and two voltagecontrolled boost converters making up the boost-inverter stage. The FC energy system must dynamically adjust to varying input voltage while maintaining constant power operation. Voltage and current limits, which have been provided from manufacturer in Fig. 4, need to be imposed at the input of the converter to protect the FC from damage due to excessive loading and transients. 42 Insan Akademika Publications

3 Pavalam and Kumar International Journal of Basic and Applied Science, Fig.1: Equivalent circuit of FUEL CELL The power has to be ramped up and down so that the FC can react appropriately, avoiding transients and extending its life. The converter also has to meet the maximum ripple current requirements of the FC. 3 Modes of Control There are two modes of control available practically for robust control of the Boost inverter. Namely: 1. Sliding mode control 2. Double loop control scheme. The Sliding mode control theory is applied to a sinusoidal output voltage boost inverter with linear load. The boost inverter can be used in UPS design, where a second power conversion stage is not needed. [8] A sliding mode controller applied to the DC - AC boost converter achieved stability with respect to load parameter variation and good static behavior. The controller has a fast dynamic response, since all control loops act concurrently, and the robustness inherent to sliding mode control. The fig 5 shows the sliding mode control of Boost Inverter. In this case, the boost inverter operate with variable frequency, switching frequency varies depending on the working point. By means of this controller, the converter generates a sinusoidal output voltage with a total harmonic distortion lower than 2% [7]. 43

4 International Journal of Basic and Applied Science, Pavalam at. al. Fig.2: FC energy system consisting of the boost-inverter and a backup unit. Boost DC-AC inverter naturally generates in a single stage an AC voltage whose peak value can be lower or greater than the DC input voltage. The main downside of this construction deals with its influence. Boost inverter consists of Boost DC-DC converters that have to be controlled in a variableoperation point condition. The sliding mode control has been planned as an option to control the output voltage of the inverter. Nevertheless, it do not openly control the inductance averaged-current. The double-loop regulation scheme that consists of a new inductor current control inner loop and an also new output voltage control outer loop. These things contain compensations in order to survive with the boost variable operation point condition and to achieve a high robustness to both input voltage and output current disturbances. The double loop regulation control strategy achieves a very high unswerving performance, even in complicated momentary situations such as nonlinear masses, quick load changes, short circuits, etc., which sliding mode be in charge of cannot handle with. The Figs. 6 and 7 shows the current controlled loop and Voltage controlled loop of Double loop control scheme respectively. Fig. 3: Block Diagram of Existing FC system with Normal Boost Inverter and Battery Backup unit 44 Insan Akademika Publications

5 Pavalam and Kumar International Journal of Basic and Applied Science, Fig.4: Illustration of the beginning of life (BOL) polarization characteristics of the Nexa1.2-kW PEMFC power module: voltage-current and power-current characteristics with parasitic power graph Fig.5: Sliding mode control of Boost Inverter Fig.6: Current controlled Double loop control scheme 45

6 International Journal of Basic and Applied Science, Pavalam at. al. Fig.7: Voltage controlled Double loop control scheme 4 Proposed FC System 4.1 Description of the system The proposed FC system consists of two power converters: the main PWM Boost inverter and extra Back up unit. The input of the PWM Boost inverter is connected to the output of the FC system. The Output of the FC system consists of a Battery backup unit in parallel to it where it is used for increasing the output response of the FC system. The proposed Fuel Cell has the power regulation by the action of the PWM Boost Inverter. The Boost inverter present in the output side of the FC would consists of two inverter where the one converter is Boost converter and another one is normal DC - AC inverter. The input of the PWM inverter consists of 30 V as input and 250 V as an output. The PWM inverter is used for reducing the ripples present in the output of the FC. 4.2 Backup Unit The functions of the backup unit should be divided into two parts. First, the backup unit is designed to support the slow response of the FC and is shown in Fig. 3. Second, in order to protect the FC system, the backup unit provides low-frequency AC current that is required from the boost-inverter operation. The backup unit comprises a current-mode-controlled bidirectional boost converter and a battery as the energy storage medium. For instance, when a 1-kW load is added from a no-load condition, the backup unit immediately provides the 1-kW power from the battery to the load as shown in Table I. On the other hand, when the load is disconnected suddenly, the surplus power from the FC could be recovered and stored into the battery to increase the overall efficiency of the energy system. 46 Insan Akademika Publications

7 Pavalam and Kumar International Journal of Basic and Applied Science, Table 1: Backup unit operation P3 increase P3 Decrease Normal P1+P2 P3 P1 P2+P3 P1=P3 Discharge Charge Normal Charge Normal Normal Two generic 12-V lead acid batteries are introduced in this unit for energy storage to deal with the need to provide fast response and a relatively low cost solution. [10] The proposed backup unit performs properly not only the support function for the FC module during transients but also is used as storage when any surplus power delivered by the FC is recovered. In order to control the output current of the backup unit, the inner current control loop of the boostinverter is used. The reference of ILb1 is taken from Idc through a high-pass filtering and the demanded current Idemand relating the load change. Fig. 8: Proposed Block Diagram 47

8 International Journal of Basic and Applied Science, Pavalam at. al. Fig.9: Proposed Circuit The proposed system uses the output of the FC which is guarded by the Backup unit and the output of the FC is fed to the Unregulated DC Bus. [15] The output of the FC system is always a DC one so to convert it to AC the Boost inverter is used with the SPWM technique. Fig.10: Proposed Simulation Model 4.3 PWM inverter In this method, pulse over a half cycle, of unequal widths is generated. Pulse thickness is a sinusoidal function of the pointed location of each sequence. This is completed by comparing a sinusoidal signal of the same occurrence as inverter yield against a triangular transporter occurrence wave [50, 51, 52, and 53]. This practice is primarily used because of its plainness and easiness of realization. The 48 Insan Akademika Publications

9 Pavalam and Kumar International Journal of Basic and Applied Science, amount of signal per round is being decisive by the ratio of the triangular transporter occurrence to that of the modulating sinusoid, fr. This is shown in the figure 11. This method is known as SPWM. [1] The waveform in figure 10 is a 2 - level waveform with the inverter output changing from +V to -V Fig.11: Sinusoidal modulation The fundamental component of the PWM output waveform with N chops per quarter cycle is: = 4 Π [2 ( 1) 1] 4.4 Sismulation Result Fig.12: Output waveform The output of the simulation results is shown in the above figure 12. In this the x axis consists of Time and the Y axis consists of Voltage. 49

10 International Journal of Basic and Applied Science, Pavalam at. al. Fig.13: Current and Voltage Output waveform Fig.14: Circuit output waveforms The voltage V1, V2 are the voltages measured across the capacitor C1 and C2 and the Input voltage is 30 V and the output observed in the FC system is about 230 V Fig.15: Motor Torque and Speed 50 Insan Akademika Publications

11 Pavalam and Kumar International Journal of Basic and Applied Science, 5 Conclusion In this paper the efficiency in FC is increased by the action of SPWM technique. In this the sinusoidal signal is taken as reference signal and the sample signal is taken into account and compared for the production of the firing angle for the Boost Inverter. By using this power generated from FC can be increased for considerable amount. The technique used here would increase the output of the FC and also increases the efficiency of the FC. The system proposed here can be used to reduce the power demand in the society and thus reducing the economic set back to the nation. Due to the increase in the power demand the output from the FC can be combined with the output of the PV arrays in the grid where the power generated from both the sources can be coupled and used for power generation. The PV arrays used as a source can be used while the solar energy is sufficient and the FC can be used to produce power when PV array fails or when PV arrays efficiency is low. The inverter design for the PV arrays and the FC would be different so the inverters used in the model would be designed separately for each source. Reference [1] Kjaer.S.B., Pedersen.J.K., and Blaabjerg.F., A review of single-phase grid-connected inverters for photovoltaic modules, IEEE Trans. Ind. Appl., vol. 41, no. 5, pp , Sep./Oct [2] Kalaivani.B., Chinnaiyan.V.K., and Jerome.J., A novel control strategy for the boost dc-ac inverter, in Proc. India Int. Conf. Power Electron. (IICPE 06), India, Dec , pp [3] Caceres.R.O. and Barbi. I., A boost dc-ac converter: Analysis, design, and experimentation, IEEE Trans. Power Electron., vol. 14, no. 1, pp , Jan [4] Sethakul.P., Rael.S., Davat. B., and Thounthong.P., Fuel cell high-power applications, IEEE Ind. Electron. Mag., vol. 3, no. 1, pp , Mar [5] Mazumder. S. K., Burra. R. K., and Acharya. K., A ripple-mitigating and energy-efficient fuel cell power-conditioning system, IEEE Trans. Power Electron., vol. 22, no. 4, pp , Jul [6] Blanco. A. V., Aguilar-Castillo. C.,Abarca. F. C., and Arau-Roffiel. J., Two-stage and integrated fuel cell power conditioner: Performance comparison, Proc. IEEE APEC, vol , Feb., pp [7] Jin. K., Ruan. X., Yang. M., and Xu. M., Power management for fuel-cell power system cold start, IEEE Trans. Power Electron., vol. 24, no. 10, pp , Oct [8] Sanchis. P., Alonso. O., Marroyo. L., Meynard. T., and Lefeuvre. E., A new control strategy for the boost dc-ac inverter, in Proc. IEEE PESC 01 Conf., Vancouver, Canada, Jun , pp [9] Hodel. A. S. and Hall. C. E., Variable-structure PID control to prevent integrator windup, IEEE Trans. Ind. Electron., vol. 48, no. 2, pp , Apr [10] Thounthong. P., Rael. S., and Davat. B., Utilizing fuel cell and supercapacitors for automotive hybrid electrical system, in Proc IEEE Appl. Power Electron. Conf. Expos. (APEC05), Texas, Mar. 6-10, 2005, pp [11] Sethakul. P., Rael. S., Davat. B., and Thounthong. P., Fuel cell high-power applications, IEEE Ind. Electron. Mag., vol. 3, no. 1, pp , Mar

12 International Journal of Basic and Applied Science, Pavalam at. al. [12] Schenck. M. E., Lai. J.-S., and Stanton. K., Fuel cell and power conditioning system interactions, in Proc. APEC 2005,Mar. 6-10, vol. 1, pp [13] Lai. J.-S., Power conditioning circuit topologies, IEEE Ind. Electron. Mag., vol. 3, no. 2, pp , Jun [14] Nexa. TM Power Module User Guide, MAN , Ballard Power System, Inc., Burnaby, BC, [15] Yu. X., Starke. M. R., Tolbert. L. M., and Ozpineci. B., Fuel cell power conditioning for electric power applications: A summary, IET-Electr. Power Appl., vol. 1, no. 5, pp , Sep Insan Akademika Publications

A MULTILEVEL INVERTER FOR SYNCHRONIZING THE GRID WITH RENEWABLE ENERGY SOURCES BY IMPLEMENTING BATTERY CUM DC-DC CONERTER

A MULTILEVEL INVERTER FOR SYNCHRONIZING THE GRID WITH RENEWABLE ENERGY SOURCES BY IMPLEMENTING BATTERY CUM DC-DC CONERTER A MULTILEVEL INVERTER FOR SYNCHRONIZING THE GRID WITH RENEWABLE ENERGY SOURCES BY IMPLEMENTING BATTERY CUM DC-DC CONERTER 1 KARUNYA CHRISTOBAL LYDIA. S, 2 SHANMUGASUNDARI. A, 3 ANANDHI.Y 1,2,3 Electrical

More information

MULTI-INPUT DC-DC CONVERTER FOR RENEWABLE ENERGY SOURCES

MULTI-INPUT DC-DC CONVERTER FOR RENEWABLE ENERGY SOURCES MULTI-INPUT DC-DC CONVERTER FOR RENEWABLE ENERGY SOURCES Nithya.k 1, Ramasamy.M 2 1 PG Scholar, Department of Electrical and Electronics Engineering, K.S.R College of Engineering, Tamil Nadu, India 2 Assistant

More information

Power Flow Control Using Bidirectional Dc/Dc Converter for Grid Connected Photovoltaic Power System

Power Flow Control Using Bidirectional Dc/Dc Converter for Grid Connected Photovoltaic Power System International Journal of Innovative Research in Electronics and Communications (IJIREC) Volume 1, Issue 8, November 2014, PP 13-24 ISSN 2349-4042 (Print) & ISSN 2349-4050 (Online) www.arcjournals.org Power

More information

Design and Simulation of Soft Switched Converter Fed DC Servo Drive

Design and Simulation of Soft Switched Converter Fed DC Servo Drive International Journal of Soft Computing and Engineering (IJSCE) ISSN: 2231-237, Volume-1, Issue-5, November 211 Design and Simulation of Soft Switched Converter Fed DC Servo Drive Bal Mukund Sharma, A.

More information

High Intensify Interleaved Converter for Renewable Energy Resources

High Intensify Interleaved Converter for Renewable Energy Resources High Intensify Interleaved Converter for Renewable Energy Resources K. Muthiah 1, S.Manivel 2, Gowthaman.N 3 1 PG Scholar, Jay Shriram Group of Institutions,Tirupur 2 Assistant Professor, Jay Shriram Group

More information

Hybrid Power System with A Two-Input Power Converter

Hybrid Power System with A Two-Input Power Converter Hybrid Power System with A Two-Input Power Converter Y. L. Juan and H. Y. Yang Department of Electrical Engineering National Changhua University of Education Jin-De Campus, Address: No.1, Jin-De Road,

More information

Harmonics and Noise in Photovoltaic (PV) Inverter and the Mitigation Strategies

Harmonics and Noise in Photovoltaic (PV) Inverter and the Mitigation Strategies Soonwook Hong, Ph. D. Michael Zuercher Martinson Harmonics and Noise in Photovoltaic (PV) Inverter and the Mitigation Strategies 1. Introduction PV inverters use semiconductor devices to transform the

More information

Design, Analysis, and Implementation of Solar Power Optimizer for DC Distribution System

Design, Analysis, and Implementation of Solar Power Optimizer for DC Distribution System Design, Analysis, and Implementation of Solar Power Optimizer for DC Distribution System Thatipamula Venkatesh M.Tech, Power System Control and Automation, Department of Electrical & Electronics Engineering,

More information

Parametric variation analysis of CUK converter for constant voltage applications

Parametric variation analysis of CUK converter for constant voltage applications ISSN (Print) : 232 3765 (An ISO 3297: 27 Certified Organization) Vol. 3, Issue 2, February 214 Parametric variation analysis of CUK converter for constant voltage applications Rheesabh Dwivedi 1, Vinay

More information

Modified Cascaded Five Level Multilevel Inverter Using Hybrid Pulse Width Modulation

Modified Cascaded Five Level Multilevel Inverter Using Hybrid Pulse Width Modulation International Journal of Computer Sciences and Engineering Open Access Research Paper Volume-4, Special Issue-2, April 2016 E-ISSN: 2347-2693 Modified Cascaded Five Level Multilevel Inverter Using Hybrid

More information

DC/DC BUCK Converter for Renewable Energy Applications Mr.C..Rajeshkumar M.E Power Electronic and Drives,

DC/DC BUCK Converter for Renewable Energy Applications Mr.C..Rajeshkumar M.E Power Electronic and Drives, DC/DC BUCK Converter for Renewable Energy Applications Mr.C..Rajeshkumar M.E Power Electronic and Drives, Mr.C.Anandaraj Assistant Professor -EEE Thiruvalluvar college of Engineering And technology, Ponnur

More information

Analysis of PV cell fed High Voltage Gain Seven and Nine level inverter with Reduced Switches

Analysis of PV cell fed High Voltage Gain Seven and Nine level inverter with Reduced Switches Analysis of PV cell fed High Voltage Gain Seven and Nine level inverter with Reduced Switches Ch.Vedasri P.G. Scholar, Department of Electrical & Electronics Engineering, Chirala Engineering College, Chirala;

More information

An Isolated Multiport DC-DC Converter for Different Renewable Energy Sources

An Isolated Multiport DC-DC Converter for Different Renewable Energy Sources An Isolated Multiport DC-DC Converter for Different Renewable Energy Sources K.Pradeepkumar 1, J.Sudesh Johny 2 PG Student [Power Electronics & Drives], Dept. of EEE, Sri Ramakrishna Engineering College,

More information

Design of Four Input Buck-Boost DC-DC Converter for Renewable Energy Application

Design of Four Input Buck-Boost DC-DC Converter for Renewable Energy Application Design of Four Input Buck-Boost DC-DC Converter for Renewable Energy Application A.Thiyagarajan Assistant Professor, Department of Electrical and Electronics Engineering Karpagam Institute of Technology

More information

Closed Loop PWM Control for Induction Motor Drive Using Dual Output Three Phase Inverter

Closed Loop PWM Control for Induction Motor Drive Using Dual Output Three Phase Inverter Closed Loop PWM Control for Induction Motor Drive Using Dual Output Three Phase Inverter Archana.P 1, Karthick.R 2 Pg Scholar [PED], Department of EEE, CSI College of Engineering, Ketti, Tamilnadu, India

More information

Multilevel DC-AC Converter Interface with Solar Panels

Multilevel DC-AC Converter Interface with Solar Panels Pursuit: The Journal of Undergraduate Research at the University of Tennessee Copyright The University of Tennessee Multilevel DC-AC Converter Interface with Solar Panels YUE CAO Advisor: Leon Tolbert

More information

Hybrid Wind-Fuel Cell Renewable Energy Utilization Scheme for Village Electricity

Hybrid Wind-Fuel Cell Renewable Energy Utilization Scheme for Village Electricity Proceedings of the 4 th International Middle East Power Systems Conference (MEPCON 0), Cairo University, Egypt, December 9-, 00, Paper ID 3. Hybrid Wind-Fuel Cell Renewable Energy Utilization Scheme for

More information

A SINGLE STAGE SOLAR POWER CONVERTER FOR PV BATTERY SYSTEM

A SINGLE STAGE SOLAR POWER CONVERTER FOR PV BATTERY SYSTEM IMPACT: International Journal of Research in Engineering & Technology (IMPACT: IJRET) ISSN(E): 2321-8843; ISSN(P): 2347-4599 Vol. 2, Issue 3, Mar 2014, 185-192 Impact Journals A SINGLE STAGE SOLAR POWER

More information

Analysis and Design of Multi Input Dc Dc Converter for Integrated Wind PV Cell Renewable Energy Generated System

Analysis and Design of Multi Input Dc Dc Converter for Integrated Wind PV Cell Renewable Energy Generated System International Journal of Recent Technology and Engineering (IJRTE) ISSN: 2277-3878, Volume-1, Issue-5, November 2012 Analysis and Design of Multi Input Dc Dc Converter for Integrated Wind PV Cell Renewable

More information

Grid Interconnection of Renewable Energy Sources Using Modified One-Cycle Control Technique

Grid Interconnection of Renewable Energy Sources Using Modified One-Cycle Control Technique Grid Interconnection of Renewable Energy Sources Using Modified One-Cycle Control Technique NKV.Sai Sunil 1, K.Vinod Kumar 2 PG Student, GITAM University, Visakhapatnam, India. Asst.Professor, Department

More information

Novel Loaded-Resonant Converter & Application of DC-to-DC Energy Conversions systems

Novel Loaded-Resonant Converter & Application of DC-to-DC Energy Conversions systems International Refereed Journal of Engineering and Science (IRJES) ISSN (Online) 2319-183X, (Print) 2319-1821 Volume 2, Issue 11 (November 2013), PP.50-57 Novel Loaded-Resonant Converter & Application of

More information

A Review of Non-Isolated High Step-Up DC/DC Converters in Renewable Energy Applications

A Review of Non-Isolated High Step-Up DC/DC Converters in Renewable Energy Applications A Review of Non-Isolated High Step-Up DC/DC Converters in Renewable Energy Applications Wuhua Li, Xiaodong Lv, Yan Deng, Jun Liu, Xiangning He College of Electrical Engineering, Zhejiang University Hangzhou,

More information

Renewable Energy Applications: Photovoltaic and Wind Energy Conversion Systems (WECS)

Renewable Energy Applications: Photovoltaic and Wind Energy Conversion Systems (WECS) Renewable Energy Applications: Photovoltaic and Wind Energy Conversion Systems (WECS) Josep Pou Antoni Arias Page 1 Outline 1. Renewable Energy Perspectives 2. Solar Photovoltaic (PV) 3. Wind Generation

More information

SIMULATION OF CLOSED LOOP CONTROLLED BRIDGELESS PFC BOOST CONVERTER

SIMULATION OF CLOSED LOOP CONTROLLED BRIDGELESS PFC BOOST CONVERTER SIMULATION OF CLOSED LOOP CONTROLLED BRIDGELESS PFC BOOST CONVERTER 1M.Gopinath, 2S.Ramareddy Research Scholar, Bharath University, Chennai, India. Professor, Jerusalem college of Engg Chennai, India.

More information

Student Pulse Academic Journal

Student Pulse Academic Journal June 11 Student Pulse Academic Journal Implementation and control of Multi Input Power Converter for Grid Connected Hybrid Renewable Energy Generation System Yuvaraj V, Roger Rozario, S.N. Deepa yuvatheking@skygroups.org;

More information

Modeling and Simulation of a Novel Switched Reluctance Motor Drive System with Power Factor Improvement

Modeling and Simulation of a Novel Switched Reluctance Motor Drive System with Power Factor Improvement American Journal of Applied Sciences 3 (1): 1649-1654, 2006 ISSN 1546-9239 2006 Science Publications Modeling and Simulation of a Novel Switched Reluctance Motor Drive System with Power Factor Improvement

More information

Design a Phase Interleaving PFC Buck Boost Converter to Improve the Power Factor

Design a Phase Interleaving PFC Buck Boost Converter to Improve the Power Factor International Journal of Innovation and Scientific Research ISSN 2351-8014 Vol. 11 No. 2 Nov. 2014, pp. 445-449 2014 Innovative Space of Scientific Research Journals http://www.ijisr.issr-journals.org/

More information

High Step-Up ZVT Interleaved Converter with Voltage Doublers Cell for Renewable Energy System

High Step-Up ZVT Interleaved Converter with Voltage Doublers Cell for Renewable Energy System ISSN (Online) : 2319-8753 ISSN (Print) : 2347-6710 International Journal of Innovative Research in Science, Engineering and Technology Volume 3, Special Issue 3, March 2014 2014 International Conference

More information

Design of Solar Power Optimizer And Eliminating Leakage Current In Multi-Level Inverter For PV Systems

Design of Solar Power Optimizer And Eliminating Leakage Current In Multi-Level Inverter For PV Systems Design of Solar Power Optimizer And Eliminating Leakage Current In Multi-Level Inverter For PV Systems A. Asaph 1, Dr. P. Selvan 2 1 PG Scholar, 2 Head of the Department, Erode Sengunthar Engineering College,

More information

T.FRANCIS, D.NARASIMHARAO

T.FRANCIS, D.NARASIMHARAO Applications (IJERA) ISSN: 48-96 wwwijeracom ol, Issue 3, May-Jun 0, pp40-46 A Soft-Switching DC/DC Converter With High oltage Gain for Renewable Energy Application TFRANCIS M-Tech Scholar, Power electronics

More information

Coordination Control of a Hybrid AC/DC Microgrid With Various Renewable Energy Sources

Coordination Control of a Hybrid AC/DC Microgrid With Various Renewable Energy Sources Coordination Control of a Hybrid AC/DC Microgrid With Various Renewable Energy Sources 1 Hema Surya Teja Beram, 2 Nandigam Rama Narayana 1,2 Dept. of EEE, Sir C R Reddy College of Engineering, Eluru, AP,

More information

Implementation of High Step-Up Solar Power Optimizer for DC Micro Grid Application

Implementation of High Step-Up Solar Power Optimizer for DC Micro Grid Application Implementation of High tepup olar Power Optimizer for C Micro Grid Application hihming Chen, KeRen Hu, TsorngJuu Liang, and YiHsun Hsieh Advanced Optoelectronic Technology Center epartment of Electrical

More information

An Efficient AC/DC Converter with Power Factor Correction

An Efficient AC/DC Converter with Power Factor Correction An Efficient AC/DC Converter with Power Factor Correction Suja C Rajappan 1, K. Sarabose 2, Neetha John 3 1,3 PG Scholar, Sri Shakthi Institute of Engineering & Technology, L&T Bypass Road, Coimbatore-62,

More information

Analysis and Control of Three Phase Multi level Inverters with Sinusoidal PWM Feeding Balanced Loads Using MATLAB

Analysis and Control of Three Phase Multi level Inverters with Sinusoidal PWM Feeding Balanced Loads Using MATLAB Analysis and Control of Three Phase Multi level s with Sinusoidal PWM Feeding Balanced Loads Using MATLAB Rajesh Kumar Ahuja 1, Amit Kumar 2 Department of Electrical Engineering, YMCA University of Science

More information

Distribution Generation System

Distribution Generation System Analysis of Solar Power Optimizer for DC Distribution Generation System Srinivas Dobbala 1, K. Chandra Mouli 2 1 Student, Department of EEE, Vaageswari College of Engineering, Karimnagar, Telangana, India

More information

SOLAR PV-WIND HYBRID POWER GENERATION SYSTEM

SOLAR PV-WIND HYBRID POWER GENERATION SYSTEM SOLAR PV-WIND HYBRID POWER GENERATION SYSTEM J.Godson 1,M.Karthick 2,T.Muthukrishnan 3,M.S.Sivagamasundari 4 Final year UG students, Department of EEE,V V College of Engineering,Tisaiyanvilai, Tirunelveli,

More information

SIMULATION AND ASSESSMENT OF SINGLE PHASE SEMI-Z-SOURCE INVERTER (S-ZSI)

SIMULATION AND ASSESSMENT OF SINGLE PHASE SEMI-Z-SOURCE INVERTER (S-ZSI) International Journal of Electrical Engineering & Technology (IJEET) Volume 7, Issue 1, Jan-Feb, 2016, pp.30-34, Article ID: IJEET_07_01_003 Available online at http:// http://www.iaeme.com/ijeet/issues.asp?jtype=ijeet&vtype=7&itype=1

More information

Three-port DC-DC Converters to Interface Renewable Energy Sources with Bi-directional Load and Energy Storage Ports

Three-port DC-DC Converters to Interface Renewable Energy Sources with Bi-directional Load and Energy Storage Ports Three-port DC-DC Converters to Interface Renewable Energy Sources with Bi-directional Load and Energy Storage Ports A DISSERTATION SUBMITTED TO THE FACULTY OF THE GRADUATE SCHOOL OF THE UNIVERSITY OF MINNESOTA

More information

A bidirectional DC-DC converter for renewable energy systems

A bidirectional DC-DC converter for renewable energy systems BULLETIN OF THE POLISH ACADEMY OF SCIENCES TECHNICAL SCIENCES Vol. 57, No. 4, 2009 A bidirectional DC-DC converter for renewable energy systems S. JALBRZYKOWSKI, and T. CITKO Faculty of Electrical Engineering,

More information

K.Vijaya Bhaskar,Asst. Professor Dept. of Electrical & Electronics Engineering

K.Vijaya Bhaskar,Asst. Professor Dept. of Electrical & Electronics Engineering Incremental Conductance Based Maximum Power Point Tracking (MPPT) for Photovoltaic System M.Lokanadham,PG Student Dept. of Electrical & Electronics Engineering Sri Venkatesa Perumal College of Engg & Tech

More information

Modeling Grid Connection for Solar and Wind Energy

Modeling Grid Connection for Solar and Wind Energy 1 Modeling Grid Connection for Solar and Wind Energy P. J. van Duijsen, Simulation Research, The Netherlands Frank Chen, Pitotech, Taiwan Abstract Modeling of grid connected converters for solar and wind

More information

International Journal of Science and Research (IJSR) ISSN (Online): 2319-7064 Index Copernicus Value (2013): 6.14 Impact Factor (2014): 5.

International Journal of Science and Research (IJSR) ISSN (Online): 2319-7064 Index Copernicus Value (2013): 6.14 Impact Factor (2014): 5. The Derivative of a Switched Coupled Inductor DC DC Step-Up Converter by Using a Voltage Lift Network with Closed Loop Control for Micro Source Applications Sangeetha K 1, Akhil A. Balakrishnan 2 1 PG

More information

Simulation and Analysis of PWM Inverter Fed Induction Motor Drive

Simulation and Analysis of PWM Inverter Fed Induction Motor Drive Simulation and Analysis of PWM Inverter Fed Induction Motor Drive C.S.Sharma, Tali Nagwani Abstract Sinusoidal Pulse Width Modulation variable speed drives are increasingly applied in many new industrial

More information

Control Development and Modeling for Flexible DC Grids in Modelica

Control Development and Modeling for Flexible DC Grids in Modelica Control Development and Modeling for Flexible DC Grids in Modelica Andreas Olenmark 1 Jens Sloth 2 Anna Johnsson 3 Carl Wilhelmsson 3 Jörgen Svensson 4 1 One Nordic AB, Sweden, andreas.olenmark@one-nordic.se.

More information

High Power Factor Boost Converter with Bridgeless Rectifier

High Power Factor Boost Converter with Bridgeless Rectifier IOSR Journal of Electrical and Electronics Engineering (IOSR-JEEE) e-issn: 2278-1676 Volume 4, Issue 3 (Jan. - Feb. 2013), PP 33-38 High Power Factor Boost Converter with Bridgeless Rectifier Kavithamani

More information

A COMPERATIVE PERFORMANCE ANALYSIS OF BRIDGELESS PFC BOOST CONVERTER WITH THE CONVENTIONAL CONVERTER

A COMPERATIVE PERFORMANCE ANALYSIS OF BRIDGELESS PFC BOOST CONVERTER WITH THE CONVENTIONAL CONVERTER A COMPERATIVE PERFORMANCE ANALYSIS OF BRIDGELESS PFC BOOST CONVERTER WITH THE CONVENTIONAL CONVERTER Shantiswaroop Agarwal 1, Pooja Gautam 2, Gaurav Kumar Sharma 3, Manoj Kumar Bhardwaj 4 1,2,3,4 Institute

More information

Development of High Frequency Link Direct DC to AC Converters for Solid Oxide Fuel Cells (SOFC)

Development of High Frequency Link Direct DC to AC Converters for Solid Oxide Fuel Cells (SOFC) Development of High Frequency Link Direct DC to AC Converters for Solid Oxide Fuel Cells (SOFC) Dr. Prasad Enjeti Power Electronics Laboratory Department of Electrical Engineering College Station, TX -

More information

New Pulse Width Modulation Technique for Three Phase Induction Motor Drive Umesha K L, Sri Harsha J, Capt. L. Sanjeev Kumar

New Pulse Width Modulation Technique for Three Phase Induction Motor Drive Umesha K L, Sri Harsha J, Capt. L. Sanjeev Kumar New Pulse Width Modulation Technique for Three Phase Induction Motor Drive Umesha K L, Sri Harsha J, Capt. L. Sanjeev Kumar Abstract In this paper, various types of speed control methods for the three

More information

MULTI-LEVEL INVERTER WITH DC LINK SWITCHES FOR RENEWABLE ENERGY SOURCES

MULTI-LEVEL INVERTER WITH DC LINK SWITCHES FOR RENEWABLE ENERGY SOURCES VOL., NO. 8, OCTOBER 25 ISSN 89-668 26-25 Asian Research Publishing Network (ARPN). All rights reserved. MULTI-LEVEL INVERTER WITH DC LINK SWITCHES FOR RENEWABLE ENERGY SOURCES Sangari A., Umamaheswari

More information

Transient analysis of integrated solar/diesel hybrid power system using MATLAB Simulink

Transient analysis of integrated solar/diesel hybrid power system using MATLAB Simulink Transient analysis of integrated solar/diesel hybrid power system using ATLAB Simulink Takyin Taky Chan School of Electrical Engineering Victoria University PO Box 14428 C, elbourne 81, Australia. Taky.Chan@vu.edu.au

More information

INTERFACES FOR RENEWABLE ENERGY SOURCES WITH ELECTRIC POWER SYSTEMS

INTERFACES FOR RENEWABLE ENERGY SOURCES WITH ELECTRIC POWER SYSTEMS INTERFACES FOR RENEWABLE ENERGY SOURCES WITH ELECTRIC POWER SYSTEMS Paulo Ferreira, Manuel Trindade, Júlio S. Martins and João L. Afonso University of Minho, Braga, Portugal paulo.alves.ferreira@sapo.pt,

More information

Design and Development of Speed Control of Induction motor drive using Pulse-Width Modulation

Design and Development of Speed Control of Induction motor drive using Pulse-Width Modulation Design and Development of Speed Control of Induction motor drive using Pulse-Width Modulation Jigar Vaidya 1, Vatsal Shukla 2, Darshan Kale 3 1 UG Student, Electrical Department,jdv27993@gmail.com, +91-9662532919

More information

Design And Implementation Of Seven Level Inverter With Solar Energy Genration System

Design And Implementation Of Seven Level Inverter With Solar Energy Genration System Ravula Sateesh,B.Venugopal Reddy 195 Design And Implementation Of Seven Level Inverter With Solar Energy Genration System RAVULA SATEESH 1 B.VENUGOPAL REDDY 2 EMAIL: r.sateeshsrinivas@gmail.com EMAIL:venugopal1729reddy@gmail.com

More information

Solar Energy Conversion using MIAC. by Tharowat Mohamed Ali, May 2011

Solar Energy Conversion using MIAC. by Tharowat Mohamed Ali, May 2011 Solar Energy Conversion using MIAC by Tharowat Mohamed Ali, May 2011 Abstract This work introduces an approach to the design of a boost converter for a photovoltaic (PV) system using the MIAC. The converter

More information

Analysis of AC-DC Converter Based on Power Factor and THD

Analysis of AC-DC Converter Based on Power Factor and THD Website: www.ijetae.com (SSN 50-459, SO 900:008 Certified Journal, Volume 3, ssue, February 03) Analysis of AC-DC Converter Based on Power Factor and THD Shiney.S.Varghese, Sincy George Department of Electrical

More information

Power Electronics for Renewable Energy Integration into Hybrid AC/DC Microgrids Kai SUN Aug 27, 2015

Power Electronics for Renewable Energy Integration into Hybrid AC/DC Microgrids Kai SUN Aug 27, 2015 Power Electronics for Renewable Energy Integration into Hybrid AC/DC Microgrids Kai SUN Aug 27, 2015 厚 德 载 物 自 强 不 息 Dept. of Electrical Engineering Outlines Introduction Series-distributed Renewable Generation

More information

MODELING AND SIMULATION OF A THREE-PHASE INVERTER WITH RECTIFIER-TYPE NONLINEAR LOADS

MODELING AND SIMULATION OF A THREE-PHASE INVERTER WITH RECTIFIER-TYPE NONLINEAR LOADS , pp. 7-1 MODELING AND SIMULAION OF A HREE-PHASE INERER WIH RECIFIER-YPE NONLINEAR LOADS Jawad Faiz 1 and Ghazanfar Shahgholian 2 1 School of Electrical and Computer Engineering, Faculty of Engineering,

More information

Power Electronics. Prof. K. Gopakumar. Centre for Electronics Design and Technology. Indian Institute of Science, Bangalore.

Power Electronics. Prof. K. Gopakumar. Centre for Electronics Design and Technology. Indian Institute of Science, Bangalore. Power Electronics Prof. K. Gopakumar Centre for Electronics Design and Technology Indian Institute of Science, Bangalore Lecture - 1 Electric Drive Today, we will start with the topic on industrial drive

More information

Yield Reduction due to Shading:

Yield Reduction due to Shading: 1x4 1x16 10 x CBC Energy A/S x Danfoss Solar Inverters CBC-40W Poly 40 W TLX 1,5k 5 ; 1x11 3x4 0 1,5kW 1536 x CBC Energy A/S 1 x Power-One CBC-40W Poly 40 W TRIO-7,6-TL-OUTD 30 ; 4x14 0 7,6kW Location:

More information

MICRO HYDRO POWER PLANT WITH INDUCTION GENERATOR SUPPLYING SINGLE PHASE LOADS

MICRO HYDRO POWER PLANT WITH INDUCTION GENERATOR SUPPLYING SINGLE PHASE LOADS MICRO HYDRO POWER PLANT WITH INDUCTION GENERATOR SUPPLYING SINGLE PHASE LOADS C.P. ION 1 C. MARINESCU 1 Abstract: This paper presents a new method to supply single-phase loads using a three-phase induction

More information

A Design of DC/DC Converter of Photovoltaic Generation System for Streetcars

A Design of DC/DC Converter of Photovoltaic Generation System for Streetcars Journal of International Council on Electrical Engineering Vol. 3, No. 2, pp.164~168, 2013 http://dx.doi.org/10.5370/jicee.2013.3.2.164 A Design of DC/DC Converter of Photovoltaic Generation System for

More information

Development of Micro-Hydro Power Plant using Transistor Clamped Multilevel Inverter

Development of Micro-Hydro Power Plant using Transistor Clamped Multilevel Inverter Development of Micro-Hydro Power Plant using Transistor Clamped Multilevel Inverter Prem Kumar Chaurasiya 1, Jaydeep Lakwal 2, Manish Singh Bharti 3 Assistant Professor, Department of Mechanical Engineering,

More information

How To Improve Power Quality

How To Improve Power Quality Power Quality Improvement Of Three Phase Four Wire Distribution System Using VSC With A Zig-Zag Transformer Sajith Shaik *, I.Raghavendar ** *(Department of Electrical Engineering, Teegala Krishna Reddy

More information

Bridgeless PFC Implementation Using One Cycle Control Technique

Bridgeless PFC Implementation Using One Cycle Control Technique Bridgeless PFC Implementation Using One Cycle Control Technique Bing Lu Center for Power Electronics Systems Virginia Polytechnic Institute and State University 674 Whittemore Hall Blacksburg, VA 24061

More information

98% Efficient Single-Stage AC/DC Converter Topologies

98% Efficient Single-Stage AC/DC Converter Topologies 16 POWER CONVERTERS www.teslaco.com 98% Efficient Single-Stage AC/DC Converter Topologies A new Hybrid Switching Method is introduced in this article which for the first time makes possible AC/DC power

More information

Transformerless UPS systems and the 9900 By: John Steele, EIT Engineering Manager

Transformerless UPS systems and the 9900 By: John Steele, EIT Engineering Manager Transformerless UPS systems and the 9900 By: John Steele, EIT Engineering Manager Introduction There is a growing trend in the UPS industry to create a highly efficient, more lightweight and smaller UPS

More information

Performance Enhancement of Wound Rotor Induction Motor by VSI with Dynamic Capacitor Controlled Rotor Circuit

Performance Enhancement of Wound Rotor Induction Motor by VSI with Dynamic Capacitor Controlled Rotor Circuit Performance Enhancement of Wound Rotor Induction Motor by VSI with Dynamic Capacitor Controlled Rotor Circuit K.Ranjith kumar kumar, Dr.S.Palaniswami K.Priyadharsini, Senior Senior Lecturer Lecturer Professor

More information

A Stable DC Power Supply for Photovoltaic Systems

A Stable DC Power Supply for Photovoltaic Systems Int. J. of Thermal & Environmental Engineering Volume 12, No. 1 (216) 67-71 A Stable DC Power Supply for Photovoltaic Systems Hussain A. Attia*, Beza Negash Getu, and Nasser A. Hamad Department of Electrical,

More information

DC Voltage Regulation by Buck Converter Applicable for Stand Alone Micro Hydro Power Generation

DC Voltage Regulation by Buck Converter Applicable for Stand Alone Micro Hydro Power Generation International Journal of Electronic and Electrical Engineering. ISSN 0974-2174, Volume 7, Number 1 (2014), pp. 37-42 International Research Publication House http://www.irphouse.com DC Voltage Regulation

More information

How To Simulate A Multilevel Inverter

How To Simulate A Multilevel Inverter Neutral Point Potential Balance of Three Phase Three Level Diode Clamped Inverter BALAMURUGAN M GNANA PRAKASH M Dr.UMASHANKAR S School of Electrical Engineering School of Electrical Engineering School

More information

Bi-directional power management and fault tolerant feature in a 5-kW multilevel dc dc converter with modular architecture F.H. Khan 1 L.M.

Bi-directional power management and fault tolerant feature in a 5-kW multilevel dc dc converter with modular architecture F.H. Khan 1 L.M. Published in IET Power Electronics Received on 9th June 2008 Revised on 25th November 2008 ISSN 1755-4535 Bi-directional power management and fault tolerant feature in a 5-kW multilevel dc dc converter

More information

Simulation and Analysis of Parameter Identification Techniques for Induction Motor Drive

Simulation and Analysis of Parameter Identification Techniques for Induction Motor Drive International Journal of Electronic and Electrical Engineering. ISSN 0974-2174 Volume 7, Number 10 (2014), pp. 1027-1035 International Research Publication House http://www.irphouse.com Simulation and

More information

NEURO-FUZZY BASED POWER QUALITY IMPROVEMENTS IN A THREE PHASE FOUR WIRE DISTRIBUTION SYSTEM USING DSTATCOM

NEURO-FUZZY BASED POWER QUALITY IMPROVEMENTS IN A THREE PHASE FOUR WIRE DISTRIBUTION SYSTEM USING DSTATCOM NEURO-FUZZY BASED POWER QUALITY IMPROVEMENTS IN A THREE PHASE FOUR WIRE DISTRIBUTION SYSTEM USING DSTATCOM E.Babu 1,R.Subramanian 2 1, Department of Electrical and electronics engg 2 Department of Electrical

More information

Fundamentals of Power Electronics. Robert W. Erickson University of Colorado, Boulder

Fundamentals of Power Electronics. Robert W. Erickson University of Colorado, Boulder Robert W. Erickson University of Colorado, Boulder 1 1.1. Introduction to power processing 1.2. Some applications of power electronics 1.3. Elements of power electronics Summary of the course 2 1.1 Introduction

More information

SPEED CONTROL OF INDUCTION MACHINE WITH REDUCTION IN TORQUE RIPPLE USING ROBUST SPACE-VECTOR MODULATION DTC SCHEME

SPEED CONTROL OF INDUCTION MACHINE WITH REDUCTION IN TORQUE RIPPLE USING ROBUST SPACE-VECTOR MODULATION DTC SCHEME International Journal of Advanced Research in Engineering and Technology (IJARET) Volume 7, Issue 2, March-April 2016, pp. 78 90, Article ID: IJARET_07_02_008 Available online at http://www.iaeme.com/ijaret/issues.asp?jtype=ijaret&vtype=7&itype=2

More information

Power Quality Issues in Railway Electrification

Power Quality Issues in Railway Electrification International Journal of Computer Sciences and Engineering Open Access Survey Paper Volume-4, Issue-1 E-ISSN: 2347-2693 Power Quality Issues in Railway Electrification Rajshree S Thorat 1*, M. M. Deshpande

More information

System configuration of v-f control with solar PV generator operating at MPPT with a battery storage System

System configuration of v-f control with solar PV generator operating at MPPT with a battery storage System ISSN: 2278 1323 All Rights Reserved 2015 IJARCET 4222 International Journal of Advanced Research in Computer Engineering & Technology (IJARCET) System configuration of v-f control with solar PV generator

More information

USE OF ARNO CONVERTER AND MOTOR-GENERATOR SET TO CONVERT A SINGLE-PHASE AC SUPPLY TO A THREE-PHASE AC FOR CONTROLLING THE SPEED OF A THREE-PHASE INDUCTION MOTOR BY USING A THREE-PHASE TO THREE-PHASE CYCLOCONVERTER

USE OF ARNO CONVERTER AND MOTOR-GENERATOR SET TO CONVERT A SINGLE-PHASE AC SUPPLY TO A THREE-PHASE AC FOR CONTROLLING THE SPEED OF A THREE-PHASE INDUCTION MOTOR BY USING A THREE-PHASE TO THREE-PHASE CYCLOCONVERTER International Journal of Electrical Engineering & Technology (IJEET) Volume 7, Issue 2, March-April, 2016, pp.19-28, Article ID: IJEET_07_02_003 Available online at http:// http://www.iaeme.com/ijeet/issues.asp?jtype=ijeet&vtype=7&itype=2

More information

Comparison of an Efficient Buck Converter Configuration for the DC Power Distribution Of Future Green Data Centers

Comparison of an Efficient Buck Converter Configuration for the DC Power Distribution Of Future Green Data Centers Comparison of an Efficient Buck Converter Configuration for the DC Power Distribution Of Future Green Data Centers Sindhu Shetty 1, I. V. Prasanna 2, S. K. Panda 3 UG student, Dept. of EEE, National Institute

More information

Droop Control Forhybrid Micro grids With Wind Energy Source

Droop Control Forhybrid Micro grids With Wind Energy Source Droop Control Forhybrid Micro grids With Wind Energy Source [1] Dinesh Kesaboina [2] K.Vaisakh [1][2] Department of Electrical & Electronics Engineering Andhra University College of Engineering Visakhapatnam,

More information

Power Electronic Circuits

Power Electronic Circuits Power Electronic Circuits Assoc. Prof. Dr. H. İbrahim OKUMUŞ Karadeniz Technical University Engineering Faculty Department of Electrical And Electronics 1 DC to DC CONVERTER (CHOPPER) General Buck converter

More information

Modulation Strategies For Three Phase Inverters Supplying Unbalanced Three Phase Loads

Modulation Strategies For Three Phase Inverters Supplying Unbalanced Three Phase Loads ISSN (Online) : 9-875 ISSN (Print) : 47-67 International Journal of Innovative Research in Science, Engineering and Technology Volume, Special Issue, March 4 4 International Conference on Innovations in

More information

Design and Simulation of Z-Source Inverter for Brushless DC Motor Drive

Design and Simulation of Z-Source Inverter for Brushless DC Motor Drive Science Arena Publications Specialty Journal of Electronic and Computer Sciences Available online at www.sciarena.com 2015, Vol, 1 (1): 30-34 Design and Simulation of Z-Source Inverter for Brushless DC

More information

DESIGN AND DEVELOPMENT OF UTILITY INTERFACE ADAPTIVE SOLAR POWER CONVERTER FOR WATER PUMPING SYSTEM IN INDIAN VILLAGES

DESIGN AND DEVELOPMENT OF UTILITY INTERFACE ADAPTIVE SOLAR POWER CONVERTER FOR WATER PUMPING SYSTEM IN INDIAN VILLAGES DESIGN AND DEVELOPMENT OF UTILITY INTERFACE ADAPTIVE SOLAR POWER CONVERTER FOR WATER PUMPING SYSTEM IN INDIAN VILLAGES 1 S. N. Singh, 2 Snehlata Mishra & 3 Vandana Neha Tigga Department of Electronics

More information

Survey of Harmonics Measurements in Electrical Distribution Systems

Survey of Harmonics Measurements in Electrical Distribution Systems Survey of Harmonics Measurements in Electrical Distribution Systems Leon M. Tolbert, Member, IEEE Oak Ridge National Laboratory* P.O. Box 28, Bldg Oak Ridge, TN 3783-6334 Alexandria, VA 2235-3862 Phone:

More information

Analysis of Space Vector Pulse Width Modulation VSI Induction Motor on various conditions

Analysis of Space Vector Pulse Width Modulation VSI Induction Motor on various conditions Analysis of Space Vector Pulse Width Modulation VSI Induction Motor on various conditions Padma Chaturvedi 1, Amarish Dubey 2 1 Department of Electrical Engineering, Maharana Pratap Engineering College,

More information

CYCLOCONVERTERS. Fig.1 Block diagram of a cycloconverter

CYCLOCONVERTERS. Fig.1 Block diagram of a cycloconverter CYCLOCONVERTERS Burak Ozpineci, Leon M. Tolbert Department of Electrical and Computer Engineering University of Tennessee-Knoxville Knoxville, TN 37996-2100 In industrial applications, two forms of electrical

More information

A bidirectional, sinusoidal, high-frequency inverter design

A bidirectional, sinusoidal, high-frequency inverter design A bidirectional, sinusoidal, high-frequency inverter design E.Koutroulis, J.Chatzakis, K.Kalaitzakis and N.C.Voulgaris Abstract: A new method for the design of a bidirectional inverter based on the sinusoidal

More information

AC/DC Power Supply Reference Design. Advanced SMPS Applications using the dspic DSC SMPS Family

AC/DC Power Supply Reference Design. Advanced SMPS Applications using the dspic DSC SMPS Family AC/DC Power Supply Reference Design Advanced SMPS Applications using the dspic DSC SMPS Family dspic30f SMPS Family Excellent for Digital Power Conversion Internal hi-res PWM Internal high speed ADC Internal

More information

The Grid Interconnection of Renewable Energy at Distribution Level with the Features of High Power-Quality Improvement

The Grid Interconnection of Renewable Energy at Distribution Level with the Features of High Power-Quality Improvement The Grid Interconnection of Renewable Energy at Distribution Level with the Features of High Power-Quality Improvement Surendar Nagarapu 1, Shaik Khamuruddin 2, and Durgam. Kumara Swamy 3 1 M.Tech, Scholar

More information

A Step up DC-DC Converter with Coupled Inductor for Renewable Energy Applications using MPPT

A Step up DC-DC Converter with Coupled Inductor for Renewable Energy Applications using MPPT A Step up DC-DC Converter with Coupled Inductor for Renewable Energy Applications using MPPT Parvathi Mohan 1, Sreeja E A 2 1 PG Student [Power Electronics & Power System], Dept. of EEE, Federal Institute

More information

Interfacing Renewable Energy Sources to the AC Grid by a CMLI with Voltage Regulation under Low THD

Interfacing Renewable Energy Sources to the AC Grid by a CMLI with Voltage Regulation under Low THD Universal Journal of Electrical and Electronic Engineering 2(4): 170-177, 2014 DOI: 10.13189/ujeee.2014.020405 http://www.hrpub.org Interfacing Renewable Energy Sources to the AC Grid by a CMLI with Voltage

More information

Energy Storage System for Dc Micro Grid Using PIC Microcontroller

Energy Storage System for Dc Micro Grid Using PIC Microcontroller Energy Storage System for Dc Micro Grid Using PIC Microcontroller Sanas Renuka V 1, Patil Anupama S 2 P.G. Student, Department of Electrical Engg, Dnyanganga College of Engineering & Research, Pune, India

More information

Power Quality For The Digital Age INVERTING SOLAR POWER A N E N V IRONME N TA L P OT E N T I A L S W HI T E PA PER. www.ep2000.com 800.500.

Power Quality For The Digital Age INVERTING SOLAR POWER A N E N V IRONME N TA L P OT E N T I A L S W HI T E PA PER. www.ep2000.com 800.500. Power Quality For The Digital Age INVERTING SOLAR POWER A N E N V IRONME N TA L P OT E N T I A L S W HI T E PA PER Introduction Heat in the System The modern facility has been revolutionized by advancements

More information

Analysis of a Hybrid System for Decentralized Power Generation

Analysis of a Hybrid System for Decentralized Power Generation Journal of Clean Energy Technologies, Vol. 3, No. 1, January 2015 Analysis of a Hybrid System for Decentralized Power Generation H. Hinz Abstract Traditionally a centralized power generation based on fossil

More information

Design and Construction of Variable DC Source for Laboratory Using Solar Energy

Design and Construction of Variable DC Source for Laboratory Using Solar Energy International Journal of Electronics and Computer Science Engineering 228 Available Online at www.ijecse.org ISSN- 2277-1956 Design and Construction of Variable DC Source for Laboratory Using Solar Energy

More information

Control Strategy for Three Phase Shunt Active Power Filter with Minimum Current Measurements

Control Strategy for Three Phase Shunt Active Power Filter with Minimum Current Measurements International Journal of Electrical and Computer Engineering (IJECE) Vol.1, No.1, September 2011, pp. 31~ 42 ISSN: 2088-8708 31 Control Strategy for Three Phase Shunt Active Power Filter with Minimum Current

More information

Variable Voltage Variable Frequency Speed Control of Induction Motor Using FPGA-Xilinx

Variable Voltage Variable Frequency Speed Control of Induction Motor Using FPGA-Xilinx Variable Voltage Variable Frequency Speed Control of Induction Motor Using FPGA-Xilinx Ravi Prakash 1, Prof. Rishi Kumar Singh 2, Rajeev Ranjan Kumar 3 1Ravi Prakash,Department of Electrical Engineering,

More information

High-Megawatt Converter Technology Workshop for Coal-Gas Based Fuel Cell Power Plants January 24, 2007 at NIST

High-Megawatt Converter Technology Workshop for Coal-Gas Based Fuel Cell Power Plants January 24, 2007 at NIST Session 4a Enjeti 1 High-Megawatt Converter Technology Workshop for Coal-Gas Based Fuel Cell Power Plants January 24, 2007 at NIST Dr. Prasad Enjeti TI TI Professor Power Electronics Laboratory College

More information

The Quest for Energy Efficiency. A White Paper from the experts in Business-Critical Continuity

The Quest for Energy Efficiency. A White Paper from the experts in Business-Critical Continuity The Quest for Energy Efficiency A White Paper from the experts in Business-Critical Continuity Abstract One of the most widely discussed issues throughout the world today is the rapidly increasing price

More information