Uncertainty modeling revisited: What if you don t know the probability distribution?



Similar documents
Representing Uncertainty by Probability and Possibility What s the Difference?

70 Mpa Hydrogen Refuelling Stations

Profit Forecast Model Using Monte Carlo Simulation in Excel

Framework for Railway Phase-based Planning Rui Li, Otto Anker Nielsen, DTU Transport

Chapter 11 Monte Carlo Simulation

DTU FOTONIK. Ann Ukhanova, Lars Dittmann and Søren Forchhammer. Technical University of Denmark

Numerical Methods with Excel/VBA:

Building and Using Spreadsheet Decision Models

Numerical Methods with Excel/VBA:

1. Then f has a relative maximum at x = c if f(c) f(x) for all values of x in some

Math 104A - Homework 2

Centre for Facilities Management Realdania Research. Susanne Balslev Nielsen, M.Sc., Ph.D. IFMA-conference, Stockholm, 6.

Section 2.7 One-to-One Functions and Their Inverses

Credit Risk Stress Testing

Homework # 3 Solutions

Simulation and Risk Analysis

Risk Analysis and Quantification

Sustainable production of biogas and bioethanol from waste

Using simulation to calculate the NPV of a project

Consulting Project Assignment Optimization Using Monte Carlo Simulation and Nonlinear Programming

Business Valuation under Uncertainty

Public Sector Comparator for Highway PPP Projects. Henry Kerali Lead Transport Specialist

Introduction to Financial Models for Management and Planning

Chapter 11 Cash Flow Estimation and Risk Analysis ANSWERS TO SELECTED END-OF-CHAPTER QUESTIONS

5.1 Derivatives and Graphs

x a x 2 (1 + x 2 ) n.

Schedule Risk Analysis A large DoD Development Program

Recycling of plastic composites as basis for a competitive advantage h - GenVind Consortium

Buy-back Contract Risk Modeling Using System Dynamics

Continuity. DEFINITION 1: A function f is continuous at a number a if. lim

5.7 Maximum and Minimum Values

StruSoft Program Universe. By Dennis Kristensen. Vice President StruSoft DK

REAL-TIME PRICE FORECAST WITH BIG DATA

How To Calculate The Cost Of Solar Power In Indiana

Sensitivity Analysis of Safety Measures for Railway Tunnel Fire Accident

TEACHING SIMULATION WITH SPREADSHEETS

Rehabilitation Scenarios for Sustainable Water Mains. University, Montreal, Quebec, Canada, PH (514) ext. 8779; FAX (514) ;

How To Price Garch

FINANCIAL AND RISK ANALYSIS WITH RETSCREEN SOFTWARE. SLIDE 1: Financial and Risk Analysis with RETScreen Software

Examples of Tasks from CCSS Edition Course 3, Unit 5

Stochastic programming approach to ALM in Finnish pension insurance companies p.1/36

Project Cash Flow Forecasting Using Value at Risk

CRASHING-RISK-MODELING SOFTWARE (CRMS)

Airline Fleet Planning Models J/1.234J Airline Management Dr. Peter P. Belobaba April 10, 2006

A FUZZY LOGIC APPROACH FOR SALES FORECASTING

Random Variate Generation (Part 3)

COMPUTING DURATION, SLACK TIME, AND CRITICALITY UNCERTAINTIES IN PATH-INDEPENDENT PROJECT NETWORKS

Pricing complex options using a simple Monte Carlo Simulation

Quantitative Risk Analysis with Microsoft Project

rate nper pmt pv Interest Number of Payment Present Future Rate Periods Amount Value Value 12.00% 1 0 $ $112.00

Comparaison mellom Matlab RISK som verktøy for risikoanalyse

Whole of life cycle cost analysis in bridge rehabilitation

CS 261 Fall 2011 Solutions to Assignment #4

Review of Matlab for Differential Equations. Lia Vas

PRACTICE FINAL. Problem 1. Find the dimensions of the isosceles triangle with largest area that can be inscribed in a circle of radius 10cm.

Better decision making under uncertain conditions using Monte Carlo Simulation

Monte Carlo Estimation of Project Volatility for Real Options Analysis

Market Size Forecasting Using the Monte Carlo Method. Multivariate Solutions

Dimitris Katsianis. University of Athens Dept of Informatics & Telecommunications dkats@di.uoa.gr

CHAPTER 11. Proposed Project. Incremental Cash Flow for a Project. Treatment of Financing Costs. Estimating cash flows:

Husum Wind Energy 6th of June Johannes Ritter Partner Solution Matrix

<Insert Picture Here> Working With Dashboards for Risk Measurement

INT 3 Schedule Risk Analysis

1 Teaching notes on GMM 1.

Inverse Functions and Logarithms

Chapter 11 Cash Flow Estimation and Risk Analysis

Assessment of Transport Projects: Risk Analysis and Decision Support

Chapter 8 Subjective Probability

Determining Probabilistic Estimates of Net Present Value for US Offshore Wind Projects. Introduction

HUMAN CENTRIC LIGHTING. Circadian rhythms. LUMINEX A/S - Phone: Vrøndingvej 7, 8700 Horsens - Bådehavnsgade 6, 2., 2450 København SV

Business Strategy: Strategic Models

CITIGROUP INC. BASEL II.5 MARKET RISK DISCLOSURES AS OF AND FOR THE PERIOD ENDED MARCH 31, 2013

Computing Near Optimal Strategies for Stochastic Investment Planning Problems

FACTORING SPARSE POLYNOMIALS

Numerical Methods for Option Pricing

Uncertainty of Power Production Predictions of Stationary Wind Farm Models

Math Numerical Analysis Homework #2 Solutions

Probability and Random Variables. Generation of random variables (r.v.)

A joint control framework for supply chain planning

Transcription:

: What if you don t know the probability distribution? Hans Schjær-Jacobsen Technical University of Denmark 15 Lautrupvang, 2750 Ballerup, Denmark hschj@dtu.dk

Uncertain input variables Uncertain system model Uncertain output variables Uncertain system model parameters 2 DTU Diplom, Danmarks Tekniske Universitet

Calculation methods of probability output distributions Domain of input variables Infinite Finite Probability distributions of input variables Available Not available Full probability distributions of output variables by Monte Carlo simulation Not relevant Full probability distributions of output variables by Monte Carlo simulation Minimum and maximum of output variables by 1) Monte Carlo simulation or 2) Interval analysis 3 DTU Diplom, Danmarks Tekniske Universitet

Simple test model f(x) = x(1-x) with uncertain variabel x = [0; 1] 1) Monte Carlo simulation, @RISK 2) Interval Analysis, Interval Solver Result: [0; 0,25] 4 DTU Diplom, Danmarks Tekniske Universitet

5 DTU Diplom, Danmarks Tekniske Universitet

6 DTU Diplom, Danmarks Tekniske Universitet

7 DTU Diplom, Danmarks Tekniske Universitet

8 DTU Diplom, Danmarks Tekniske Universitet

9 DTU Diplom, Danmarks Tekniske Universitet

10 DTU Diplom, Danmarks Tekniske Universitet

Extending to triangular uncertainty! 11 DTU Diplom, Danmarks Tekniske Universitet

Probability or possibility distribution? min value typical value max value uncertain input variable Triple estimate 12 DTU Diplom, Danmarks Tekniske Universitet

0.25 Probability µ = (a+b+c)/3 Ã 2 = (a 2 +b 2 +c 2 -ab-ac-bc)/18 Possibility 1.2 0.20 0.8 0.15 0.6 0.10 ±-cut 0.4 5 h = 2/(b-a) 0.2 0 5 a = 7 c = 10 b = 16 18 13 DTU Diplom, Danmarks Tekniske Universitet

Simple test model f(x) = x(1-x) with triangular uncertain variabel x = [0; 0,2; 1] 1) Probability, Monte Carlo simulation, @RISK 2) Possibility, Interval Analysis, Interval Solver 14 DTU Diplom, Danmarks Tekniske Universitet

Uncertain input variable x = [0; 0,2; 1] 2.4 Probability Possibility 1.2 2.0 1.6 0.8 1.2 0.6 0.8 0.4 0.4 0.2-0.2 0.2 0.4 0.6 0.8 1.2 15 DTU Diplom, Danmarks Tekniske Universitet

Uncertain output variable f(x) = x(1-x) 35 1.2 30 Probability Possibility 25 0.8 20 0.6 15 10 0.4 5 0.2 0-5 0 5 0.10 0.15 0.20 0.25 x(1-x) 0.30 16 DTU Diplom, Danmarks Tekniske Universitet

Simple test model f(x) = sin(x) with triangular uncertain variabel x 1) Probability, Monte Carlo simulation, @RISK 2) Possibility, Interval analysis, Interval Solver 17 DTU Diplom, Danmarks Tekniske Universitet

Uncertain input variable x = [0; 2pi/16; 2pi/8] 1 0 0 π 2π -1 18 DTU Diplom, Danmarks Tekniske Universitet

3.0 2.0 0.5 - -0.5 0.5 sinus [0; 2pi/16; 2pi/8] 19 DTU Diplom, Danmarks Tekniske Universitet

Uncertain input variable x = [0;4pi/16;4pi/8] 1 0 0 π 2π -1 20 DTU Diplom, Danmarks Tekniske Universitet

1.8 1.6 1.4 1.2 0.8 0.5 0.6 0.4 0.2 - -0.5 0.5 sinus [0; 4pi/16; 4pi/8] 21 DTU Diplom, Danmarks Tekniske Universitet

Uncertain input variable x = [0;6pi/16; 6pi/8] 1 0 0 π 2π -1 22 DTU Diplom, Danmarks Tekniske Universitet

8.0 6.0 4.0 0.5 2.0 - -0.5 0.5 sinus [0; 6pi/16; 6pi/8] 23 DTU Diplom, Danmarks Tekniske Universitet

Uncertain input variable x = [0; 8pi/16; 8pi/8] 1 0 0 π 2π -1 24 DTU Diplom, Danmarks Tekniske Universitet

8.0 6.0 4.0 0.5 2.0 - -0.5 0.5 sinus [0; 8pi/16; 8pi/8] 25 DTU Diplom, Danmarks Tekniske Universitet

Uncertain input variable x = [0; 10pi/16; 10pi/8] 1 0 0 π 2π -1 26 DTU Diplom, Danmarks Tekniske Universitet

6.0 5.0 4.0 3.0 0.5 2.0 - -0.5 0.5 sinus [0; 10pi/16; 10pi/8] 27 DTU Diplom, Danmarks Tekniske Universitet

Uncertain input variable x = [0; 12pi/16; 12pi/8] 1 0 0 π 2π -1 28 DTU Diplom, Danmarks Tekniske Universitet

4.0 3.0 2.0 0.5 - -0.5 0.5 sinus [0; 12pi/16; 12pi/8] 29 DTU Diplom, Danmarks Tekniske Universitet

Uncertain input variable x = [0; 14pi/16; 14pi/8] 1 0 0 π 2π -1 30 DTU Diplom, Danmarks Tekniske Universitet

3.0 2.0 0.5 - -0.5 0.5 sinus [0; 14pi/16; 14pi/8] 31 DTU Diplom, Danmarks Tekniske Universitet

Uncertain input variable x = [0; 16pi/16; 16pi/8] 1 0 0 π 2π -1 32 DTU Diplom, Danmarks Tekniske Universitet

2.5 2.0 1.5 0.5 0.5 - -0.5 0.5 sinus [0; 16pi/16; 16pi/8] 33 DTU Diplom, Danmarks Tekniske Universitet

CASE: Investment in a railway line Guide to Cost Benefit Analysis of Investment Projects, European Commission, 2008, pp. 146-157 Base Case: Table 4.22, p. 154 30 years horizon Discount rate = 5,5%, NPV = 1.953,3 12 investment cost input variables Uncertain investments: 12 independent and uncorrelated investment variables Uncertainty factor on these 12 input variables: [0,9; 1; 3] Calculate uncertain NPV 34 DTU Diplom, Danmarks Tekniske Universitet

Investment in a railway line 018 016 Probability 014 0.8 012 Possibility 010 0.6 008 0.4 006 004 0.2 002 000-1000 -500 0 500 1000 1500 2000 2500 NPV 35 DTU Diplom, Danmarks Tekniske Universitet