A FUZZY LOGIC APPROACH FOR SALES FORECASTING
|
|
|
- Madlyn Ray
- 9 years ago
- Views:
Transcription
1 A FUZZY LOGIC APPROACH FOR SALES FORECASTING ABSTRACT Sales forecasting proved to be very important in marketing where managers need to learn from historical data. Many methods have become available for forecasting, generally used statistical methods, such as exponential smoothing, moving average, autoregressive moving average (ARMA), or the autoregressive integrated moving average (ARIMA). These methods model sales only on previous sales data and tend to be linear in nature and don t take into account both internal and external factors that may directly influence sales. In this paper, a model based on fuzzy logic theory has been investigated and applied to an actual sales forecasting situation faced by marketing managers involving human judgment. To illustrate the model, we simulated sales forecast based on an exponential smoothing model that minimize the Mean Squared Error (MSE) and inferred the result with the Fuzzy Logic System (FLS) developed. INTRODUCTION Sales forecast have been of interest for a number of marketing researchers. In fact, West [17] conducted a survey mailed to 900 senior Canadian marketing executive and top managers responsible for marketing in smaller companies. West targeted marketers because they are responsible for sales forecasting. He found that only 10% of of the companies surveyed used one method. This means that 90% of them used more than one method, generally combining quantitative forecasting methods with qualitative ones. Qualitative forecasting is based on human reasoning that is complex, tainted of reasonable amount of imprecision, vagueness and uncertainty. Known conventional quantitative techniques to represent humanistic systems failed, because revealed to be to unable handle fuzziness and lack or a low level of precision to mimic human reasoning in solving real world problems. There are many mathematical models used to deal with such problems, including stochastic models, mathematical models that follow the laws of physics and models which have emerged from mathematical logic. However, these models face a general difficulty on how to build an appropriate mathematical model from a given problem? Obviously, the evolution of Technology and advanced computer systems makes it possible; but, managing such systems remains a real challenge to cope with randomness ambiguity and uncertainty and are very hard to implement. This type of problems involving such vagueness and ambiguity, are often related to the process of human thinking, are better represented by Fuzzy Logic Theory, developed initially by Zadeh [19]. In this paper, we will first, present forecasting sales methods used by business. Second, Fuzzy Logic Theory is introduced along with Fuzzy Logic System (FLS) structure. The next section is reserved for the Sales Forecast FLS and a numerical illustration. Finally, we conclude. FORECASTING SALES METHODS Forecasting sales methods are interesting and difficult. It involves predicting the amount of products that people will purchase given the products features and condition of sales. Two types of forecasting methods are known, namely the quantitative ones and the qualitative ones. In this section, we don t aim to develop and present the different forecasting technique used in sales forecasting. We only list some of these techniques and the reader who is interested in them can consult the references listed at the end of this paper.
2 Quantitative sales forecasting methods Quantitative methods make no use of marketing managers knowledge of series. They assume that the casual forces that have affected a historical series will continue over the forecast horizon [8][10]. Among the multiple methods used, one can use the direct extrapolation of the trend [11], the exponential smoothing [5], the seasonal adjustment known as moving average, used in short term forecasting [4][9], or the naïve forecast appropriate in situation of large uncertainty [2][14]. More complication forecasting methods can be used such as the autoregressive moving average (ARMA) [18] model and the autoregressive integrated moving average (ARIMA) [18] model, among others. The casual approaches to sales forecasting approach suppose that the marketing manager can forecast the factors that cause sales to vary. This begins environmental factors such as population, Gross National Product (GNP) and legal system. These factors affect the behavior of customers, competitors, suppliers, distributors and partners. Their actions lead to a market forecast and provide inputs for the market share forecast. The of the market forecast and the market share forecast determines the sales forecast. Econometrics models are used in this case to determine the sales forecast [1][12][15][16]. Qualitative sales forecasting methods Several companies use traditional sales forecast stage to generate their sales forecast. In this methods, sales representatives and managers are asked to make a qualitative assessment of their opportunity. This forecast is based on the sales representatives and managers intuition rather than metrics. The accuracy of their forecast can be improved by the use of structured qualitative methods such as the the Delphi [13] method. Among newly developed methods is the Data Driven sales forecasting method. This method uses opportunity stages. In fact, in Customer relationship management (CRM) systems, such as Microsoft Dynamics, each opportunity has a status or stage. Each stage represents a milestone that one works towards to take a validated sales opportunity across the finish line. In the CRM, these stages might be steps like prospecting, qualifying needs, assessment, presentation, negotiation and closure (sales finalized or closed). Each of these stages will have a probability of closing associated with them. In early stages, the probability of closing can be for example 10% while in a later stage, for example in the negotiation stage, it can be 90%. Using this method, sales forecast can be determined as follow: where, S " = p % s % p j is the probability of closing for client j s j is the sales amount for client j i is the i-th sales representative ( ' % ' (1) Baker [3] stated forecasting methods based on extrapolation are inexpensive and often adequate for forecasting decisions that need to be made. However, in situations where large changes are expected, casual approaches are recommended. Combining quantitative and qualitative forecasting methods take into account both the historical data and trend as well as sales representatives and marketing managers opinions as expert of the field. In the next section, we will introduce the Fuzzy Logic Theory as a method to integrate sales representatives and marketing managers opinions and judgments for sales forecasting.
3 FUZZY LOGIC THEORY Fuzzy logic, used to formalize human reasoning, is an extension of Boolean logic developed by Zadeh [20] based on fuzzy sets theory, which is a generalization of the classical set theory. Fuzzy logic aims to decrease complexity by allowing the use of imperfect information in sensible way. One major advantage of fuzzy logic is that the rules are set in natural language with many inputs and output variables to allow solving complex problems and is able to give results in the form of recommendation for a specific interval of output. In classical set theory, elements follow the law of the excluded middle, either belong to or do not belong to a set. A function f A (x) describing the classical set A (non-fuzzy) is presented as follow: f * x X 0,1 f * x = 1 if x A f * x = 1 if x A (2) Whereas in fuzzy logic theory, a fuzzy subset A of a universal set X is characterized by the following membership function: μ * X 0, 1 (3) which assign a real number μ * x in the interval 0, 1, to each element x X t, where the value of μ * x at x shows the grade of membership of x in A. The degree of membership function is determined by placing a chosen input variable on the horizontal axis, while vertical axis shows quantification of grade of membership of the input variable. The membership function varies between zero and one; zero means that input variable is not a member of the fuzzy set, one means that input variable is a member of the fuzzy set. These membership functions can be represented by using graphical representations. This graphical representation can be based on a fuzzy association pairs, matrices, or mathematical equations that can have different shapes (triangular most common one, bell, trapezoidal, Gaussian, Bell, and Sigmoid, sinusoidal and exponential). Each linguistic term is a fuzzy set and has its own membership function. In this case, μ * x 0, 1, representing the degree of membership of x in A. μ * x maps each point in X into the real interval 0.0, 1.0. As μ * x approaches 1.0, the "grade of membership" of x in A increases. The most used membership functions are either the triangular shape or the trapezoidal shape. A triangular membership function, expressed by (a, b, c) is defined as: μ(x) = x a, a x b b a c x, b x c c b (4) A trapezoidal membership function, expressed by (a, b, c, d) is defined as: μ(x) = x a, a x b b a 1, b x c (5) d x, c x d d c Fuzzy Logic Theory is based on the theory of fuzzy sets, which is a generalization of the classical set theory. Fuzzy Logic Theory is used, in the narrow sense, to describe a formal logic following the principles of fuzzy logic.
4 The mathematical notation for a fuzzy set A given the finite domain x ', x A,, x C function μ * is: and membership where μ * x ' x ' + μ * x A x A + + μ * x C x C (6) μ * x ( x ( (a singleton) is a pair grade of membership element In fuzzy logic, the intersection of two fuzzy sets (AND operator), A with a membership function μ *, and B with a membership function μ G, written A B, is a new fuzzy set defined as μ * G = min μ *, μ G. The union of two fuzzy sets (OR operator), A with a membership function μ *, and B with a membership function μ G, written A B, is a new fuzzy set defined as μ * G = max μ *, μ G. The complement is defined as the negation of the specified membership function and defined as μ * = 1 μ *. Zadeh [20] had classified computing into two separate categories; hard computing and soft computing. The hard computing relates to computations based on Boolean algebra and other crispy numerical computations, then it is tolerant of imprecision, uncertainty and partial truth. Whereas soft computing encompasses fuzzy logic, neural network and probabilistic reasoning techniques, such as genetic algorithm, and parts of learning theory. Unlike hard computing, Soft computing is more analogous to thinking of human mind [6][7]. Figure 1 presents a Fuzzy Logic System (FLS) and its four major units, namely, a fuzzification unit, a fuzzy knowledge-base unit, a fuzzy inference engine unit and a defuzzification unit. Knowledge Base Input Fuzzification Fuzzy Sets Rule Base Defuzzification Output Fuzzy Inference Engine Figure 1. Fuzzy Logic System (FLS) Structure Fuzzification unit Fuzzification is the process of making a crisp vakue fuzzy. This step delivers input parameters for the fuzzy system based on which the output result will be calculated. Then, the parameters are fuzzified, mapped into suitable linguistic values that may be viewed as labels of fuzzy sets, with use of pre-defined input membership functions. The membership functions associate a weighting factor that determine the degree of influence or degree of membership for each active rule. Then a set of fuzzy output response are produced by computing the logical product of the membership weights for each active rule.
5 Knowledge-base The knowledge base consists of two sub-units; the fuzzy sets database and the rule base. In the knowledge-base facts are represented through linguistic variables and the rules follow fuzzy logic. The concepts associated with fuzzy sets are used to characterize the rules base and how data manipulation is handled in the system. These concepts are subjectively defined and based on experience. Fuzzy inference engine The fuzzy engine is the kernel of the FLS, which has capability of simulating human decision making. It is based on fuzzy concepts and inferring fuzzy control actions using fuzzy implication (fuzzy relation) as well as the rules of inference in fuzzy logic. The fuzzy inference engine handles rules inference where human experience can easily be included through linguistic rules. Defuzzification Defuzzification is the process of converting fuzzy output sets to crisp values. The defuzzification process is aimed at producing a non-fuzzy output that best represents the possibility of distribution of an inferred fuzzy input. There are different methods for defuzzification. The mostly-used are the Maximum Criterion (MC), the Center of Gravity (CG) and the Mean of Maximum (MM). Unfortunately, there is no defined procedure for choosing a defuzzification method. The dynamic behavior of a fuzzy system is characterized by a set of linguistic control rules based on expert knowledge. The fuzzy rule base consists of a set of linguistic control rules written in the form of a rule matrix which is used to describe fuzzy sets and fuzzy operators in form of conditional statements. A single fuzzy if-then rule can be written as follows: IF A is satisfied (premise), THEN R is inferred where A is a set of conditions that have to be satisfied and R is a set of consequences that can be inferred. In rule with multiple parts, fuzzy operators are used to combine more than one input using AND (min), OR (max) and NOT operators. Consequently, the success of a fuzzy systems depends on how well this knowledge-base is structured. SALES FORECAST FLS AND NUMERICAL EXAMPLE Sales Forecast FLS We run a monte-carlo simulation in order to obtain 360 historical data (monthly data over 30 years). We used the exponential smoothing method to obtain 12 months forecast. The forecast equation is as follows: where F MN' is the forecast of the sales for period t + 1 F M is the sales for period t F M is the forecast of the sales for period t α is the smoothing constant 0 α 1 F MN' = αf M + 1 α F M (7) We choose a value of α that minimizes the MSE. The inputs to the FLS are the sales forecast. The triangular membership function was used for all fuzzy sets, and the of overlap for successive sets for a particular model is identical. Our universe of discourse reflects an extension of the range of the historical values of monthly forecasts (12 months). The rule base is populated by marketing experts (managers and sales representatives) estimations. Then, the
6 results are obtained from running the Fuzzy Inference Engine and the defuzzification step. Numerical Example (To be completed) CONCLUSION Sales forecasting proved to be very important in marketing where managers need to learn from historical data. Many methods have become available for forecasting, generally used statistical methods, such as exponential smoothing, moving average, autoregressive moving average (ARMA), or the autoregressive integrated moving average (ARIMA). These methods model sales only on previous sales data and tend to be linear in nature and don t take into account both internal and external factors that may directly influence sales. However, as discussed in this paper extrapolating patterns and relationships from the past to the future can t provide accurate predictions in a context of high uncertainty and vagueness. The application of fuzzy logic in sales forecasting provide better estimates for marketing managers and sales representatives. We developed a Fuzzy Logic sales forecast System that integrates into the traditional sales forecast the experience and the judgments of the marketing managers and sales representatives. The fuzzy logic is a modeling approach that integrates the fuzziness of real-life information. The results inferred the fuzzy system take into account the ambiguity and the vagueness. Finally, we illustrated the developed system with a numerical example. REFERENCES [1] Armstrong, J. S. (2001) Judgmental bootstrapping: Inferring experts rules for forecasting, in J. S. Armstrong (ed.) Principles of Forecasting: Handbook for Researchers and Practitioners, Norwell, MA: Kluwer Academic Publishers. [2] Armstrong, J. S., Brodie, R. and McIntyre, S. (1987) Forecasting methods for marketing, International Journal of Forecasting 3: [3] Baker, M. J. (1999) Sales Forecasting, The IEBM Encyclopedia of Marketing, International Thompson Business Press, pp [4] Dalrymple, D. J. (1987) Sales forecasting practices: Results from a U.S. survey, International Journal of Forecasting 3: [5] Gelper, S., Fried, R., Croux, C. (2010) Robust forecasting with exponential and Holt-Winters smoothing, Journal of Forecasting, vol. 29, pp [6] Lee, C. C. Fuzzy Logic in Control Systems: Fuzzy Logic Controller- Part I, 1990, IEEE Transaction on Systems, Man, and Cybernetics, vol. 20(2), pp [7] Lee, C. C. Fuzzy Logic in Control Systems: Fuzzy Logic Controller- Part II, 1990, IEEE Transaction on Systems, Man, and Cybernetics, vol. 20(2), pp [8] Makridakis, S. and Wheelwright, S.C. (1989) Forecasting Methods for Management, New York: John Wiley. [9] Makridakis, S., Hibon, M., Lusk, E. and Belhadjali, M. (1987) Confidence intervals: An empirical investigation of the series in the M-competition, International Journal of Forecasting 3:
7 [10] Meade, N. (2001) Forecasting the diffusion of innovations: Implications for time series extrapolation, in J. S. Armstrong (ed.) Principles of Forecasting: Handbook for Researchers and Practitioners, Norwell; MA: Kluwer Academic Publishers. [11] Mentzer, J.T. and Kahn, K.B. (1995) Forecasting technique familiarity, satisfaction, usage, and application, Journal of Forecasting, 14: [12] Montgomery; D. B. (1975) New product distribution: An analysis of supermarket buyer decisions, Journal of Marketing Research, 12: [13] Rowe, G. and Wright, G. (2001) The Delphi technique as a forecasting tool, in J. S. Armstrong (ed.) Principles of Forecasting: Handbook for Researchers and Practitioners, Norwell, MA: Kluwer Academic Publishers. [14] Schnaars, S. P. (1984) Situational factors affecting forecast accuracy, Journal of Marketing Research, 21: [15] Shocker, A. D. and Hall, W. G. (1986) Pretest market models: A critical evaluation, Journal of Product Innovation Management 3: [16] Tull, D. S. (1967) The relationship of actual and predicted sales and profits in new-product introductions, Journal of Business 40: [17] West, D. C. (1994) Number of Sales Forecast Methods and Marketing Management, Journal of Forecasting, vol. 13, pp [18] Wilson, J. H., Keating, B. (2009) Business Forecasting, McGraw-Hill [19] Zadeh, L. A. (1965) Fuzzy Sets, Information and Control, vol. 8, pp [20] Zadeh, L. A. (1988) Fuzzy Logic, IEEE, vol. 21(4), pp
Introduction to Fuzzy Control
Introduction to Fuzzy Control Marcelo Godoy Simoes Colorado School of Mines Engineering Division 1610 Illinois Street Golden, Colorado 80401-1887 USA Abstract In the last few years the applications of
NTC Project: S01-PH10 (formerly I01-P10) 1 Forecasting Women s Apparel Sales Using Mathematical Modeling
1 Forecasting Women s Apparel Sales Using Mathematical Modeling Celia Frank* 1, Balaji Vemulapalli 1, Les M. Sztandera 2, Amar Raheja 3 1 School of Textiles and Materials Technology 2 Computer Information
SALES FORECASTING. Published in The IEBM Encyclopedia of Marketing, Michael J. Baker (Ed.), International Thompson Business Press, 1999, p. 278-290.
SALES FORECASTING Published in The IEBM Encyclopedia of Marketing, Michael J. Baker (Ed.), International Thompson Business Press, 1999, p. 278-290. 1. Forecasting methods: an overview 2. Direct extrapolation
Project Management Efficiency A Fuzzy Logic Approach
Project Management Efficiency A Fuzzy Logic Approach Vinay Kumar Nassa, Sri Krishan Yadav Abstract Fuzzy logic is a relatively new technique for solving engineering control problems. This technique can
Linguistic Preference Modeling: Foundation Models and New Trends. Extended Abstract
Linguistic Preference Modeling: Foundation Models and New Trends F. Herrera, E. Herrera-Viedma Dept. of Computer Science and Artificial Intelligence University of Granada, 18071 - Granada, Spain e-mail:
Forecasting methods applied to engineering management
Forecasting methods applied to engineering management Áron Szász-Gábor Abstract. This paper presents arguments for the usefulness of a simple forecasting application package for sustaining operational
Sales Forecast for Pickup Truck Parts:
Sales Forecast for Pickup Truck Parts: A Case Study on Brake Rubber Mojtaba Kamranfard University of Semnan Semnan, Iran [email protected] Kourosh Kiani Amirkabir University of Technology Tehran,
NTC Project: S01-PH10 (formerly I01-P10) 1 Forecasting Women s Apparel Sales Using Mathematical Modeling
1 Forecasting Women s Apparel Sales Using Mathematical Modeling Celia Frank* 1, Balaji Vemulapalli 1, Les M. Sztandera 2, Amar Raheja 3 1 School of Textiles and Materials Technology 2 Computer Information
DEVELOPMENT OF FUZZY LOGIC MODEL FOR LEADERSHIP COMPETENCIES ASSESSMENT CASE STUDY: KHOUZESTAN STEEL COMPANY
DEVELOPMENT OF FUZZY LOGIC MODEL FOR LEADERSHIP COMPETENCIES ASSESSMENT CASE STUDY: KHOUZESTAN STEEL COMPANY 1 MOHAMMAD-ALI AFSHARKAZEMI, 2 DARIUSH GHOLAMZADEH, 3 AZADEH TAHVILDAR KHAZANEH 1 Department
Problems often have a certain amount of uncertainty, possibly due to: Incompleteness of information about the environment,
Uncertainty Problems often have a certain amount of uncertainty, possibly due to: Incompleteness of information about the environment, E.g., loss of sensory information such as vision Incorrectness in
Knowledge Based Descriptive Neural Networks
Knowledge Based Descriptive Neural Networks J. T. Yao Department of Computer Science, University or Regina Regina, Saskachewan, CANADA S4S 0A2 Email: [email protected] Abstract This paper presents a
Optimization under fuzzy if-then rules
Optimization under fuzzy if-then rules Christer Carlsson [email protected] Robert Fullér [email protected] Abstract The aim of this paper is to introduce a novel statement of fuzzy mathematical programming
EMPLOYEE PERFORMANCE APPRAISAL SYSTEM USING FUZZY LOGIC
EMPLOYEE PERFORMANCE APPRAISAL SYSTEM USING FUZZY LOGIC ABSTRACT Adnan Shaout* and Mohamed Khalid Yousif** *The Department of Electrical and Computer Engineering The University of Michigan Dearborn, MI,
A Forecasting Decision Support System
A Forecasting Decision Support System Hanaa E.Sayed a, *, Hossam A.Gabbar b, Soheir A. Fouad c, Khalil M. Ahmed c, Shigeji Miyazaki a a Department of Systems Engineering, Division of Industrial Innovation
Leran Wang and Tom Kazmierski {lw04r,tjk}@ecs.soton.ac.uk
BMAS 2005 VHDL-AMS based genetic optimization of a fuzzy logic controller for automotive active suspension systems Leran Wang and Tom Kazmierski {lw04r,tjk}@ecs.soton.ac.uk Outline Introduction and system
A FUZZY MATHEMATICAL MODEL FOR PEFORMANCE TESTING IN CLOUD COMPUTING USING USER DEFINED PARAMETERS
A FUZZY MATHEMATICAL MODEL FOR PEFORMANCE TESTING IN CLOUD COMPUTING USING USER DEFINED PARAMETERS A.Vanitha Katherine (1) and K.Alagarsamy (2 ) 1 Department of Master of Computer Applications, PSNA College
Forecasting of Economic Quantities using Fuzzy Autoregressive Model and Fuzzy Neural Network
Forecasting of Economic Quantities using Fuzzy Autoregressive Model and Fuzzy Neural Network Dušan Marček 1 Abstract Most models for the time series of stock prices have centered on autoregressive (AR)
Fuzzy Candlestick Approach to Trade S&P CNX NIFTY 50 Index using Engulfing Patterns
Fuzzy Candlestick Approach to Trade S&P CNX NIFTY 50 Index using Engulfing Patterns Partha Roy 1, Sanjay Sharma 2 and M. K. Kowar 3 1 Department of Computer Sc. & Engineering 2 Department of Applied Mathematics
DATA MINING IN FINANCE
DATA MINING IN FINANCE Advances in Relational and Hybrid Methods by BORIS KOVALERCHUK Central Washington University, USA and EVGENII VITYAEV Institute of Mathematics Russian Academy of Sciences, Russia
Forecasting Methods. What is forecasting? Why is forecasting important? How can we evaluate a future demand? How do we make mistakes?
Forecasting Methods What is forecasting? Why is forecasting important? How can we evaluate a future demand? How do we make mistakes? Prod - Forecasting Methods Contents. FRAMEWORK OF PLANNING DECISIONS....
COMBINING THE METHODS OF FORECASTING AND DECISION-MAKING TO OPTIMISE THE FINANCIAL PERFORMANCE OF SMALL ENTERPRISES
COMBINING THE METHODS OF FORECASTING AND DECISION-MAKING TO OPTIMISE THE FINANCIAL PERFORMANCE OF SMALL ENTERPRISES JULIA IGOREVNA LARIONOVA 1 ANNA NIKOLAEVNA TIKHOMIROVA 2 1, 2 The National Nuclear Research
Degree of Uncontrollable External Factors Impacting to NPD
Degree of Uncontrollable External Factors Impacting to NPD Seonmuk Park, 1 Jongseong Kim, 1 Se Won Lee, 2 Hoo-Gon Choi 1, * 1 Department of Industrial Engineering Sungkyunkwan University, Suwon 440-746,
An Evaluation Model for Determining Insurance Policy Using AHP and Fuzzy Logic: Case Studies of Life and Annuity Insurances
Proceedings of the 8th WSEAS International Conference on Fuzzy Systems, Vancouver, British Columbia, Canada, June 19-21, 2007 126 An Evaluation Model for Determining Insurance Policy Using AHP and Fuzzy
A Fuzzy System Approach of Feed Rate Determination for CNC Milling
A Fuzzy System Approach of Determination for CNC Milling Zhibin Miao Department of Mechanical and Electrical Engineering Heilongjiang Institute of Technology Harbin, China e-mail:[email protected]
ASSESSMENT OF THE EFFECTIVENESS OF ERP SYSTEMS BY A FUZZY LOGIC APPROACH
Journal of Information Technology Management ISSN #1042-1319 A Publication of the Association of Management ASSESSMENT OF THE EFFECTIVENESS OF ERP SYSTEMS BY A FUZZY LOGIC APPROACH ZAHIR ALIMORADI SHAHID
Fuzzy regression model with fuzzy input and output data for manpower forecasting
Fuzzy Sets and Systems 9 (200) 205 23 www.elsevier.com/locate/fss Fuzzy regression model with fuzzy input and output data for manpower forecasting Hong Tau Lee, Sheu Hua Chen Department of Industrial Engineering
IDENTIFICATION OF DEMAND FORECASTING MODEL CONSIDERING KEY FACTORS IN THE CONTEXT OF HEALTHCARE PRODUCTS
IDENTIFICATION OF DEMAND FORECASTING MODEL CONSIDERING KEY FACTORS IN THE CONTEXT OF HEALTHCARE PRODUCTS Sushanta Sengupta 1, Ruma Datta 2 1 Tata Consultancy Services Limited, Kolkata 2 Netaji Subhash
Optimization of Fuzzy Inventory Models under Fuzzy Demand and Fuzzy Lead Time
Tamsui Oxford Journal of Management Sciences, Vol. 0, No. (-6) Optimization of Fuzzy Inventory Models under Fuzzy Demand and Fuzzy Lead Time Chih-Hsun Hsieh (Received September 9, 00; Revised October,
Ch.3 Demand Forecasting.
Part 3 : Acquisition & Production Support. Ch.3 Demand Forecasting. Edited by Dr. Seung Hyun Lee (Ph.D., CPL) IEMS Research Center, E-mail : [email protected] Demand Forecasting. Definition. An estimate
Fuzzy Logic Based Revised Defect Rating for Software Lifecycle Performance. Prediction Using GMR
BIJIT - BVICAM s International Journal of Information Technology Bharati Vidyapeeth s Institute of Computer Applications and Management (BVICAM), New Delhi Fuzzy Logic Based Revised Defect Rating for Software
DEMAND FORECASTING METHODS
DEMAND FORECASTING METHODS Taken from: Demand Forecasting: Evidence-based Methods by J. Scott Armstrong and Kesten C. Green METHODS THAT RELY ON QUALITATIVE DATA UNAIDED JUDGEMENT It is common practice
FUZZY CLUSTERING ANALYSIS OF DATA MINING: APPLICATION TO AN ACCIDENT MINING SYSTEM
International Journal of Innovative Computing, Information and Control ICIC International c 0 ISSN 34-48 Volume 8, Number 8, August 0 pp. 4 FUZZY CLUSTERING ANALYSIS OF DATA MINING: APPLICATION TO AN ACCIDENT
SINGULAR SPECTRUM ANALYSIS HYBRID FORECASTING METHODS WITH APPLICATION TO AIR TRANSPORT DEMAND
SINGULAR SPECTRUM ANALYSIS HYBRID FORECASTING METHODS WITH APPLICATION TO AIR TRANSPORT DEMAND K. Adjenughwure, Delft University of Technology, Transport Institute, Ph.D. candidate V. Balopoulos, Democritus
A Novel Fuzzy Clustering Method for Outlier Detection in Data Mining
A Novel Fuzzy Clustering Method for Outlier Detection in Data Mining Binu Thomas and Rau G 2, Research Scholar, Mahatma Gandhi University,Kerala, India. [email protected] 2 SCMS School of Technology
A Fuzzy Logic Based Approach for Selecting the Software Development Methodologies Based on Factors Affecting the Development Strategies
Available online www.ejaet.com European Journal of Advances in Engineering and Technology, 2015, 2(7): 70-75 Research Article ISSN: 2394-658X A Fuzzy Logic Based Approach for Selecting the Software Development
STRATEGIC CAPACITY PLANNING USING STOCK CONTROL MODEL
Session 6. Applications of Mathematical Methods to Logistics and Business Proceedings of the 9th International Conference Reliability and Statistics in Transportation and Communication (RelStat 09), 21
Fast Fuzzy Control of Warranty Claims System
Journal of Information Processing Systems, Vol.6, No.2, June 2010 DOI : 10.3745/JIPS.2010.6.2.209 Fast Fuzzy Control of Warranty Claims System Sang-Hyun Lee*, Sung Eui Cho* and Kyung-li Moon** Abstract
Java Modules for Time Series Analysis
Java Modules for Time Series Analysis Agenda Clustering Non-normal distributions Multifactor modeling Implied ratings Time series prediction 1. Clustering + Cluster 1 Synthetic Clustering + Time series
Forecasting the first step in planning. Estimating the future demand for products and services and the necessary resources to produce these outputs
PRODUCTION PLANNING AND CONTROL CHAPTER 2: FORECASTING Forecasting the first step in planning. Estimating the future demand for products and services and the necessary resources to produce these outputs
TOURISM DEMAND FORECASTING USING A NOVEL HIGH-PRECISION FUZZY TIME SERIES MODEL. Ruey-Chyn Tsaur and Ting-Chun Kuo
International Journal of Innovative Computing, Information and Control ICIC International c 2014 ISSN 1349-4198 Volume 10, Number 2, April 2014 pp. 695 701 OURISM DEMAND FORECASING USING A NOVEL HIGH-PRECISION
South Carolina College- and Career-Ready (SCCCR) Algebra 1
South Carolina College- and Career-Ready (SCCCR) Algebra 1 South Carolina College- and Career-Ready Mathematical Process Standards The South Carolina College- and Career-Ready (SCCCR) Mathematical Process
Fuzzy Numbers in the Credit Rating of Enterprise Financial Condition
C Review of Quantitative Finance and Accounting, 17: 351 360, 2001 2001 Kluwer Academic Publishers. Manufactured in The Netherlands. Fuzzy Numbers in the Credit Rating of Enterprise Financial Condition
Forecasting for Marketing. J. Scott Armstrong The Wharton School, University of Pennsylvania
Published in Graham J. Hooley and Michael K. Hussey (Eds.), Quantitative Methods in Marketing, Second Edition. London: International Thompson Business Press, 1999, pp. 92-119. Forecasting for Marketing
Classification of Fuzzy Data in Database Management System
Classification of Fuzzy Data in Database Management System Deval Popat, Hema Sharda, and David Taniar 2 School of Electrical and Computer Engineering, RMIT University, Melbourne, Australia Phone: +6 3
Software Review: ITSM 2000 Professional Version 6.0.
Lee, J. & Strazicich, M.C. (2002). Software Review: ITSM 2000 Professional Version 6.0. International Journal of Forecasting, 18(3): 455-459 (June 2002). Published by Elsevier (ISSN: 0169-2070). http://0-
Development of Virtual Lab System through Application of Fuzzy Analytic Hierarchy Process
Development of Virtual Lab System through Application of Fuzzy Analytic Hierarchy Process Chun Yong Chong, Sai Peck Lee, Teck Chaw Ling Faculty of Computer Science and Information Technology, University
A technical analysis approach to tourism demand forecasting
Applied Economics Letters, 2005, 12, 327 333 A technical analysis approach to tourism demand forecasting C. Petropoulos a, K. Nikolopoulos b, *, A. Patelis a and V. Assimakopoulos c a Forecasting Systems
Barinder Paul Singh. Keywords Fuzzy Sets, Artificial Intelligence, Fuzzy Logic, Computational Intelligence, Soft Computing.
Volume 4, Issue 10, October 2014 ISSN: 2277 128X International Journal of Advanced Research in Computer Science and Software Engineering Research Paper Available online at: www.ijarcsse.com Fuzzy Sets
CORRELATED TO THE SOUTH CAROLINA COLLEGE AND CAREER-READY FOUNDATIONS IN ALGEBRA
We Can Early Learning Curriculum PreK Grades 8 12 INSIDE ALGEBRA, GRADES 8 12 CORRELATED TO THE SOUTH CAROLINA COLLEGE AND CAREER-READY FOUNDATIONS IN ALGEBRA April 2016 www.voyagersopris.com Mathematical
A New Method for Electric Consumption Forecasting in a Semiconductor Plant
A New Method for Electric Consumption Forecasting in a Semiconductor Plant Prayad Boonkham 1, Somsak Surapatpichai 2 Spansion Thailand Limited 229 Moo 4, Changwattana Road, Pakkred, Nonthaburi 11120 Nonthaburi,
RISK ASSESSMENT BASED UPON FUZZY SET THEORY
RISK ASSESSMENT BASED UPON FUZZY SET THEORY László POKORÁDI, professor, University of Debrecen [email protected] KEYWORDS: risk management; risk assessment; fuzzy set theory; reliability. Abstract:
INTERNATIONAL JOURNAL FOR ENGINEERING APPLICATIONS AND TECHNOLOGY. Ameet.D.Shah 1, Dr.S.A.Ladhake 2. [email protected]
IJFEAT INTERNATIONAL JOURNAL FOR ENGINEERING APPLICATIONS AND TECHNOLOGY Multi User feedback System based on performance and Appraisal using Fuzzy logic decision support system Ameet.D.Shah 1, Dr.S.A.Ladhake
Studying Achievement
Journal of Business and Economics, ISSN 2155-7950, USA November 2014, Volume 5, No. 11, pp. 2052-2056 DOI: 10.15341/jbe(2155-7950)/11.05.2014/009 Academic Star Publishing Company, 2014 http://www.academicstar.us
Fuzzy Logic Based Decision Making for Customer Loyalty Analysis and Relationship Management
Fuzzy Logic Based Decision Making for Customer Loyalty Analysis and Relationship Management Umoh, U. A. Department of Computer Science University of Uyo Uyo, Akwa Ibom State, Nigeria [email protected]
Types of Degrees in Bipolar Fuzzy Graphs
pplied Mathematical Sciences, Vol. 7, 2013, no. 98, 4857-4866 HIKRI Ltd, www.m-hikari.com http://dx.doi.org/10.12988/ams.2013.37389 Types of Degrees in Bipolar Fuzzy Graphs Basheer hamed Mohideen Department
South Carolina College- and Career-Ready (SCCCR) Probability and Statistics
South Carolina College- and Career-Ready (SCCCR) Probability and Statistics South Carolina College- and Career-Ready Mathematical Process Standards The South Carolina College- and Career-Ready (SCCCR)
Optimized Fuzzy Control by Particle Swarm Optimization Technique for Control of CSTR
International Journal of Computer, Electrical, Automation, Control and Information Engineering Vol:5, No:, 20 Optimized Fuzzy Control by Particle Swarm Optimization Technique for Control of CSTR Saeed
Applying Fuzzy Control Chart in Earned Value Analysis: A New Application
World Applied Sciences Journal 3 (4): 684-690, 2008 ISSN 88-4952 IDOSI Publications, 2008 Applying Fuzzy Control Chart in Earned Value Analysis: A New Application Siamak Noori, Morteza Bagherpour and Abalfazl
http://www.aleks.com Access Code: RVAE4-EGKVN Financial Aid Code: 6A9DB-DEE3B-74F51-57304
MATH 1340.04 College Algebra Location: MAGC 2.202 Meeting day(s): TR 7:45a 9:00a, Instructor Information Name: Virgil Pierce Email: [email protected] Phone: 665.3535 Teaching Assistant Name: Indalecio
A Comparative Study of the Pickup Method and its Variations Using a Simulated Hotel Reservation Data
A Comparative Study of the Pickup Method and its Variations Using a Simulated Hotel Reservation Data Athanasius Zakhary, Neamat El Gayar Faculty of Computers and Information Cairo University, Giza, Egypt
A Decision-Support System for New Product Sales Forecasting
A Decision-Support System for New Product Sales Forecasting Ching-Chin Chern, Ka Ieng Ao Ieong, Ling-Ling Wu, and Ling-Chieh Kung Department of Information Management, NTU, Taipei, Taiwan [email protected],
Multiple Fuzzy Regression Model on Two Wheelers Mileage with Several independent Factors
Annals of Pure and Applied Mathematics Vol. 5, No.1, 2013, 90-99 ISSN: 2279-087X (P), 2279-0888(online) Published on 13 November 2013 www.researchmathsci.org Annals of Multiple Fuzzy Regression Model on
ABSTRACT. Keyword double rotary inverted pendulum, fuzzy logic controller, nonlinear system, LQR, MATLAB software 1 PREFACE
DESIGN OF FUZZY LOGIC CONTROLLER FOR DOUBLE ROTARY INVERTED PENDULUM Dyah Arini, Dr.-Ing. Ir. Yul Y. Nazaruddin, M.Sc.DIC, Dr. Ir. M. Rohmanuddin, MT. Physics Engineering Department Institut Teknologi
A study of cash flows in projects with fuzzy activity durations
icccbe 2010 Nottingham University Press Proceedings of the International Conference on Computing in Civil and Building Engineering W Tizani (Editor) A study of cash flows in projects with fuzzy activity
ISSN: 2277-3754 ISO 9001:2008 Certified International Journal of Engineering and Innovative Technology (IJEIT) Volume 3, Issue 3, September 2013
Performance Appraisal using Fuzzy Evaluation Methodology Nisha Macwan 1, Dr.Priti Srinivas Sajja 2 Assistant Professor, SEMCOM 1 and Professor, Department of Computer Science 2 Abstract Performance is
Knowledge Base and Inference Motor for an Automated Management System for developing Expert Systems and Fuzzy Classifiers
Knowledge Base and Inference Motor for an Automated Management System for developing Expert Systems and Fuzzy Classifiers JESÚS SÁNCHEZ, FRANCKLIN RIVAS, JOSE AGUILAR Postgrado en Ingeniería de Control
A Game-Theoretical Approach for Designing Market Trading Strategies
A Game-Theoretical Approach for Designing Market Trading Strategies Garrison W. Greenwood and Richard Tymerski Abstract Investors are always looking for good stock market trading strategies to maximize
Real Time Traffic Balancing in Cellular Network by Multi- Criteria Handoff Algorithm Using Fuzzy Logic
Real Time Traffic Balancing in Cellular Network by Multi- Criteria Handoff Algorithm Using Fuzzy Logic Solomon.T.Girma 1, Dominic B. O. Konditi 2, Edward N. Ndungu 3 1 Department of Electrical Engineering,
JAVA FUZZY LOGIC TOOLBOX FOR INDUSTRIAL PROCESS CONTROL
JAVA FUZZY LOGIC TOOLBOX FOR INDUSTRIAL PROCESS CONTROL Bruno Sielly J. Costa, Clauber G. Bezerra, Luiz Affonso H. G. de Oliveira Instituto Federal de Educação Ciência e Tecnologia do Rio Grande do Norte
GOAL-BASED INTELLIGENT AGENTS
International Journal of Information Technology, Vol. 9 No. 1 GOAL-BASED INTELLIGENT AGENTS Zhiqi Shen, Robert Gay and Xuehong Tao ICIS, School of EEE, Nanyang Technological University, Singapore 639798
Soft Computing in Economics and Finance
Ludmila Dymowa Soft Computing in Economics and Finance 4y Springer 1 Introduction 1 References 5 i 2 Applications of Modern Mathematics in Economics and Finance 7 2.1 Fuzzy'Set Theory and Applied Interval
Adaptive Optimal Scheduling of Public Utility Buses in Metro Manila Using Fuzzy Logic Controller
Adaptive Optimal Scheduling of Public Utility Buses in Metro Manila Using Fuzzy Logic Controller Cyrill O. Escolano a*, Elmer P. Dadios a, and Alexis D. Fillone a a Gokongwei College of Engineering De
Time complexity analysis of genetic- fuzzy system for disease diagnosis.
Time complexity analysis of genetic- fuzzy system for disease diagnosis. Ephzibah.E.P. School of Information Technology and Engineering, VIT University,Vellore, Tamilnadu, India. [email protected]
ROUGH SETS AND DATA MINING. Zdzisław Pawlak
ROUGH SETS AND DATA MINING Zdzisław Pawlak Institute of Theoretical and Applied Informatics, Polish Academy of Sciences, ul. altycka 5, 44 100 Gliwice, Poland ASTRACT The paper gives basic ideas of rough
Implementation of demand forecasting models for fuel oil - The case of the Companhia Logística de Combustíveis, S.A. -
1 Implementation of demand forecasting models for fuel oil - The case of the Companhia Logística de Combustíveis, S.A. - Rosália Maria Gairifo Manuel Dias 1 1 DEG, IST, Universidade Técnica de Lisboa,
Fuzzy Probability Distributions in Bayesian Analysis
Fuzzy Probability Distributions in Bayesian Analysis Reinhard Viertl and Owat Sunanta Department of Statistics and Probability Theory Vienna University of Technology, Vienna, Austria Corresponding author:
Models for Product Demand Forecasting with the Use of Judgmental Adjustments to Statistical Forecasts
Page 1 of 20 ISF 2008 Models for Product Demand Forecasting with the Use of Judgmental Adjustments to Statistical Forecasts Andrey Davydenko, Professor Robert Fildes [email protected] Lancaster
High Frequency Trading using Fuzzy Momentum Analysis
Proceedings of the World Congress on Engineering 2 Vol I WCE 2, June 3 - July 2, 2, London, U.K. High Frequency Trading using Fuzzy Momentum Analysis A. Kablan Member, IAENG, and W. L. Ng. Abstract High
CHAPTER 11 FORECASTING AND DEMAND PLANNING
OM CHAPTER 11 FORECASTING AND DEMAND PLANNING DAVID A. COLLIER AND JAMES R. EVANS 1 Chapter 11 Learning Outcomes l e a r n i n g o u t c o m e s LO1 Describe the importance of forecasting to the value
Advances in Fuzzy Systems - Applications and Theory - Vol. 23. 2nd Edition. George Bojadziev. Simon Fraser University, Canada.
This page intentionally left blank This page intentionally left blank Advances in Fuzzy Systems - Applications and Theory - Vol. 23 Fuzzy Logic for Business, Finance, and Management 2nd Edition George
DESIGN AND STRUCTURE OF FUZZY LOGIC USING ADAPTIVE ONLINE LEARNING SYSTEMS
Abstract: Fuzzy logic has rapidly become one of the most successful of today s technologies for developing sophisticated control systems. The reason for which is very simple. Fuzzy logic addresses such
Forecasting Tourism Demand: Methods and Strategies. By D. C. Frechtling Oxford, UK: Butterworth Heinemann 2001
Forecasting Tourism Demand: Methods and Strategies By D. C. Frechtling Oxford, UK: Butterworth Heinemann 2001 Table of Contents List of Tables List of Figures Preface Acknowledgments i 1 Introduction 1
A Fuzzy AHP based Multi-criteria Decision-making Model to Select a Cloud Service
Vol.8, No.3 (2014), pp.175-180 http://dx.doi.org/10.14257/ijsh.2014.8.3.16 A Fuzzy AHP based Multi-criteria Decision-making Model to Select a Cloud Service Hong-Kyu Kwon 1 and Kwang-Kyu Seo 2* 1 Department
Modelling and Forecasting Packaged Food Product Sales Using Mathematical Programming
Modelling and Forecasting Packaged Food Product Sales Using Mathematical Programming Saurabh Gupta 1, Nishant Kumar 2 [email protected] Abstract Sales forecasting is one of the most common phenomena
Prentice Hall Algebra 2 2011 Correlated to: Colorado P-12 Academic Standards for High School Mathematics, Adopted 12/2009
Content Area: Mathematics Grade Level Expectations: High School Standard: Number Sense, Properties, and Operations Understand the structure and properties of our number system. At their most basic level
AUTOMATION OF ENERGY DEMAND FORECASTING. Sanzad Siddique, B.S.
AUTOMATION OF ENERGY DEMAND FORECASTING by Sanzad Siddique, B.S. A Thesis submitted to the Faculty of the Graduate School, Marquette University, in Partial Fulfillment of the Requirements for the Degree
A Neural Expert System with Automated Extraction of Fuzzy If-Then Rules and Its Application to Medical Diagnosis
A Neural Expert System with Automated Extraction of Fuzzy If-Then Rules and Its Application to Medical Diagnosis Yoichi Hayashi* Department of Computer and Information Sciences Ibaraki University Hitachi-shi,Ibaraki
A Fuzzy-Based Speed Control of DC Motor Using Combined Armature Voltage and Field Current
3rd IFAC International Conference on Intelligent Control and Automation Science. A Fuzzy-Based Speed Control of DC Motor Using Combined Armature Voltage and Field Current A. A. Sadiq* G. A. Bakare* E.
Forecasting Framework for Inventory and Sales of Short Life Span Products
Forecasting Framework for Inventory and Sales of Short Life Span Products Master Thesis Graduate student: Astrid Suryapranata Graduation committee: Professor: Prof. dr. ir. M.P.C. Weijnen Supervisors:
Boris Kovalerchuk Dept. of Computer Science Central Washington University USA [email protected]
Boris Kovalerchuk Dept. of Computer Science Central Washington University USA [email protected] 1 I support the optimistic view: Scientific rigor is compatible with the high uncertainty and the combination
