Electromagnetic Induction. Physics 231 Lecture 9-1

Similar documents
The purposes of this experiment are to test Faraday's Law qualitatively and to test Lenz's Law.

ElectroMagnetic Induction. AP Physics B

Induced voltages and Inductance Faraday s Law

Direction of Induced Current

Electromagnetism Laws and Equations

Faraday s Law of Induction

Force on Moving Charges in a Magnetic Field

Phys222 Winter 2012 Quiz 4 Chapters Name

DEGREE: Bachelor's Degree in Industrial Electronics and Automation COURSE: 1º TERM: 2º WEEKLY PLANNING

Slide 1 / 26. Inductance by Bryan Pflueger

Chapter 30 Inductance

Edmund Li. Where is defined as the mutual inductance between and and has the SI units of Henries (H).

Chapter 10. Faraday s Law of Induction

104 Practice Exam 2-3/21/02

Magnetic Circuits. Outline. Ampere s Law Revisited Review of Last Time: Magnetic Materials Magnetic Circuits Examples

Conceptual: 1, 3, 5, 6, 8, 16, 18, 19. Problems: 4, 6, 8, 11, 16, 20, 23, 27, 34, 41, 45, 56, 60, 65. Conceptual Questions

Last time : energy storage elements capacitor.

Chapter 33. The Magnetic Field

Magnetic Fields. I. Magnetic Field and Magnetic Field Lines

Inductance and Magnetic Energy

1. The diagram below represents magnetic lines of force within a region of space.

Magnetic Fields and Their Effects

Eðlisfræði 2, vor 2007

45. The peak value of an alternating current in a 1500-W device is 5.4 A. What is the rms voltage across?

EE301 Lesson 14 Reading: , , and

Lecture 22. Inductance. Magnetic Field Energy. Outline:

Chapter 27 Magnetic Field and Magnetic Forces

Introduction to Electricity & Magnetism. Dr Lisa Jardine-Wright Cavendish Laboratory

CHAPTER - 1. Chapter ONE: WAVES CHAPTER - 2. Chapter TWO: RAY OPTICS AND OPTICAL INSTRUMENTS. CHAPTER - 3 Chapter THREE: WAVE OPTICS PERIODS PERIODS

AP2 Magnetism. (c) Explain why the magnetic field does no work on the particle as it moves in its circular path.

Electromagnetic Induction: Faraday's Law

DC GENERATOR THEORY. LIST the three conditions necessary to induce a voltage into a conductor.

Eðlisfræði 2, vor 2007

Physics 25 Exam 3 November 3, 2009

5. Measurement of a magnetic field

EEE1001/PHY1002. Magnetic Circuits. The circuit is of length l=2πr. B andφ circulate

Ampere's Law. Introduction. times the current enclosed in that loop: Ampere's Law states that the line integral of B and dl over a closed path is 0

Chapter 7. Magnetism and Electromagnetism ISU EE. C.Y. Lee

Physics 121 Sample Common Exam 3 NOTE: ANSWERS ARE ON PAGE 6. Instructions: 1. In the formula F = qvxb:

Quiz: Work and Energy

Magnetic Field of a Circular Coil Lab 12

Inductors & Inductance. Electronic Components

Magnetostatics (Free Space With Currents & Conductors)

Simple Analysis for Brushless DC Motors Case Study: Razor Scooter Wheel Motor

Magnetism Basics. Magnetic Domains: atomic regions of aligned magnetic poles Random Alignment Ferromagnetic Alignment. Net Effect = Zero!

Chapter 7 Direct-Current Circuits

Physics 2B. Lecture 29B

Solution Derivations for Capa #11

Problem 1 (25 points)

12. The current in an inductor is changing at the rate of 100 A/s, and the inductor emf is 40 V. What is its self-inductance?

Physics 112 Homework 5 (solutions) (2004 Fall) Solutions to Homework Questions 5

Problem Solving 8: RC and LR Circuits

Linear DC Motors Magnetic Flux Permanent Bar Magnets

Lesson 3 DIRECT AND ALTERNATING CURRENTS. Task. The skills and knowledge taught in this lesson are common to all missile repairer tasks.

Objectives. Capacitors 262 CHAPTER 5 ENERGY

Magnetic electro-mechanical machines

PS-6.2 Explain the factors that determine potential and kinetic energy and the transformation of one to the other.

6 J - vector electric current density (A/m2 )

Examples of magnetic field calculations and applications. 1 Example of a magnetic moment calculation

Chapter 11. Inductors ISU EE. C.Y. Lee

W03 Analysis of DC Circuits. Yrd. Doç. Dr. Aytaç Gören

Candidate Number. General Certificate of Education Advanced Level Examination June 2014

Module 22: Inductance and Magnetic Field Energy

arxiv: v2 [physics.acc-ph] 27 Oct 2014

Exercises on Voltage, Capacitance and Circuits. A d = ( ) π(0.05)2 = F

DC generator theory. Resources and methods for learning about these subjects (list a few here, in preparation for your research):

Magnetism. d. gives the direction of the force on a charge moving in a magnetic field. b. results in negative charges moving. clockwise.

Your Comments. This was a very confusing prelecture. Do you think you could go over thoroughly how the LC circuits work qualitatively?

ES250: Electrical Science. HW7: Energy Storage Elements


Chapter 7. DC Circuits

Review Questions PHYS 2426 Exam 2

Inductance. Motors. Generators

Physics 2102 Lecture 19. Physics 2102

Homework # Physics 2 for Students of Mechanical Engineering

A METHOD OF CALIBRATING HELMHOLTZ COILS FOR THE MEASUREMENT OF PERMANENT MAGNETS

ELECTRODYNAMICS 05 AUGUST 2014

Aircraft Electrical System

AC generator theory. Resources and methods for learning about these subjects (list a few here, in preparation for your research):

Physics 6C, Summer 2006 Homework 2 Solutions

Chapter 30 - Magnetic Fields and Torque. A PowerPoint Presentation by Paul E. Tippens, Professor of Physics Southern Polytechnic State University

Principles and Working of DC and AC machines

Chapter 22: Electric motors and electromagnetic induction

physics 112N magnetic fields and forces

Chapter 18. Electric Forces and Electric Fields

DIRECT CURRENT GENERATORS

TEACHER S CLUB EXAMS GRADE 11. PHYSICAL SCIENCES: PHYSICS Paper 1

Teaching Electromagnetic Field Theory Using Differential Forms

Motor Fundamentals. DC Motor

RUPHYS ( RUPHY227F2015 ) My Courses Course Settings University Physics with Modern Physics, 14e Young/Freedman

Lab 4: Magnetic Force on Electrons

Candidate Number. General Certificate of Education Advanced Level Examination June 2010

1. A wire carries 15 A. You form the wire into a single-turn circular loop with magnetic field 80 µ T at the loop center. What is the loop radius?

Faraday s Law of Electromagnetic Induction

Ampere s magnetic circuital law: a simple and rigorous two-step proof

PHYS 222 Spring 2012 Final Exam. Closed books, notes, etc. No electronic device except a calculator.

Module P4.4 Electromagnetic induction

E/M Experiment: Electrons in a Magnetic Field.

Transcription:

Electromagnetic Induction Physics 231 Lecture 9-1

Induced Current Past experiments with magnetism have shown the following When a magnet is moved towards or away from a circuit, there is an induced current in the circuit This is still true even if it is the circuit that is moved towards or away from the magnet When both are at rest with respect to each, there is no induced current What is the physical reason behind this phenomena Physics 231 Lecture 9-2

Magnetic Flux Just as was the case with electric fields, we can define a magnetic flux r r d ΦB = B da where da is an incremental area with the total flux being given by Φ B r r = B da Note that this integral is not over a closed surface, for that integral would yield zero for an answer, since there are no sources or sinks for the magnetic as there is with electric fields Physics 231 Lecture 9-3

Faraday s Law of Induction It was Michael Faraday who was able to link the induced current with a changing magnetic flux He stated that The induced emf in a closed loop equals the negative of the time rate of change of the magnetic flux through the loop ε = dφ dt B The induced emf opposes the change that is occurring Physics 231 Lecture 9-4

Increasing Magnetic Flux Suppose that we are given a closed circuit through which the magnetic field, flux, is increasing, then according to Faraday s Law there will be an induced emf in the loop The sense of the emf will be so that the induced current will set up a magnetic field that will oppose this increase of external flux B induced Physics 231 Lecture 9-5

Decreasing Magnetic Flux Suppose now that the magnetic field is decreasing through the closed loop, Faraday s Law again states that there will be an induced emf in the loop B induced The sense of the emf will be so that the induced current will set up a magnetic field that will try to keep the magnetic flux at its original value (It never can) Physics 231 Lecture 9-6

Changing Area Both of the previous examples were based on a changing external magnetic flux How do we treat the problem if the magnetic field is constant and it is the area that is changing Basically the same way, it is the changing flux that will be opposed If the area is increasing, then the flux will be increasing and if the area is decreasing then the flux will also be decreasing In either case, the induced emf will be such that the change will be opposed Physics 231 Lecture 9-7

Lenz s Law All of the proceeding can be summarized as follows The direction of any magnetic induction effect is such as to oppose the cause of the effect Remember that the cause of the effect could be either a changing external magnetic field, or a changing area, or both r r r r dφ B = db A + B da Physics 231 Lecture 9-8

Example Inside the shaded region, there is a magnetic field into the board. If the loop is stationary, the Lorentz force predicts: a) A Clockwise Current b) A Counterclockwise Current c) No Current The Lorentz force is the combined electric and magnetic forces that could be acting on a charge particle r F r r r = q( E + v B) Since there is no electric field and the charges within the wire are not moving, the Lorentz force is zero and there is no charge motion Therefore there is no current B Physics 231 Lecture 9-9

Example - Continued Now the loop is pulled to the right at a velocity v. The Lorentz force will now give rise to: (a) A Clockwise Current (b) A Counterclockwise Current (c) No Current, due to Symmetry B I v The charges in the wire will now experience an upward r r r magnetic force, F = qv B, causing a current to flow in the clockwise direction Physics 231 Lecture 9-10

Another Example Now move the magnet, not the loop Here there is no Lorentz force v r B r But according to Lenz s Law there will still be an induced current -v B I This coincidence bothered Einstein, and eventually led him to the Special Theory of Relativity (all that matters is relative motion). Now keep everything fixed, but decrease the strength of B Again by Lenz s Law there will be an induced current because of the decreasing flux B I Physics 231 Lecture 9-11 Decreasing B

Example A conducting rectangular loop moves with constant velocity v in the +x direction through a region of constant magnetic field B in the -z direction as shown What is the direction of the induced current in the loop? Physics 231 Lecture 9-12 y X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X vx X X X X X X X X X X X X X X X X x (a) ccw (b) cw (c) no induced current There is a non-zero flux Φ B passing through the loop since B is perpendicular to the area of the loop Since the velocity of the loop and the magnetic field are constant, however, the flux through the loop does not change with time Therefore, there is no emf induced in the loop No current will flow!!

Example A conducting rectangular loop moves with constant velocity v in the -y direction and a constant current I flows in the +x direction as shown What is the direction of the induced current in the loop? (a) ccw (b) cw (c) no induced current y v I I induced x The flux through this loop does change in time since the loop is moving from a region of higher magnetic field to a region of lower magnetic field Therefore, by Lenz s Law, an emf will be induced which will oppose the change in flux Current is induced in the clockwise direction to restore the flux Physics 231 Lecture 9-13

(Important) Example Suppose we pull with velocity v a coil of resistance R through a region of constant magnetic field B. a) What is the direction of the induced current By Lenz s Law the induced current will be clockwise in order to try and maintain the original flux through the loop b) What is the magnitude of the induced current Magnetic Flux: Faraday s Law: ΦB = B Area = B w x F d Φ dx ε = B = B w = B w v dt dt x x x x x x x x x x x x x x x x x x x x x x x x x B w v Then I = ε = R R c) What is the direction of the force on the loop? r r r Using F = I L B, the force is to the left, trying to pull the loop back in! Physics 231 Lecture 9-14 I w v

Motional EMF In previous discussions we had mentioned that a charge moving in a magnetic field experiences a force Suppose now that we have a conducting rod moving in a magnetic field as shown The positive charges will experience a magnetic force upwards, while the negative charges will experience a magnetic force downwards Charges will continue to move until the magnetic force is balanced by an opposing electric force due to the charges that have already moved Physics 231 Lecture 9-15

Motional EMF So we then have that But we also have that So V ab = v B L E = vb E = Vab / L We have an induced potential difference across the ends of the rod If this rod were part of a circuit, we then would have an induced current The sense of the induced emf can be gotten from Lenz s Law Physics 231 Lecture 9-16

Induced Electric Fields We again look at the closed loop through which the magnetic flux is changing We now know that there is an induced current in the loop But what is the force that is causing the charges to move in the loop It can t be the magnetic field, as the loop is not moving Physics 231 Lecture 9-17

Induced Electric Fields The only other thing that could make the charges move would be an electric field that is induced in the conductor This type of electric field is different from what we have dealt with before Previously our electric fields were due to charges and these electric fields were conservative Now we have an electric field that is due to a changing magnetic flux and this electric field is non-conservative Physics 231 Lecture 9-18

Escher s Depiction of a Nonconservative emf Physics 231 Lecture 9-19

Induced Electric Fields Remember that for conservative forces, the work done in going around a complete loop is zero Here there is a net work done in going around the loop that is given by qε But the total work done in going around the loop is also given by r r q E dl Equating these two we then have E r dl r = ε Physics 231 Lecture 9-20

Induced Electric Fields But previously we found that the emf was related to the negative of the time rate of change of the magnetic flux ε = So we then have finally that r r E dl dφ dt B dφ = dt This is just another way of stating Faraday s Law but for stationary paths B Physics 231 Lecture 9-21

Electro-Motive Force time A magnetic field, increasing in time, passes through the loop An electric field is generated ringing the increasing magnetic field The circulating E-field will drive currents, just like a voltage difference Loop integral of E-field is the emf : E r dl r = ε The loop does not have to be a wire - the emf exists even in vacuum! When we put a wire there, the electrons respond to the emf, producing a current Physics 231 Lecture 9-22

Displacement Current We have used Ampere s Law to calculate the magnetic field due to currents r r B dl = µ 0I enclosed where I enclosed is the current that cuts through the area bounded by the integration path But in this formulation, Ampere s Law is incomplete Physics 231 Lecture 9-23

Displacement Current Suppose we have a parallel plate capacitor being charged by a current I c We apply Ampere s Law to path that is shown For this path, the integral is just µ 0 I enclosed For the plane surface which is bounded by the path, this is just But for the bulging surface which is also bounded by the integration path, I enclosed is zero Ic So how do we reconcile these two results? Physics 231 Lecture 9-24

Displacement Current But we know we have a magnetic field Since there is charge on the plates of the capacitor, there is an electric field in the region between the plates The charge on the capacitor is related to the electric field by q = ε E A = ε Φ We can define a current in this region, the displacement current, by I Displacement Physics 231 Lecture 9-25 E dq dφ = = ε dt dt E

Displacement Current We can now rewrite Ampere s Law including this displacement current r r B dl = µ 0 Ic + ε0 dφ dt E Physics 231 Lecture 9-26

Maxwell s Equations We now gather all of the governing equations together Collectively these are known as Maxwell s Equations Physics 231 Lecture 9-27

Maxwell s Equations These four equations describe all of classical electric and magnetic phenomena Faraday s Law links a changing magnetic field with an induced electric field Ampere s Law links a changing electric field with an induced magnetic field Further manipulation of Faraday s and Ampere s Laws eventually yield a second order differential equation which is the wave equation with a prediction for the wave speed of c 1 8 = = 3 10 m / sec µ ε 0 0 = Speed of Light Physics 231 Lecture 9-28