Physics 2102 Lecture 19. Physics 2102
|
|
|
- Clifford McCormick
- 10 years ago
- Views:
Transcription
1 Physics 2102 Jonathan Dowling Physics 2102 Lecture 19 Ch 30: Inductors and RL Circuits Nikolai Tesla
2 What are we going to learn? A road map Electric charge Electric force on other electric charges Electric field, and electric potential Moving electric charges : current Electronic circuit components: batteries, resistors, capacitors Electric currents Magnetic field Magnetic force on moving charges Time-varying magnetic field Electric Field More circuit components: inductors. Electromagnetic waves light waves Geometrical Optics (light rays). Physical optics (light waves)
3 Inductors: Solenoids Inductors are with respect to the magnetic field what capacitors are with respect to the electric field. They pack a lot of field in a small region. Also, the higher the current, the higher the magnetic field they produce. Capacitance how much potential for a given charge: Q=CV Inductance how much magnetic flux for a given current: Φ=Li Using Faraday s law: EMF =!L di dt Units : [ L] = Tesla " m Ampere 2! H (Henry) Joseph Henry ( )
4 Self -Inductance of a solenoid Solenoid of cross-sectional area A, length l, total number of turns N, turns per unit length n Field inside solenoid = µ 0 n i Field outside ~ 0 i! 0 B = NAB = NAµ ni = Li L = inductance = µ NAn = 0 µ 0 N l 2 A
5 EMF =!L di dt The current in a 10 H inductor is decreasing at a steady rate of 5 A/s. Example If the current is as shown at some instant in time, what is the magnitude and direction of the induced EMF? i (a) 50 V (b) 50 V Magnitude = (10 H)(5 A/s) = 50 V Current is decreasing Induced emf must be in a direction that OPPOSES this change. So, induced emf must be in same direction as current
6 Set up a single loop series circuit with a battery, a resistor, a solenoid and a switch. Describe what happens when the switch is closed. Key processes to understand: What happens JUST AFTER the switch is closed? What happens a LONG TIME after switch has been closed? What happens in between? The RL circuit Key insights: If a circuit is not broken, one cannot change the CURRENT in an inductor instantaneously! If you wait long enough, the current in an RL circuit stops changing! At t=0, a capacitor acts like a wire; an inductor acts like a broken wire. After a long time, a capacitor acts like a broken wire, and inductor acts like a wire.
7 RL circuits In an RC circuit, while charging, Q = CV and the loop rule mean: charge increases from 0 to CE current decreases from E/R to 0 voltage across capacitor increases from 0 to E In an RL circuit, while charging (rising current), emf = Ldi/dt and the loop rule mean: magnetic field increases from 0 to B current increases from 0 to E/R voltage across inductor decreases from E to 0
8 Example Immediately after the switch is closed, what is the potential difference across the inductor? (a) 0 V (b) 9 V (c) 0.9 V 9 V 10 Ω 10 H Immediately after the switch, current in circuit = 0. So, potential difference across the resistor = 0! So, the potential difference across the inductor = E = 9 V!
9 Example 3 V 40 Ω Immediately after the switch is closed, what is the current i through the 10 Ω resistor? (a) A (b) 0.3 A (c) 0 Long after the switch has been closed, what is the current in the 40Ω resistor? (a) A (b) 0.3 A (c) A 10 Ω Immediately after switch is closed, current through inductor = 0. Hence, current trhough battery and through 10 Ω resistor is i = (3 V)/(10Ω) = 0.3 A Long after switch is closed, potential across inductor = 0. Hence, current through 40Ω resistor = (3 V)/(40Ω) = A 10 H
10 Charging an inductor How does the current in the circuit change with time? i! ir + E! L di dt = 0 E & i $ 1 ' R % Rt ' = e L #! " i(t) E/R Small L/R Time constant of RL circuit = L/R Large L/R t
11 Discharging an inductor The switch is in a for a long time, until the inductor is charged. Then, the switch is closed to b. i What is the current in the circuit? Loop rule around the new circuit: ir i di + L dt! = 0 Rt L i(t) E/R = E e R t Exponential discharge.
12 Inductors & Energy Recall that capacitors store energy in an electric field Inductors store energy in a magnetic field. i E = ir + L di dt di 2 d & Li ( i E ) = ( i 2 R) + Li dt ( ie ) = ( i R ) + $ dt! % 2 " Power delivered by battery = power dissipated by R + (d/dt) energy stored in L 2 #
13 Example The switch has been in position a for a long time. It is now moved to position b without breaking the circuit. What is the total energy dissipated by the resistor until the circuit reaches equilibrium? 9 V 10 Ω 10 H When switch has been in position a for long time, current through inductor = (9V)/(10Ω) = 0.9A. Energy stored in inductor = (0.5)(10H)(0.9A) 2 = 4.05 J When inductor discharges through the resistor, all this stored energy is dissipated as heat = 4.05 J.
14 E=120V, R 1 =10Ω, R 2 =20Ω, R 3 =30Ω, L=3H. 1. What are i 1 and i 2 immediately after closing the switch? 2. What are i 1 and i 2 a long time after closing the switch? 3. What are i 1 and i 2 1 second after closing the switch? 4. What are i 1 and i 2 immediaately after reopening the switch? 5. What are i 1 and i 2 a long time after reopening the switch?
15
Eðlisfræði 2, vor 2007
[ Assignment View ] [ Print ] Eðlisfræði 2, vor 2007 30. Inductance Assignment is due at 2:00am on Wednesday, March 14, 2007 Credit for problems submitted late will decrease to 0% after the deadline has
Last time : energy storage elements capacitor.
Last time : energy storage elements capacitor. Charge on plates Energy stored in the form of electric field Passive sign convention Vlt Voltage drop across real capacitor can not change abruptly because
Homework #11 203-1-1721 Physics 2 for Students of Mechanical Engineering
Homework #11 203-1-1721 Physics 2 for Students of Mechanical Engineering 2. A circular coil has a 10.3 cm radius and consists of 34 closely wound turns of wire. An externally produced magnetic field of
Slide 1 / 26. Inductance. 2011 by Bryan Pflueger
Slide 1 / 26 Inductance 2011 by Bryan Pflueger Slide 2 / 26 Mutual Inductance If two coils of wire are placed near each other and have a current passing through them, they will each induce an emf on one
12. The current in an inductor is changing at the rate of 100 A/s, and the inductor emf is 40 V. What is its self-inductance?
12. The current in an inductor is changing at the rate of 100 A/s, and the inductor emf is 40 V. What is its self-inductance? From Equation 32-5, L = -E=(dI =dt) = 40 V=(100 A/s) = 0.4 H. 15. A cardboard
Induced voltages and Inductance Faraday s Law
Induced voltages and Inductance Faraday s Law concept #1, 4, 5, 8, 13 Problem # 1, 3, 4, 5, 6, 9, 10, 13, 15, 24, 23, 25, 31, 32a, 34, 37, 41, 43, 51, 61 Last chapter we saw that a current produces a magnetic
Circuits with inductors and alternating currents. Chapter 20 #45, 46, 47, 49
Circuits with inductors and alternating currents Chapter 20 #45, 46, 47, 49 RL circuits Ch. 20 (last section) Symbol for inductor looks like a spring. An inductor is a circuit element that has a large
Problem Solving 8: RC and LR Circuits
MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Physics Problem Solving 8: RC and LR Circuits Section Table and Group (e.g. L04 3C ) Names Hand in one copy per group at the end of the Friday Problem
Lecture 22. Inductance. Magnetic Field Energy. Outline:
Lecture 22. Inductance. Magnetic Field Energy. Outline: Self-induction and self-inductance. Inductance of a solenoid. The energy of a magnetic field. Alternative definition of inductance. Mutual Inductance.
Chapter 11. Inductors ISU EE. C.Y. Lee
Chapter 11 Inductors Objectives Describe the basic structure and characteristics of an inductor Discuss various types of inductors Analyze series inductors Analyze parallel inductors Analyze inductive
ES250: Electrical Science. HW7: Energy Storage Elements
ES250: Electrical Science HW7: Energy Storage Elements Introduction This chapter introduces two more circuit elements, the capacitor and the inductor whose elements laws involve integration or differentiation;
Solution Derivations for Capa #11
Solution Derivations for Capa #11 Caution: The symbol E is used interchangeably for energy and EMF. 1) DATA: V b = 5.0 V, = 155 Ω, L = 8.400 10 2 H. In the diagram above, what is the voltage across the
EE301 Lesson 14 Reading: 10.1-10.4, 10.11-10.12, 11.1-11.4 and 11.11-11.13
CAPACITORS AND INDUCTORS Learning Objectives EE301 Lesson 14 a. Define capacitance and state its symbol and unit of measurement. b. Predict the capacitance of a parallel plate capacitor. c. Analyze how
W03 Analysis of DC Circuits. Yrd. Doç. Dr. Aytaç Gören
W03 Analysis of DC Circuits Yrd. Doç. Dr. Aytaç Gören ELK 2018 - Contents W01 Basic Concepts in Electronics W02 AC to DC Conversion W03 Analysis of DC Circuits (self and condenser) W04 Transistors and
Direction of Induced Current
Direction of Induced Current Bar magnet moves through coil Current induced in coil A S N v Reverse pole Induced current changes sign B N S v v Coil moves past fixed bar magnet Current induced in coil as
Module 22: Inductance and Magnetic Field Energy
Module 22: Inductance and Magnetic Field Energy 1 Module 22: Outline Self Inductance Energy in Inductors Circuits with Inductors: RL Circuit 2 Faraday s Law of Induction dφ = B dt Changing magnetic flux
Lecture 24. Inductance and Switching Power Supplies (how your solar charger voltage converter works)
Lecture 24 Inductance and Switching Power Supplies (how your solar charger voltage converter works) Copyright 2014 by Mark Horowitz 1 Roadmap: How Does This Work? 2 Processor Board 3 More Detailed Roadmap
Objectives. Capacitors 262 CHAPTER 5 ENERGY
Objectives Describe a capacitor. Explain how a capacitor stores energy. Define capacitance. Calculate the electrical energy stored in a capacitor. Describe an inductor. Explain how an inductor stores energy.
April 1. Physics 272. Spring 2014 http://www.phys.hawaii.edu/~philipvd/pvd_14_spring_272_uhm.html. Prof. Philip von Doetinchem philipvd@hawaii.
Physics 272 April 1 Spring 2014 http://www.phys.hawaii.edu/~philipvd/pvd_14_spring_272_uhm.html Prof. Philip von Doetinchem [email protected] Phys272 - Spring 14 - von Doetinchem - 164 Summary Gauss's
Chapter 30 Inductance
Chapter 30 Inductance - Mutual Inductance - Self-Inductance and Inductors - Magnetic-Field Energy - The R- Circuit - The -C Circuit - The -R-C Series Circuit . Mutual Inductance - A changing current in
Inductance. Motors. Generators
Inductance Motors Generators Self-inductance Self-inductance occurs when the changing flux through a circuit arises from the circuit itself. As the current increases, the magnetic flux through a loop due
Chapter 30 Inductance, Electromagnetic Oscillations, and AC Circuits. Copyright 2009 Pearson Education, Inc.
Chapter 30 Inductance, Electromagnetic Oscillations, and AC Circuits 30-1 Mutual Inductance Mutual inductance: a changing current in one coil will induce a current in a second coil: Coil 1 produces a flux
First Order Circuits. EENG223 Circuit Theory I
First Order Circuits EENG223 Circuit Theory I First Order Circuits A first-order circuit can only contain one energy storage element (a capacitor or an inductor). The circuit will also contain resistance.
Capacitors in Circuits
apacitors in ircuits apacitors store energy in the electric field E field created by the stored charge In circuit apacitor may be absorbing energy Thus causes circuit current to be reduced Effectively
Diodes have an arrow showing the direction of the flow.
The Big Idea Modern circuitry depends on much more than just resistors and capacitors. The circuits in your computer, cell phone, Ipod depend on circuit elements called diodes, inductors, transistors,
104 Practice Exam 2-3/21/02
104 Practice Exam 2-3/21/02 1. Two electrons are located in a region of space where the magnetic field is zero. Electron A is at rest; and electron B is moving westward with a constant velocity. A non-zero
Inductance and Magnetic Energy
Chapter 11 Inductance and Magnetic Energy 11.1 Mutual Inductance... 11-3 Example 11.1 Mutual Inductance of Two Concentric Coplanar Loops... 11-5 11. Self-Inductance... 11-5 Example 11. Self-Inductance
Magnetic Circuits. Outline. Ampere s Law Revisited Review of Last Time: Magnetic Materials Magnetic Circuits Examples
Magnetic Circuits Outline Ampere s Law Revisited Review of Last Time: Magnetic Materials Magnetic Circuits Examples 1 Electric Fields Magnetic Fields S ɛ o E da = ρdv B V = Q enclosed S da =0 GAUSS GAUSS
CHAPTER 30: Inductance, Electromagnetic Oscillations, and AC Circuits
HAPTE 3: Inductance, Electromagnetic Oscillations, and A ircuits esponses to Questions. (a) For the maximum value of the mutual inductance, place the coils close together, face to face, on the same axis.
MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.
MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) If the voltage at a point in space is zero, then the electric field must be A) zero. B) positive.
Inductors & Inductance. Electronic Components
Electronic Components Induction In 1824, Oersted discovered that current passing though a coil created a magnetic field capable of shifting a compass needle. Seven years later, Faraday and Henry discovered
DEGREE: Bachelor's Degree in Industrial Electronics and Automation COURSE: 1º TERM: 2º WEEKLY PLANNING
SESSION WEEK COURSE: Physics II DEGREE: Bachelor's Degree in Industrial Electronics and Automation COURSE: 1º TERM: 2º WEEKLY PLANNING DESCRIPTION GROUPS (mark ) Indicate YES/NO If the session needs 2
How To Understand And Understand The Theory Of Electricity
DIRECT CURRENT AND ALTERNATING CURRENT SYSTEMS N. Rajkumar, Research Fellow, Energy Systems Group, City University Northampton Square, London EC1V 0HB, UK Keywords: Electrical energy, direct current, alternating
45. The peak value of an alternating current in a 1500-W device is 5.4 A. What is the rms voltage across?
PHYS Practice Problems hapters 8- hapter 8. 45. The peak value of an alternating current in a 5-W device is 5.4 A. What is the rms voltage across? The power and current can be used to find the peak voltage,
Edmund Li. Where is defined as the mutual inductance between and and has the SI units of Henries (H).
INDUCTANCE MUTUAL INDUCTANCE If we consider two neighbouring closed loops and with bounding surfaces respectively then a current through will create a magnetic field which will link with as the flux passes
Electromagnetism Laws and Equations
Electromagnetism Laws and Equations Andrew McHutchon Michaelmas 203 Contents Electrostatics. Electric E- and D-fields............................................. Electrostatic Force............................................2
= (0.400 A) (4.80 V) = 1.92 W = (0.400 A) (7.20 V) = 2.88 W
Physics 2220 Module 06 Homework 0. What are the magnitude and direction of the current in the 8 Ω resister in the figure? Assume the current is moving clockwise. Then use Kirchhoff's second rule: 3.00
Energy in Electrical Systems. Overview
Energy in Electrical Systems Overview How can Potential Energy be stored in electrical systems? Battery Stored as chemical energy then transformed to electrical energy on usage Water behind a dam Water
EEE1001/PHY1002. Magnetic Circuits. The circuit is of length l=2πr. B andφ circulate
1 Magnetic Circuits Just as we view electric circuits as related to the flow of charge, we can also view magnetic flux flowing around a magnetic circuit. The sum of fluxes entering a point must sum to
Alternating Current Circuits and Electromagnetic Waves
Arecibo, a large radio telescope in Puerto Rico, gathers electromagnetic radiation in the form of radio waves. These long wavelengths pass through obscuring dust clouds, allowing astronomers to create
RUPHYS2272015 ( RUPHY227F2015 ) My Courses Course Settings University Physics with Modern Physics, 14e Young/Freedman
Signed in as Jolie Cizewski, Instructor Help Sign Out RUPHYS2272015 ( RUPHY227F2015 ) My Courses Course Settings University Physics with Modern Physics, 14e Young/Freedman Course Home Assignments Roster
AP Physics Electricity and Magnetism #4 Electrical Circuits, Kirchoff s Rules
Name Period AP Physics Electricity and Magnetism #4 Electrical Circuits, Kirchoff s Rules Dr. Campbell 1. Four 240 Ω light bulbs are connected in series. What is the total resistance of the circuit? What
PHYS 222 Spring 2012 Final Exam. Closed books, notes, etc. No electronic device except a calculator.
PHYS 222 Spring 2012 Final Exam Closed books, notes, etc. No electronic device except a calculator. NAME: (all questions with equal weight) 1. If the distance between two point charges is tripled, the
PHY114 S11 Term Exam 3
PHY4 S Term Exam S. G. Rajeev Mar 2 20 2:0 pm to :45 pm PLEASE write your workshop number and your workshop leader s name at the top of your book, so that you can collect your graded exams at the workshop.
Chapter 14: Inductor design
Chapter 14 Inductor Design 14.1 Filter inductor design constraints 14.2 A step-by-step design procedure 14.3 Multiple-winding magnetics design using the K g method 14.4 Examples 14.5 Summary of key points
2. A conductor of length 2m moves at 4m/s at 30 to a uniform magnetic field of 0.1T. Which one of the following gives the e.m.f. generated?
Extra Questions - 2 1. A straight length of wire moves through a uniform magnetic field. The e.m.f. produced across the ends of the wire will be maximum if it moves: a) along the lines of magnetic flux
CHAPTER 28 ELECTRIC CIRCUITS
CHAPTER 8 ELECTRIC CIRCUITS 1. Sketch a circuit diagram for a circuit that includes a resistor R 1 connected to the positive terminal of a battery, a pair of parallel resistors R and R connected to the
Inductors and Capacitors Energy Storage Devices
Inuctors an Capacitors Energy Storage Devices Aims: To know: Basics of energy storage evices. Storage leas to time elays. Basic equations for inuctors an capacitors. To be able to o escribe: Energy storage
The Time Constant of an RC Circuit
The Time Constant of an RC Circuit 1 Objectives 1. To determine the time constant of an RC Circuit, and 2. To determine the capacitance of an unknown capacitor. 2 Introduction What the heck is a capacitor?
Circuits. The light bulbs in the circuits below are identical. Which configuration produces more light? (a) circuit I (b) circuit II (c) both the same
Circuits The light bulbs in the circuits below are identical. Which configuration produces more light? (a) circuit I (b) circuit II (c) both the same Circuit II has ½ current of each branch of circuit
Aircraft Electrical System
Chapter 9 Aircraft Electrical System Introduction The satisfactory performance of any modern aircraft depends to a very great degree on the continuing reliability of electrical systems and subsystems.
Pulsed Power Engineering Diagnostics
Pulsed Power Engineering Diagnostics January 12-16, 2009 Craig Burkhart, PhD Power Conversion Department SLAC National Accelerator Laboratory Diagnostic Techniques and Considerations in Pulsed Power Systems
Physics 6C, Summer 2006 Homework 2 Solutions
Physics 6C, Summer 006 Homework Solutions All problems are from the nd edition of Walker. Numerical values are different for each student. Chapter 3 Problems. Figure 3-30 below shows a circuit containing
= V peak 2 = 0.707V peak
BASIC ELECTRONICS - RECTIFICATION AND FILTERING PURPOSE Suppose that you wanted to build a simple DC electronic power supply, which operated off of an AC input (e.g., something you might plug into a standard
AC Generators. Basic Generator
AC Generators Basic Generator A basic generator consists of a magnetic field, an armature, slip rings, brushes and a resistive load. The magnetic field is usually an electromagnet. An armature is any number
L and C connected together. To be able: To analyse some basic circuits.
circuits: Sinusoidal Voltages and urrents Aims: To appreciate: Similarities between oscillation in circuit and mechanical pendulum. Role of energy loss mechanisms in damping. Why we study sinusoidal signals
Inductors. AC Theory. Module 3
Module 3 AC Theory What you ll learn in Module 3. Section 3.1 Electromagnetic Induction. Magnetic Fields around Conductors. The Solenoid. Section 3.2 Inductance & Back e.m.f. The Unit of Inductance. Factors
Inductors in AC Circuits
Inductors in AC Circuits Name Section Resistors, inductors, and capacitors all have the effect of modifying the size of the current in an AC circuit and the time at which the current reaches its maximum
DOE FUNDAMENTALS HANDBOOK ELECTRICAL SCIENCE Volume 3 of 4
DOE-HDBK-1011/3-92 JUNE 1992 DOE FUNDAMENTALS HANDBOOK ELECTRICAL SCIENCE Volume 3 of 4 U.S. Department of Energy Washington, D.C. 20585 FSC-6910 Distribution Statement A. Approved for public release;
Exercises on Voltage, Capacitance and Circuits. A d = (8.85 10 12 ) π(0.05)2 = 6.95 10 11 F
Exercises on Voltage, Capacitance and Circuits Exercise 1.1 Instead of buying a capacitor, you decide to make one. Your capacitor consists of two circular metal plates, each with a radius of 5 cm. The
Chapter 7. Magnetism and Electromagnetism ISU EE. C.Y. Lee
Chapter 7 Magnetism and Electromagnetism Objectives Explain the principles of the magnetic field Explain the principles of electromagnetism Describe the principle of operation for several types of electromagnetic
Coupled Inductors. Introducing Coupled Inductors
Coupled Inductors From power distribution across large distances to radio transmissions, coupled inductors are used extensively in electrical applications. Their properties allow for increasing or decreasing
Tristan s Guide to: Solving Series Circuits. Version: 1.0 Written in 2006. Written By: Tristan Miller [email protected]
Tristan s Guide to: Solving Series Circuits. Version: 1.0 Written in 2006 Written By: Tristan Miller [email protected] Series Circuits. A Series circuit, in my opinion, is the simplest circuit
1. The diagram below represents magnetic lines of force within a region of space.
1. The diagram below represents magnetic lines of force within a region of space. 4. In which diagram below is the magnetic flux density at point P greatest? (1) (3) (2) (4) The magnetic field is strongest
ElectroMagnetic Induction. AP Physics B
ElectroMagnetic Induction AP Physics B What is E/M Induction? Electromagnetic Induction is the process of using magnetic fields to produce voltage, and in a complete circuit, a current. Michael Faraday
EE 1202 Experiment #4 Capacitors, Inductors, and Transient Circuits
EE 1202 Experiment #4 Capacitors, Inductors, and Transient Circuits 1. Introduction and Goal: Exploring transient behavior due to inductors and capacitors in DC circuits; gaining experience with lab instruments.
DC GENERATOR THEORY. LIST the three conditions necessary to induce a voltage into a conductor.
DC Generators DC generators are widely used to produce a DC voltage. The amount of voltage produced depends on a variety of factors. EO 1.5 LIST the three conditions necessary to induce a voltage into
Line Reactors and AC Drives
Line Reactors and AC Drives Rockwell Automation Mequon Wisconsin Quite often, line and load reactors are installed on AC drives without a solid understanding of why or what the positive and negative consequences
First Year (Electrical & Electronics Engineering)
Z PRACTICAL WORK BOOK For The Course EE-113 Basic Electrical Engineering For First Year (Electrical & Electronics Engineering) Name of Student: Class: Batch : Discipline: Class Roll No.: Examination Seat
CHAPTER - 1. Chapter ONE: WAVES CHAPTER - 2. Chapter TWO: RAY OPTICS AND OPTICAL INSTRUMENTS. CHAPTER - 3 Chapter THREE: WAVE OPTICS PERIODS PERIODS
BOARD OF INTERMEDIATE EDUCATION, A.P., HYDERABAD REVISION OF SYLLABUS Subject PHYSICS-II (w.e.f 2013-14) Chapter ONE: WAVES CHAPTER - 1 1.1 INTRODUCTION 1.2 Transverse and longitudinal waves 1.3 Displacement
Common Mode and Differential Mode Noise Filtering
Summary Introduction This application note gives a practical explanation of differential mode and common mode noise along with the traditional filtering approaches. In addition, an alternative method of
The Flyback Converter
The Flyback Converter Lecture notes ECEN4517! Derivation of the flyback converter: a transformer-isolated version of the buck-boost converter! Typical waveforms, and derivation of M(D) = V/! Flyback transformer
Scott Hughes 7 April 2005. Massachusetts Institute of Technology Department of Physics 8.022 Spring 2005. Lecture 15: Mutual and Self Inductance.
Scott Hughes 7 April 2005 151 Using induction Massachusetts nstitute of Technology Department of Physics 8022 Spring 2005 Lecture 15: Mutual and Self nductance nduction is a fantastic way to create EMF;
Application Note AN:005. FPA Printed Circuit Board Layout Guidelines. Introduction Contents. The Importance of Board Layout
FPA Printed Circuit Board Layout Guidelines By Paul Yeaman Principal Product Line Engineer V I Chip Strategic Accounts Introduction Contents Page Introduction 1 The Importance of 1 Board Layout Low DC
2 A bank account for electricity II: flows and taxes
PHYS 189 Lecture problems outline Feb 3, 2014 Resistors and Circuits Having introduced capacitors, we now expand our focus to another very important component of a circuit resistors. This entails more
Let s examine the response of the circuit shown on Figure 1. The form of the source voltage Vs is shown on Figure 2. R. Figure 1.
Examples of Transient and RL Circuits. The Series RLC Circuit Impulse response of Circuit. Let s examine the response of the circuit shown on Figure 1. The form of the source voltage Vs is shown on Figure.
EE 221 Circuits II. Chapter 13 Magnetically Coupled Circuits
EE Circuits II Chapter 3 Magnetically Coupled Circuits Magnetically Coupled Circuits 3. What is a transformer? 3. Mutual Inductance 3.3 Energy in a Coupled Circuit 3.4 inear Transformers 3.5 Ideal Transformers
RC Circuits and The Oscilloscope Physics Lab X
Objective RC Circuits and The Oscilloscope Physics Lab X In this series of experiments, the time constant of an RC circuit will be measured experimentally and compared with the theoretical expression for
Faraday s Law of Induction
Chapter 10 Faraday s Law of Induction 10.1 Faraday s Law of Induction...10-10.1.1 Magnetic Flux...10-3 10.1. Lenz s Law...10-5 10. Motional EMF...10-7 10.3 Induced Electric Field...10-10 10.4 Generators...10-1
Application Note. So You Need to Measure Some Inductors?
So You Need to Measure Some nductors? Take a look at the 1910 nductance Analyzer. Although specifically designed for production testing of inductors and coils, in addition to measuring inductance (L),
EMI and t Layout Fundamentals for Switched-Mode Circuits
v sg (t) (t) DT s V pp = n - 1 2 V pp V g n V T s t EE core insulation primary return secondary return Supplementary notes on EMI and t Layout Fundamentals for Switched-Mode Circuits secondary primary
Chapter 35 Alternating Current Circuits
hapter 35 Alternating urrent ircuits ac-ircuits Phasor Diagrams Resistors, apacitors and nductors in ac-ircuits R ac-ircuits ac-ircuit power. Resonance Transformers ac ircuits Alternating currents and
BASIC ELECTRONICS AC CIRCUIT ANALYSIS. December 2011
AM 5-202 BASIC ELECTRONICS AC CIRCUIT ANALYSIS December 2011 DISTRIBUTION RESTRICTION: Approved for Pubic Release. Distribution is unlimited. DEPARTMENT OF THE ARMY MILITARY AUXILIARY RADIO SYSTEM FORT
Series and Parallel Circuits
Series and Parallel Circuits Components in a circuit can be connected in series or parallel. A series arrangement of components is where they are inline with each other, i.e. connected end-to-end. A parallel
9: Capacitors and Inductors
E1.1 Analysis of Circuits (2015-7150) and : 9 1 / 12 A capacitor is formed from two conducting plates separated by a thin insulating layer. If a currentiflows, positive change,q, will accumulate on the
Chapter 12 Driven RLC Circuits
hapter Driven ircuits. A Sources... -. A ircuits with a Source and One ircuit Element... -3.. Purely esistive oad... -3.. Purely Inductive oad... -6..3 Purely apacitive oad... -8.3 The Series ircuit...
However, industrial applications may utilize a relay, which short-circuits the ICL path after the inrush sequence.
Application note for Inrush Current Limiters (ICL) Turning on electrical devices generally cause high inrush currents which can damage electronic components and cause interruption of the line voltage if
Lecture Notes: ECS 203 Basic Electrical Engineering Semester 1/2010. Dr.Prapun Suksompong 1 June 16, 2010
Sirindhorn International Institute of Technology Thammasat University School of Information, Computer and Communication Technology Lecture Notes: ECS 203 Basic Electrical Engineering Semester 1/2010 Dr.Prapun
Power Supplies. 1.0 Power Supply Basics. www.learnabout-electronics.org. Module
Module 1 www.learnabout-electronics.org Power Supplies 1.0 Power Supply Basics What you ll learn in Module 1 Section 1.0 Power Supply Basics. Basic functions of a power supply. Safety aspects of working
An equivalent circuit of a loop antenna.
3.2.1. Circuit Modeling: Loop Impedance A loop antenna can be represented by a lumped circuit when its dimension is small with respect to a wavelength. In this representation, the circuit parameters (generally
( )( 10!12 ( 0.01) 2 2 = 624 ( ) Exam 1 Solutions. Phy 2049 Fall 2011
Phy 49 Fall 11 Solutions 1. Three charges form an equilateral triangle of side length d = 1 cm. The top charge is q = - 4 μc, while the bottom two are q1 = q = +1 μc. What is the magnitude of the net force
DIMENSIONING OF CURRENT TRANSFORMERS FOR PROTECTON APPLICATION
ÿþ üûúùø öõöôùóùõò CT Dimensioning DIMENSIONING OF CURRENT TRANSFORMERS FOR PROTECTON APPLICATION Application note GER3973 1 CT Dimensioning ÿþ üûúùø öõöôùóùõò GER-3973 Application note ÿþ üûúùø öõöôùóùõò
Chapter 7 Direct-Current Circuits
Chapter 7 Direct-Current Circuits 7. Introduction...7-7. Electromotive Force...7-3 7.3 Resistors in Series and in Parallel...7-5 7.4 Kirchhoff s Circuit Rules...7-7 7.5 Voltage-Current Measurements...7-9
RLC Resonant Circuits
C esonant Circuits Andrew McHutchon April 20, 203 Capacitors and Inductors There is a lot of inconsistency when it comes to dealing with reactances of complex components. The format followed in this document
Generator Stator Protection, under/over voltage, under /over frequency and unbalanced loading. Ramandeep Kaur Aujla S.NO 250447392
1 Generator Stator Protection, under/over voltage, under /over frequency and unbalanced loading By Ramandeep Kaur Aujla S.NO 250447392 ES 586b: Theory and applications of protective relays Department of
DIRECT CURRENT GENERATORS
DIRECT CURRENT GENERATORS Revision 12:50 14 Nov 05 INTRODUCTION A generator is a machine that converts mechanical energy into electrical energy by using the principle of magnetic induction. This principle
Chapter 22: Vladimir Utkin and Lenz s Law
A Practical Guide to Free-Energy Devices Author: Patrick J. Kelly Chapter 22: Vladimir Utkin and Lenz s Law Vladimir Utkin is a well-respected Russian researcher who has kindly shared his insights into
Understanding SMD Power Inductors. Application Note. July 2011
Understanding SMD Power Inductors July 2011 Application Note Power inductors play an important role in voltage conversion applications by yielding lower core losses. They are also used to store energy,
