FEATHERS FUNCTIONS OF FEATHERS

Similar documents
Name That Adaptation. Background: Link to the Plan Read Section 5 (Whooping Crane Ecology and Biology) in the Management Plan

FORENSIC ORNITHOLOGY

How to Age Golden Eagles

CHEM 107. Hair handout. Basic Structure of Hair and

Two main classes: Epithelial Connective (synovial) Epithelial. Cutaneous Mucous Serous

Structures of animals

Your Skin. Name: Your Largest Organ

Part 4. Development of raptor chicks. Raptors: a field guide for surveys and monitoring 281

Exhibit Inquiry. Rainforest. Aug 11

Before you know about your future see your past before improving your future hair see what has been and is the state of your hair now Ravi Bhanot

263 Turtle Dove. TURTLE DOVE (Streptopelia turtur)

The Avian Skeleton. Avian Flight. The Pelvic Girdle. Skeletal Strength. The Pelvic Girdle

Skeletal, Muscular, and Integumentary Systems

Animal Tissues. I. Epithelial Tissue

Therizinosaur Mystery of the Sickle Claw Dinosaur. Arizona Museum of Natural History. Educator Resource Guide

Poultry Sample Questions from Animals In Pursuit

ELEMENTARY-LEVEL SCIENCE TEST


Bony Fish Anatomy Worksheet

The Integumentary System Dr. Ali Ebneshahidi

A Method of Population Estimation: Mark & Recapture

Quills, Horn, Hair, Feathers, Claws, and Baleen

Cell Deficiency and the Benefit of the Mushroom

Light in the Greenhouse: How Much is Enough?

[chime plays] [music plays]

Evidence for evolution factsheet

Electronics and Soldering Notes

CHAPTER 6: INTEGUMENTARY SYSTEM. 1. Explain why the skin is called the cutaneous membrane.

Hair Chemistry. Chapter 1. Hair Relaxers Science, Design, and Application

FCI-Standard N 105 / /GB FRENCH WATER DOG. (Barbet)

Thick and Thin Evaluating layers of the skin

Who Glows there? Bioluminescence of Fireflies, Mushrooms, and Jellyfish

ANIMAL COVERINGS Lesson Plan

Evolution (18%) 11 Items Sample Test Prep Questions

CSE511 Brain & Memory Modeling. Lect04: Brain & Spine Neuroanatomy

The Integumentary System

Natural surface water on earth includes lakes, ponds, streams, rivers, estuaries, seas and oceans.

Thomas T. Jeneby, M.D Wurzbach Suite 801 San Antonio, TX /

6. Which of the following is not a basic need off all animals a. food b. *friends c. water d. protection from predators. NAME SOL 4.

The Toledo Zoo Aviary

GCSE BITESIZE Examinations

2 nd Grade Science Unit B: Life Sciences Chapter 3: Plants and Animals in Their Environment Lesson 1: How are plants and animals like their parents?

4THE UNIVERSITY OF THE STATE OF NEW YORK

DETERMINING WHICH COLOR UV BEAD CHANGES COLORS THE FASTEST

Kindergarten Science Unit B: Life Science Chapter 4: Plant and Animal Parts Lesson 1: What do plant parts do?

Transverse Sections of the Spinal Cord

Grade Level Content Expectations addressed: Activities: Schedule of Field Trip Activities at the Detroit Zoo 8:15 am Board Bus at School

Fishy Adaptations. Adapted from: Fashion a Fish in Project Wild Aquatic Education Activity Guide. The Council for Environmental Education, 1992

Seattle is -- FOR THE BIRDS. How to Identify Common Seattle Birds

Bird Scavenger Hunt Activity

Species Horse Module - Colors

Functions INTEGUMENTARY SYSTEM. Protective Functions. Functions in Sensation. Functions in Excretion. Functions in Temperature Regulation

Animals and Adaptation

This is a series of skulls and front leg fossils of organisms believed to be ancestors of the modern-day horse.

Common Backyard Birds of Alabama

Introduction to Anatomy and Physiology: Tissues and Integumentary System. Biology 105 Lecture 7 Chapter 4

Animal Adaptations -- Vocabulary

Notes on Hair Analysis

XII. Biology, Grade 10

Human Growth and Reproduction

Owls. Choose words from the list at the end of the page to fill in the blank spaces.

Ecosystems and Food Webs

Section B: Epithelial Tissue 1. Where are epithelial tissues found within the body? 2. What are the functions of the epithelial tissues?

2. What kind of energy is stored in food? A. chemical energy B. heat energy C. kinetic energy D. light energy

Lecture 7: Plant Structure and Function. I. Background

Species-of-the-Week. Blanding s Turtle (Emydoidea blandingii) Species of Special Concern in Michigan

SAMPLE LECTURE EXAM 1 -- HUMAN ANATOMY

Management of goats at pasture. Barry W Norton School of Land and Food, University of Queensland, Australia

Silent, Nighttime Hunters By Guy Belleranti

DC Eagle Nest FAQs How do you tell Mr. President and The First Lady apart?

THE SKELETAL SYSTEM FUNCTIONS OF THE SKELETAL SYSTEM

English Language Arts Book 3

about Why You Should Know Melanoma

honey bee By Henry Touray

Animal Classification K-4

The Cricket Lab. Introduction

Name. Period. Date. Science.. Variation and Selection in the...egyptian Origami Bird (Avis papyrus)..

THE WRIST. At a glance. 1. Introduction

Chapter 5 The Integumentary System Lecture Outline

Biology 141 Anatomy and Physiology I

Clark County Fair Exhibitor Guide

Great Horned Owl (Bubo virginianus)

Unit 3L.4: Body Parts and Functions

North Dakota Agricultural College

Life Cycle of a Butterfly

Chetek-Weyerhaeuser High School

A Fishy Tale. Observing the Circulatory System of a Goldfish with a Compound Light Microscope

WEATHER, CLIMATE AND ADAPTATIONS OF ANIMALS TO CLIMATE

Important Notes Color

Hair Analysis 2005, 2004, 2003, 2001, 1999 by David A. Katz. All rights reserved.

Osseous Tissue & Structure. The skeletal system includes: Storage of minerals: calcium salts

Animal Environmental Internal Response Types

The Clouds Outside My Window. National Weather Service NOAA

Brownies. It s Your Planet Love It! WOW: Wonders of Water. Ice Cold (page 25) Extinct (page 39)

Heredity. Sarah crosses a homozygous white flower and a homozygous purple flower. The cross results in all purple flowers.

Comparing Plant and Animal Cells


Sullivan s Island Bird Banding and Environmental Education Program. Sarah Harper Díaz, MA and Jennifer Tyrrell, MS

Provided by the American Venous Forum: veinforum.org

Animal Systems: The Musculoskeletal System

Transcription:

FEATHERS FUNCTIONS OF FEATHERS Feathers are the most distinctive feature of birds Extraordinary evolutionary invention Feathers are fundamental to many aspects of bird existence Insulation, aerodynamics, communication, camouflage Primary functions are to provide protection, insulation, and capacity for flight Insulation is essential to regulate body temperate Feather color important for communication (mate selection, territory dominance) and camouflage Modified feathers are important for swimming, sound production (communication), hearing (owls), tactile sensation (night hawks), breeding displays central shaft RACHIS broad flat VANE on both sides FEATHER STRUCTURE base - CALAMUS CALAMUS anchors feather into FOLLICLE INFERIOR UMBILICUS provides access to blood flow during development Vanes grade from hidden, fluffy, insulating section at base = PLUMULACEOUS To the visible PENNACEOUS section on distal end Lateral branches off the RACHIS are called BARBS and provide the primary structure Feather Structure - Terms Inferior umbilicus The central shaft of a BARB is call the RAMUS STRUCTURE OF THE VANE Each BARB is divided into more branches called BARBULES BARBULES consist of single cells linked end to end, many bearing BARBICELS or HOOKLETS The BARBS and BARBULES form an interlocking strong, flexible surface and one of the most precisely adapted epidermal structures in the animal kingdom

Feather Types Pennaceous Pennaceous: Contour Bristles Flight Plumulaceous: Semiplumes Filoplume Down Scanning electron photomicrographs of downy (top) and pennaceous (bottom) barbules of an American Crow (Corvus brachyrhynchos) Plumulaceous Dove, C. J., A. M. Rijke, X. Wang, and L. S. Andrews. 2007. Journal of Thermal Biology 32: 42-46. CONTOUR FEATHERS CONTOUR FEATHERS REMIGES and RECTRICES Contour feathers are the basic, vaned feathers of body and wing Includes large flight feathers of wings and tail with asymmetrical vanes Smaller contour feather cover body and have symmetrical vanes REMIGES and RECTRICES are a subset of contour feathers Includes flight feathers of the wing, including primaries, secondaries, and tertials, and tail feathers Feather vanes are usually asymmetrical REMIGES AND RETRICES BRISTLE FEATHERS WING Bristle feathers are contour feathers without the vanes Bristle feathers consist of a RACHIS but lack BARBS and BARBULES Bristle feathers are found around the eye for protection, and around the mouth for tactile sensitivity (insectivorous species) TAIL

Semiplumes are intermediate between PENNACEOUS (stiff) and PLUMULACEOUS (down) feathers, which lack a RACHIS Semiplumes are distinguished from down feather by having a RACHIS that is longer than any BARB Semiplumes lie at edge of contour feather tracts, provide insulation, and serve in courtship displays Semiplumes FILOPLUMES FILOPLUMES are long, hair like feathers that monitor the position of the PENNACEOUS feathers on the wind and tail Sensory corpuscles at the base of each FILOPLUME detect fine movements in feather shafts Each flight feather may have 8-12 FILOPLUMES FILOPLUMES are most abundant at the base of the wing DEFINITIVE DOWN FEATHERS FEATHER DISTRIBUTION These are PLUMACEOUS feathers that provide a layer of insulation under the contour feathers DOWN feathers usually do not have a rachis or it is shorter than the barbs Natal down covers most hatchlings and is usually simpler in structure than adult down The feather coat of many species includes over 25,000 feathers Feather coats weigh 2-3 times the amount of bones Feathers cover the entire body but are not evenly attached to the skin Feather attachments are grouped into FEATHER TRACTS pterylae = areas with feathers apteria = areas without feathers FEATHER DISTRIBUTION There are eight major feather tracts or PTERYLAE Capital - Femoral Ventral - Crural Humeral - Caudal Alar - Spinal

CAPITAL TRACT Extends over the entire dorsal surface of the head SPINAL TRACT runs down the dorsal midline of the body from the base of the skull to the pygostyle (fused caudal vertebrae) VENTRAL TRACT Covers the ventral neck, breast, and abdominal regions CAUDAL TRACT Includes the major flight feathers of the tail (THE RETRICES) FEATHER TRACTS HUMERAL TRACT A band of contour feathers that overlie the humerus on the dorsal side of the wing ALAR TRACT A series of small PTERYLAE over the dorsal and ventral surfaces of the outer wing. Includes all the major flight feathers (primaries, secondaries, alula, tertials) FEMORAL TRACT Covers the thigh upward to the base of the tail CRURAL TRACT Includes lower leg feathers FEATHER TRACTS FEATHER DEVELOPMENT Feathers, once grown, are dead structures the only mechanism to repair a feather is to grow a new one Feathers grow by proliferation and differentiation of keratinocytes Keratinocytes are keratin-producing cells in the epidermis Keratins are filaments of proteins that polymerize to form solid structure like hair, nails, bills, scales, and feathers FEATHER DEVELOPMENT Feather development starts via a special layer of epidermal cells that differentiate into the protective sheath that will surround the developing feather The specialized dermis layer becomes the pulp at the base that supplies nutrients to the developing feathers Feather growth begins on the epidermis with the PLACODE a thickening of the epidermis over the condensation of cells in the dermis The growth of a new feather starts with the thickened dermal papilla located in the follicle FEATHER DEVELOPMENT The cells of the epidermal layer divide rapidly to form the main axis of the feather which will eventually become the rachis New feathers grow rapidly towards the end of growth the cells form a CALAMUS that anchors the feather to the follicle The new feather pushes the old feather out of the follicle

Feathers evolved in Dinosaurs Feathers developed from an initial hollow tube to the asymmetrical flight feathers we see in modern birds The precursor of a feather may have been a conical papilla developed from a cylindrical follicle within the skin The papilla becomes a tuft of unbranched filaments (barbs), and then each filament becomes branched (barbules) The branched filaments then become organized around a central stem (rachis) to produce the pinnate arrangement of presentday feathers ORIGIN OF FEATHERS Prum, R. O. 1999. Journal of Experimental Zoology 285: 291 306. ORIGIN OF FEATHERS It has long been accepted that feathers evolved from reptilian scales But now there is conclusive evidence that dinosaurs evolved feathers before birds The evolutionary question is What was the adaptive value to evolve the intermediate structures that ultimately led to feathers? There are two main theories that attempt to answer this question

FLIGHT THEORY Flight theory postulates that each modification of the early hollow tubes of the arboreal ancestors to birds made them better and better gliders and eventually fliers Everything about modern feathers is aerodynamic and very complex in structure Flight versus Insulation Theory If insulation was the driving adaptive mechanism then why not something simple like hair? Any mutation of a reptilian scale that conferred an advantage in parachuting or gliding would have a selective advantage INSULATION THEORY Feathers are the most efficient natural insulator This theory believes feathers evolved to regulate bird temperature and only later did feathers elongate into structures facilitating flight Birds are small homeotherms and lose proportionately more heat than larger homeotherms Insulation theory states that feathers evolved with the homeotheric ancestry of modern birds A Chinese fossil shows that primitive feathers covered a small predatory dinosaur from head to tail (Ji et al. 2001). This fossil is the first to show feathers over the whole animal, showing that dinosaurs may well have evolved feathers for insulation before they were used for flight. Ji, Q., M. A. Norell, K.-Q. Gao, S.-A. Ji, and D. Ren. 2001. Nature 410: 1084-1088. Photo: Mack Blison, American Museum of Natural History FEATHER COLORS FEATHER PIGMENTS There are 3 principal pigments in bird feathers: (1) MELANINS The most common and produce black, grays, and browns (2) CAROTENOIDS Produce intense reds and yellows (3) PORPHYRINS Produce a range of reds, browns, and greens Melanins Carotenoids

PORPHYRINS STRUCTURAL COLORS Structural colors are either iridescent or non-iridescent Iridescent changes occur according to the angle at which light strikes the feather structure produced via thing layer of keratin on the barbules Light is split into its component colors before being reflected back to the observer In contrast, non-iridescent colors are produced as light scatters when it passes through minute spaces in the keratin or the barbs Non-iridescent colors do not change based on the angle of reflection STRUCTURAL COLORS Blue and green birds have no such pigment in their feathers The Blue Jay s feathers reflect blue light wave lengths which give them the appearance of blue color Every bird goes through a series of plumages or feather coats throughout its lifetime Moulting is a process where worn feathers are replaced Provides new, colorful plumages for mating And reduces parasites MOLTS AND PLUMAGES ENERGETIC --- Up to 25% of lean body mass can be replaced in the form of new feathers PREDATION --- Some species are flightless during part of molting period COSTS OF MOLTING

TERMS AND DEFINITIONS Humphrey and Parkes (1959) molt and plumage naming system MOLTING --- The normal shedding and replacement of feathers by a new generation of feathers PLUMAGE --- The new or resulting generation of feathers produced after a specific molt TERMS AND DEFINITIONS A specific plumage is prompted by a specific molt The Humphrey-Parkes system equates the number of plumages with the number of molts PLUMAGE CYCLE --- The time elapsing between occurrence of a given plumage or molt until the next occurrence of that plumage or molt TYPES OF PLUMAGES There are 5 major plumage types in the Humphrey-Parkes system: NATAL, JUVENILE, BASIC, ALTERNATE, SUPPLEMENTAL For each plumage there is a synonymously named molt TYPES OF PLUMAGES NATAL DOWN --- Worn by young birds during the first few weeks of life JUVENILE --- Most birds wear this plumage during their first summer FIRST BASIC --- In most species this is the immature plumage, does not include flight feathers, and is aquired in fall or early winter For example, the prebasic molt precedes the acquisition of the basic plumage TYPES OF PLUMAGES FIRST ALTERNATE --- Completed by the first spring, before birds arrive on breeding grounds Once an individual gets to its First Alternate molt the pattern goes back and forth from BASIC molt to ALTERNATE molt The terms BASIC and ALTERNATE are used because the plumages can no longer be differentiated from preceding plumages and are now termed DIFFINITIVE TYPES OF PLUMAGES BASIC --- Describes the plumage of birds that as adults have one plumage per cycle that is replaced by a complete feather molt (=pre-basic molt) ALTERNATE --- Describes the plumage of birds that as adults have 2 plumages per cycle The pre-basic molt results in basic plumage The alternate molt results in alternate plumage

M. McCullough, 101(1):4-10, 1989. MOLTING SEQUENCE AND AGING OF BALD EAGLES Juvenal Plumage ½Year Basic III Plumage 3½ Year Basic I Plumage 1½ Year Basic IV Plumage 4½ Year Basic II Plumage 2½ Year Definitive Plumage ECOLOGICAL STRATEGIES The production of new feathers requires a change in energy budget which can be met via 3 basic strategies: (1) Increased food intake (2) Reduction of other energy-demanding activities (3) Use of stored reserves ECOLOGICAL STRATEGIES Most wetland birds (waterfowl, grebes, loons) molt their flight feathers synchronously These species can not fly well with the loss of even 1 or 2 flight feathers so the best (fastest) strategy is to molt them all at once These species can afford this strategy because they can dive (loons and grebes) or hide (ducks) from predators while flightless End Feathers