Comparison of two hybrid magnet designs

Similar documents
Insertion Devices Lecture 4 Permanent Magnet Undulators. Jim Clarke ASTeC Daresbury Laboratory

Physics 221 Experiment 5: Magnetic Fields

Edmund Li. Where is defined as the mutual inductance between and and has the SI units of Henries (H).

FORCE ON A CURRENT IN A MAGNETIC FIELD

Magnetic Fields and Their Effects

The half cell of the storage ring SESAME looks like: Magnetic length =

physics 112N magnetic fields and forces

Ampere's Law. Introduction. times the current enclosed in that loop: Ampere's Law states that the line integral of B and dl over a closed path is 0

Damping Wigglers in PETRA III

CHAPTER 4 DESIGN OF INTEGRAL SLOT AND FRACTIONAL SLOT BRUSHLESS DC MOTOR

2. Permanent Magnet (De-) Magnetization 2.1 Methodology

1. A wire carries 15 A. You form the wire into a single-turn circular loop with magnetic field 80 µ T at the loop center. What is the loop radius?

Physics 30 Worksheet #10 : Magnetism From Electricity

dissociation: projectile charge and Furthermore we have observed that with increasing impact energy the kinetic energy of the fragments

Eðlisfræði 2, vor 2007

The purposes of this experiment are to test Faraday's Law qualitatively and to test Lenz's Law.

Physics 41, Winter 1998 Lab 1 - The Current Balance. Theory

AN2866 Application note

A METHOD OF CALIBRATING HELMHOLTZ COILS FOR THE MEASUREMENT OF PERMANENT MAGNETS

Section 16: Neutral Axis and Parallel Axis Theorem 16-1

Characteristics of the Four Main Geometrical Figures

Problem 1: Computation of Reactions. Problem 2: Computation of Reactions. Problem 3: Computation of Reactions

Hydraulics Laboratory Experiment Report

Imaging Systems Laboratory II. Laboratory 4: Basic Lens Design in OSLO April 2 & 4, 2002

PLOTTING DATA AND INTERPRETING GRAPHS

Vocabulary: VSEPR. 3 domains on central atom. 2 domains on central atom. 3 domains on central atom NOTE: Valence Shell Electron Pair Repulsion Theory

ELECTRIC FIELD LINES AND EQUIPOTENTIAL SURFACES

m i: is the mass of each particle

SLOT FRINGING EFFECT ON THE MAGNETIC CHARACTERISTICS OF ELECTRICAL MACHINES

Chapter 10. AC Inductor Design. Copyright 2004 by Marcel Dekker, Inc. All Rights Reserved.

Prelab Exercises: Hooke's Law and the Behavior of Springs

Lecture VI Magnetic Design

Diffraction and Young s Single Slit Experiment

1. Units of a magnetic field might be: A. C m/s B. C s/m C. C/kg D. kg/c s E. N/C m ans: D

HISTOGRAMS, CUMULATIVE FREQUENCY AND BOX PLOTS

Chapter 14: Inductor design

WHITEPAPER CABLE CONDUCTOR SIZING

MECHANICS OF SOLIDS - BEAMS TUTORIAL TUTORIAL 4 - COMPLEMENTARY SHEAR STRESS

Geometry Notes PERIMETER AND AREA

Physics 42 Lab 4 Fall 2012 Cathode Ray Tube (CRT)

GAP CLOSING. 2D Measurement GAP CLOSING. Intermeditate / Senior Facilitator s Guide. 2D Measurement

c 2008 Je rey A. Miron We have described the constraints that a consumer faces, i.e., discussed the budget constraint.

Chapter 33. The Magnetic Field

/ Department of Mechanical Engineering. Manufacturing Networks. Warehouse storage: cases or layers? J.J.P. van Heur. Where innovation starts

Physics Lab Report Guidelines

Application Note. So You Need to Measure Some Inductors?

Connectivity in a Wireless World. Cables Connectors A Special Supplement to

PHYS 222 Spring 2012 Final Exam. Closed books, notes, etc. No electronic device except a calculator.

Reflection and Refraction

MAG Magnetic Fields revised July 24, 2012

Chapter 22: Electric motors and electromagnetic induction

FREE FALL. Introduction. Reference Young and Freedman, University Physics, 12 th Edition: Chapter 2, section 2.5

Current Probes, More Useful Than You Think

Designing Log Periodic Antennas

1. The diagram below represents magnetic lines of force within a region of space.

Interference. Physics 102 Workshop #3. General Instructions

Mutual Inductance and Transformers F3 3. r L = ω o

Measurement of Charge-to-Mass (e/m) Ratio for the Electron

Introduction to Electricity & Magnetism. Dr Lisa Jardine-Wright Cavendish Laboratory

5. Measurement of a magnetic field

Modern Physics Laboratory e/m with Teltron Deflection Tube

The waveguide adapter consists of a rectangular part smoothly transcending into an elliptical part as seen in Figure 1.

Developing Conceptual Understanding of Number. Set J: Perimeter and Area

Motor-CAD Software for Thermal Analysis of Electrical Motors - Links to Electromagnetic and Drive Simulation Models

COMPUTER AIDED ELECTRICAL DRAWING (CAED) 10EE65

Force on a square loop of current in a uniform B-field.

DIRECT CURRENT GENERATORS

3D Drawing. Single Point Perspective with Diminishing Spaces

Experiment 5. Strain Gage Measurements

Introduction to Mechanical Behavior of Biological Materials

Introduction to Beam. Area Moments of Inertia, Deflection, and Volumes of Beams

C.-K. Ng. Stanford Linear Accelerator Center. and. T. Weiland. University oftechnology. FB18, Schlossgartenstr. 8. D64289, Darmstadt, Germany.

3D Drawing. Single Point Perspective with Diminishing Spaces

Student Activity: To investigate an ESB bill

An octave bandwidth dipole antenna

Demagnetization Studies on Permanent Magnets - Comparing FEM Simulations with Experiments

Standex-Meder Electronics. Custom Engineered Solutions for Tomorrow

Magnetism. d. gives the direction of the force on a charge moving in a magnetic field. b. results in negative charges moving. clockwise.

The accurate calibration of all detectors is crucial for the subsequent data

Shear Force and Moment Diagrams

Inv 1 5. Draw 2 different shapes, each with an area of 15 square units and perimeter of 16 units.

Lab 14: 3-phase alternator.

AS COMPETITION PAPER 2008

Permanent Magnetic Couplings and Brakes for Drive Technology

Mark Jaski. Multi-Bend-Achromat (MBA) Magnets

Assessment For The California Mathematics Standards Grade 6

Open-Ended Problem-Solving Projections

Module 5 (Lectures 17 to 19) MAT FOUNDATIONS

AP Physics 1 and 2 Lab Investigations

Objectives. Experimentally determine the yield strength, tensile strength, and modules of elasticity and ductility of given materials.

F B = ilbsin(f), L x B because we take current i to be a positive quantity. The force FB. L and. B as shown in the Figure below.

90 degrees Bremsstrahlung Source Term Produced in Thick Targets by 50 MeV to 10 GeV Electrons

Magnetic Fields. I. Magnetic Field and Magnetic Field Lines

VOLUME AND SURFACE AREAS OF SOLIDS

Using the Spectrophotometer

Experiment 7: Forces and Torques on Magnetic Dipoles

Magnetic Media Measurements with a VSM

Human Exposure to Outdoor PLC System

Imag Axis Real Axis

Motors and Generators

Transcription:

Comparison of two hybrid magnet designs Fredrik Hellberg MSL-07- Februari 2007 Manne Siegbahn Laboratory Stockholm University

Contents Introduction 3 2 Hybrid magnet 4 3 Hybrid vs segmented dipole 8 4 Conclusions 2

HM HM 2.5 m PM EM PM EM PM m Figure : A electro/permanent hybrid dipole magnet (HM) and a segmented dipole conguration (PM-permanent magnet, EM-electromagnet). Introduction There are dierent ways of bending an electron beam other than with electromagnets. Two types will be compared here, an electro/permanent hybrid dipole magnet and a dipole magnet made from adjacent segments of electromagnets and permanent magnets. The best conguration is the one that consumes the least power and contains the lowest amount of permanent magnet material (PMM). The total length of the dipole is 5 meter and it has to bend /m on average. The two congurations to be discussed here are shown in gure. The parameters used to optimize the magnet are shown in table and the magnetic eld strength for a number of energies is shown in table 2. E [GeV] Nom. E [GeV] Pole gap [cm] Pole width* [cm] 0-20 7.5 3 0 Table : Parameters used to optimize the dipole magnet. (* under the condition that the magnet is C-shaped.) E [GeV] 6 0 4 7.5 20 22 25 B [T] 0.35 0.58 0.82.02.6.28.46 Table 2: Magnetic eld strength as function of electron energy. 3

cm Iron PMM Iron Coil Coil Air cm Figure 2: A electro/permanent hybrid dipole made from rectangular blocks of permanent magnet material. In section 2 the hybrid magnet (HM) and the permanent magnet (PM) are optimized. A comparison of the hybrid magnet and the segmented dipole is presented in section 3, and nally some conclusions are made in section 4. 2 Hybrid magnet In a previous report [] several types of hybrid dipoles were discussed. Since then the parameters of the magnet have changed (table ). Both the pole gap and pole width have decreased to reduce the amount of permanent magnet material in the magnets. The pole width has been reduced under the condition that the magnet is open on one side so the photons can escape the electron trajectory. Two types of hybrid magnets are discussed here and schematics are shown in gure 2 and 3. The amount of iron, pole shape and size of the coils have not been optimized, but this will not inuence the conclusions made in this report. In order to evaluate what size and geometry the blocks should have to mininize the amount of PMM, a number of geometries were used as input in the Pandira program [2]. VACOMAX 225 [4] (Sm 2 Co 7 ) with remanent eld B r =.03 T and H c =720 ka/m (minimum values taken from table 2 in Vacuumschmeltze's product catalogue [4]) was used as input in Pandira and B as function of H was assumed linear in the second quadrant. Results from the calculations are shown in gure 4. For a certain magnetic eld strength there is a clear limit for the minimum amount of PMM. Comparing the two dierent congurations it is no particular advantage of using the more complex conguration (gure 3). The second important property for the dipole magnet is the eciency of 4

cm cm Figure 3: A electro/permanent hybrid dipole made from 0 non-rectangular blocks of permanent magnet material. the coils. The eld strength was therefore also calculated for 87 A (0% of the maximum current). The dimensions of the conductors were taken from the technical proposal for the electromagnet [3] and the number of conductors was 2 5. From the calculations at 0 A and 87 A the derivative of the eld was calculated for all congurations. The magnetic eld strength B at zero current was plotted as function of (db/di). The goal is to nd a magnet with a small volume of PMM and with high db/di. Therefore a selection was made including all congurations positioned left to the green curve in gure 4. B and db/di for those congurations are plotted in gure 5 (green). From investigating the congurations with bias eld close to.02 T (7.5 GeV) it is concluded that one possible alternative is made from rectangular blocks where the blocks are 3 cm thick (red * in gure 4 and 5). Figure 7 and 8 show results from calculations when the volume of PMM was kept constant (same as optimized conguration red *). In the rst simulation (red) a=d (see gure 6) were varied beween cm and 7 cm. The volume PMM remained constant by adjusting c. The maximum eld was obtained for a=d=3.5 cm. Two more simulations were done in a similar way adjusting only one parameter (a or d) while the other one was xed at 3.5 cm. The results show that for a=d=3.5 cm the eld strength in the gap is maximized. Reducing the thickness of the blocks to a=d=3 cm the B eld is reduced only by.5%, but db/di is increased by 2%. Reducing a and b to 2.5 cm the loss in eld strength would be (6%). By using even thinner blocks, a lot less ux go through the pole gap. Instead the eld go through the PMM, since that path include a shorter distance through material with similar permeability as air. 5

2.8.6.4 B [T].2 0.8 0.6 0.4 PMM: rectangular blocks PMM: 0 segments Selection limit Optimized 7.5 GeV 0.2 0 200 400 600 800 000 200 400 Permanent magnet material [kg/m] Figure 4: Field strength and volume of PMM plotted for dierent hybrid con- gurations. 2.8.6 PMM: rectangular blocks Selected blocks PMM: 0 segments Optimized 7.5 GeV.4 B [T].2 0.8 0.6 0.4 0.2 0.4 0.6 0.8.2.4.6.8 2 2.2 2.4 db/di [normalized units] Figure 5: Field strength B and db/di for dierent hybrid congurations (same as in gure 4). 6

b a c d Figure 6: Parameters adjusted in the calculations presented in gure 4,5 and 9. 0.95 0.9 B [norm. units] 0.85 0.8 0.75 0.7 0.65 0.6 0.55 0.5 2 3 4 5 6 7 x [cm] a=x cm d=x a=x d=3.5 a=3.5 d=x Figure 7: B from calculations changing the dimension of the blocks while the volume of PMM was constant. c was adjusted to maintain constant volume of PMM and b=5 cm in all simulations. 7

db/di [norm. units] 2.8.6.4.2 0.8 a=x d=x a=x d=3.5 cm a=3.5 cm d=x 0.6 0.4 2 3 4 5 6 7 x [cm] Figure 8: db/di from calculations changing the dimension of the blocks while the volume of PMM was constant. c was adjusted to maintain constant volume of PMM and b=5 cm in all simulations. If it is no need for adjusting the eld in the gap, coils are not needed. By removing the coils and moving the PMM closer to the gap more ux pass through the gap. The increases of the ux is less than 0% after removing the coils and moving the permanent magnets closer to the gap. Calculations were performed to present a similar plot to gure 4 and the results are shown in gure 9. These reults are used in section 3 for the segmented dipole. 3 Hybrid vs segmented dipole In order to compare the two dipole congurations presented in gure an optimized hybrid magnet and an optimized permanent magnet conguration are needed. In the calculations the segmented dipole will be treated as a 3 m long permanent magnet next to a 2 m long electromagnet. In practice the magnets are split into m sections and placed next to each other to minimize the pole widths (see gure ). The bias eld for the two congurations was calculated with equation, B = 2E sin(θ/2), () c q l where θ is the deection angle (5 ), c the speed of light, q the electron charge and l is the length of the magnet. A 5 m hybrid magnet needs.02 T eld and a 3 m permanent magnet needs.70 T eld to bend a 7.5 GeV electron beam 8

2.2 2.8.6 B [T].4.2 PMM: rectangular blocks Optimized 7.5 GeV 0.8 0 200 400 600 800 000 200 Permanent magnet material [kg/m] Figure 9: Field strength B and volume PMM plotted for a permanent magnet made from rectangular blocks of PMM and iron. Conguration optimized to bend 5 in 3 m (red *). This conguration is discussed in section 3. 5.The results presented in gures 4-9 were used to characterize these magnets and the results are presented in table 3. a [cm] b [cm] c [cm] d [cm] B [T] PMM [dm 3 /m] total PMM [dm 3 ] Hybrid 3 5 7.62 3.02 30. 5 PM 6 5 23.2 6.70 73.7 22 Table 3: Geometry and eld strength for the hybrid magnet and the permanent magnet (red * in gure 4 and 9). See gure 6 for the labels a-d. In order to compare the two congurations in terms of energy consumption, B as function of coil current, I, was calculated for the hybrid magnet and the electromagnet. The eld for the hybrid magnet was calculated using Pandira and for the electromagnet the standard text book formula was used (electromagnet with innite permeability of iron), NI = B µ 0 l g, (2) where N is the number of turns of the coil, µ 0 is the permeability of air and l g is the pole gap. The results are shown in gure 0. The coil current as function of beam energy was then calculated for the 2 m electromagnet. All steps how this was done are explained below and the results are presented in table 4. Column : Energy of the electron beam. 9

.8.6 Hybrid magnet Ideal electromagnet.4.2 B [T] 0.8 0.6 0.4 0.2-3 -2-0 2 3 4 NI [A] x 0 4 Figure 0: Characteristics for the hybrid magnet and an ideal electromagnet with 3 cm pole gap. Column 2: The deexion by a 3 m.70 T permanent magnet as function of electron beam energy (calculated using ). Column 3: Correction by the a 2 m long electromagnet to deect the beam 5 over 5 m (5 subtracted by column 2). Column 4: Magnetic eld needed for the electromagnet to make the correction (column 3). It was calculated using equation. Column 5: Current needed to obtain the correction eld (column 4) was calculated using equation 2. Column 6: Current for a 5 m hybrid magnet (see gure 0). Column 7: Current for a 5 m electromagnet (see gure 0). The interesting information is the dierence in power consumption between the hybrid magnet and the segmented dipole. The power, P, for the magnets can be written as, P = RI 2 = ρl A (NI)2, (3) where ρ is the restitivity of copper, L is the average length of the coil, and A is the gross coil area. If we disregard the pole widths and assume that resistivity and the area of the coils are the same for both the electromagnet and the hybrid magnet, P hybrid = CL h (NI h ) 2 = 5C(NI h ) 2, (4) P segmented = CL s (NI s ) 2 = 2C(NI s ) 2, (5) where C is a constant. The results are presented in gure. In the electron beam energy range 0-20 GeV the power consumption of the segmented dipole 0

E [GeV] θ 3m [ ] θ 2m [ ] B 2m [T] NI 2m [ka] NI hyb [ka] NI em [ka] 5.5 6.0 - -.75-4.8-26.4 8.6 7.5.7-6.7 -.46-34.8-22.0.0 9.5 9.2-4.2 -.7-27.8-7.7 3.2.5 7.6-2.6-0.87-20.9-3.2 6.0 3.5 6.5 -.5-0.58-3.9-8.8 8.7 5.5 5.6-0.6-0.29-8.0-4.4 2.5 7.5 5 0 0 0 0 24.2 9.5 4.5 0.5 0.29 6.9 4.4 27. 2.5 4. 0.9 0.58 3.9 9.0 29.9 23.5 3.7.3 0.87 20.8 3.7 32.6 25.5 3.4.6.6 27.7 8.7 35.4 Table 4: The current for the hybrid magnet and the segmented dipole magnet. See text for explanation of the dierent columns. is 3% lower than for the hybrid dipole. Taking into account the total length of the coils assuming the pole width and size of the coil in gure 2, P hybrid = CL h (NI h ) 2 = (5 + 2 0.54)C(NI h ) 2, (6) P segmented = CL s (NI s ) 2 = (2 + 2 0.54)C(NI s ) 2. (7) This assumption results in that the hybrid dipole is about 25% better than the segmented dipole. A general expression to compare the power consumption of the two congurations can be derived using equation 3 together with an expression for the current. For a certain beam energy both congurations use a magnetic eld induced by the coils to bend the same number of degrees (θ 2m in table 4). The conventional magnets have to use more current to bend θ 2m over two meters compared with the hybrid magnet that bends θ 2m over 5 meters. The current in the coils can be expressed as, I = di db B(θ 2m) = di db 2E sin(θ 2m /2). (8) c q l The slopes of the magnetization curves (gure 0) can be used to determine the power consumption, P = RI 2 = ρln 2 A ( di db ) 2 2E sin(θ 2m /2). (9) c q l In order to nd a hybrid conguration that consumes less power than the segmented dipole conguration (P h < P s ), ( ) ( ) di Ls l h Ah N s di <, (0) db h L h l s A s N h db s where s and h stand for segmented- and hybrid dipole, respectively. It is here assumed that the coils are made from the same material.

3.5 x 09 3 Segmented dipole Hybrid dipole Power [normalized units] 2.5 2.5 0.5 0 5 0 5 20 25 30 E [GeV] Figure : Comparison of the power consumption between the segmented dipole and the hybrid dipole. In order to compare these both alternative solution with a conventional electromagnet the ratio between the power of the hybrid magnet over the electromagnet (obtained from NI em in table 4) is presented in gure 2. The hybrid magnet has lower energy consumption compared with an electromagnet for beam energies larger than GeV. Another important aspect is the pole width, W, of the magnets. A schematic explaining W is shown in gure 3. For a 2.5 m hybrid magnet bending an electron beam 2.5, W =4 mm. Note that this is the minimum pole width, since the beam spread is not taken into account. For the segmented dipole the bending angles are not the same for each segment. The trajectories of electrons with kinetic energies 6-25 GeV (see table 5) moving through a segmented dipole are shown in gure 4. A 20 cm separation between the magnets was included. If only 0-20 GeV beams are considered the pole widths of the rst and last permanent magnet are similar to the pole width of hybrid magnet. The permanent magnet in the middle is slightly larger. An alternative is to move the magnet according to the beam energy. That results in a smaller pole width than the hybrid magnet. Unless the magnet has to be designed for lower energies than 0 GeV there is no big dierence in pole width between the hybrid magnet and the segmented dipole magnet. 4 Conclusions Two alternatives to conventional dipole electromagnets have been compared. The rst is a hybrid magnet formed by attaching coils to a permanent magnet 2

.4.2 P hyb /P em 0.8 0.6 0.4 0.2 0 0 2 4 6 8 20 22 24 E [GeV] Figure 2: The hybrid magnet compared with a conventional electromagnet. The hybrid magnet is favored for ratios lower than. electrons+photons photons θ l W electrons θ Figure 3: Schematic of an electron beam moving through a dipole magnet. 3

0-0.05 20 GeV 25 GeV Segmented dipole Hybrid dipole -0. 6 GeV -0.5 0 GeV y [m] -0.2-0.25-0.3-0.35 PM EM PM EM PM -0.4 0 2 3 4 5 6 7 z [m] Figure 4: Trajectories of electron beams moving through a segmented dipole magnet. The trajectory for electrons moving through the hybrid magnet is also shown (red curve) for comparison. E [GeV] θ P M [ /m] θ EM [ /m] 6 4.87-4.8 0 2.92 -.88 20.46 0.3 25.7 0.75 Table 5: Beam energies and bending angles used to calculate the beam trajectories in gure 4. 4

and in the other conguration the permanent magnet and the electromagnet are separated. The power consumption seems to be equal or less for the hybrid magnet and the segmented dipole consumes about 50% more permanent magnet material than the hybrid dipole magnet. The reason is that the increase of PMM is not linear with respect to the eld strength, it appeares to be faster. Allowing the hybrid magnet to use an extra 50% of permanent magnet material the power consumption can be reduced by making the blocks thinner (b and d in gure 6). To sum up the hybrid magnet seems to be a better choice. In order to have a simple hybrid conguration and to minimize the amount of permanent magnet material it is concluded that using rectangular blocks with same thickness (or slightly thicker) than the pole gap is a good choice. In order to reduce the power consumption thinner blocks can be used, but for such a conguration the amount of permanent magnet material in the magnet increases. References [] F. Hellberg, Investigating the possibility of a hybrid magnet design for BV/BW dipole magnets at the XFEL, MSL-06-, 2006. [2] POISSON/SUPERFISH group of codes, Los Alamos National Laboratory. [3] S. Ananjev et. al., Technical proposal for a batch of electromagnets for the XFEL project, Sepember 2005. [4] Rare earth permanent magnets Vacodym vacomax, http://www.vacuumschmelze.de. 5